函数单调性,奇偶性,习题课教案设计
函数的奇偶性教案

函数的奇偶性教案一、教学目标1. 知识与技能:(1)理解函数奇偶性的概念;(2)学会判断函数的奇偶性;(3)能够运用函数的奇偶性解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳,探索函数的奇偶性;(2)利用函数的奇偶性进行函数图像的变换。
3. 情感态度与价值观:(1)培养学生的逻辑思维能力;(2)激发学生对数学的兴趣,提高学习积极性。
二、教学重点与难点1. 教学重点:(1)函数奇偶性的概念及其判断方法;(2)函数奇偶性在实际问题中的应用。
2. 教学难点:(1)函数奇偶性的判断方法;(2)函数奇偶性在实际问题中的应用。
三、教学过程1. 导入新课:(1)复习已学过的函数性质,如单调性、周期性等;(2)提问:同学们,你们知道函数还有其他的性质吗?2. 探究新知:(1)介绍函数奇偶性的概念;(2)通过示例,让学生观察、分析、归纳函数的奇偶性;(3)引导学生掌握判断函数奇偶性的方法。
3. 典例分析:(1)分析函数f(x)=x^3的奇偶性;(2)分析函数f(x)=|x|的奇偶性;(3)分析函数f(x)=sinx的奇偶性。
4. 练习巩固:(2)运用函数的奇偶性解决实际问题。
四、课堂小结本节课,我们学习了函数的奇偶性,掌握了判断函数奇偶性的方法,并能够在实际问题中运用。
希望大家能够继续努力学习,不断提高自己的数学能力。
五、课后作业2. 运用函数的奇偶性解决实际问题:已知函数f(x)=x^2+1的图像关于y轴对称,求函数f(x)在x=-1时的值;3. 探究函数的奇偶性与单调性的关系。
六、教学活动设计1. 小组讨论:让学生分组讨论函数奇偶性的性质,以及如何判断一个函数的奇偶性。
2. 案例分析:通过具体的函数例子,让学生理解并掌握函数奇偶性的判断方法。
3. 互动提问:教师提出问题,引导学生思考并回答,以检查学生对函数奇偶性的理解和掌握程度。
七、教学评价1. 课堂问答:通过提问学生,检查他们对函数奇偶性的概念和判断方法的理解。
函数的概念与性质教案

函数的概念与性质教案一、教学目标:1. 理解函数的概念,掌握函数的表示方法。
2. 掌握函数的性质,包括单调性、奇偶性、周期性等。
3. 能够运用函数的性质解决问题。
二、教学内容:1. 函数的概念:函数的定义、函数的表示方法(列表法、解析法、图象法)。
2. 函数的性质:单调性、奇偶性、周期性。
3. 函数性质的应用:解决实际问题。
三、教学重点与难点:1. 重点:函数的概念与表示方法,函数的性质及其应用。
2. 难点:函数的单调性、奇偶性、周期性的理解和应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究函数的性质。
2. 利用数形结合法,直观展示函数的性质。
3. 运用实例分析法,让学生学会运用函数的性质解决实际问题。
五、教学准备:1. 教学课件:包含函数的概念、性质及其应用的实例。
2. 教学素材:包括函数图象、实际问题等。
3. 学生用书、练习题。
【导入】(此处简要介绍本节课的教学目标和内容,引导学生进入学习状态。
)【新课导入】1. 函数的概念:(1)引导学生回顾数学中的变量概念,引入函数的定义。
(2)讲解函数的表示方法:列表法、解析法、图象法。
2. 函数的性质:(1)单调性:讲解函数单调递增和单调递减的概念,引导学生通过图象观察函数的单调性。
(2)奇偶性:讲解函数奇偶性的定义,引导学生通过图象观察函数的奇偶性。
(3)周期性:讲解函数周期性的定义,引导学生通过图象观察函数的周期性。
【课堂练习】1. 让学生自主完成教材中的练习题,巩固所学内容。
2. 选取部分学生进行答案展示,并讲解答案的得出过程。
【实例分析】1. 给出实际问题,让学生运用函数的性质解决问题。
2. 引导学生总结解题思路和方法,并进行讲解。
【小结】1. 让学生回顾本节课所学内容,总结函数的概念、性质及其应用。
2. 强调函数在实际问题中的重要性。
【作业布置】1. 让学生完成课后作业,巩固所学内容。
2. 鼓励学生进行自主学习,提前预习下一节课的内容。
“函数的单调性”-教学设计

“函数的单调性”教案一、教材内容分析函数的单调性是人教版数学必修一第二章第一节的内容。
在《普通高中数学课程标准按(2017年版)》中明确指出,要会借助函数图象,会用符号语言表达函数的单调性,理解它们的作用和实际意义。
所以本节在学习函数单调性时要引导学生借助函数图像理解函数单调性,并学会用定义法来证明函数单调性。
函数的单调性是函数性质之一,揭示了函数图像的趋势,表示了自变量和因变量之间的关系,是数形结合数学思想的基础,与函数的奇偶性呈并列的关系,他俩从不同侧面研究函数性质,在函数性质中具有举足轻重的地位。
本节利用图像观察推导单调性判断方法,该方法再次体现了数形结合的主要思想。
二、学生情况分析高一学生具有较强的求知欲望,但是欠缺自主探究能力和良好的学习习惯。
本班学生基础一般,两极分化较为严重,大多数学生学习兴趣较高,能够积极踊跃的发表自己的想法,与教师配合默契。
在此之前,学生已学习了函数的概念、定义域、值域及表示法,这为过渡到本节的学习起着铺垫作用。
三、教学目标1、知识目标:(1)理解函数的单调性的概念;(2)会借助于函数图像讨论函数的单调性;(3)熟练应用定义判断函数在某区间上的的单调性。
2、能力目标:通过概念的教学,培养学生观察、比较、分析、概括的逻辑思维能力,使学生体验数学的一般思维方法,提高分析问题、解决问题的能力。
3、情感、态度、价值观目标:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程。
四、重点难点重点:函数的单调性定义。
难点:利用函数的单调性定义判断、证明函数的单调性。
五、教学方法启发引导与自主探究讨论相结合。
六、教学过程教学中可根据学生的情况而定),并指出图象的变化的趋势。
观察得到:随着x值的增大,函数图象有的呈上升趋势,有的呈下降趋势,有的在一个区间内呈上升趋势,在另一区间内呈下降趋势。
问题1:如何量化的来刻画函数的增减性呢?1.请大家说说上述的“增大”是什么意思?(比较)2.比较至少是几个量之间?(两个)3.怎样取这两个量?取特殊值可以吗?(不可以,必需取遍整个区间的所有值)4.能做到一一全部都取出来吗?度抽象性造就了数学的难懂、难教、难学,解决这一问题的基本途径是顺应学习者的认知规律,在需要和可能的情况下,尽量做到从直观入手,从具体开始,逐步抽象。
《函数的基本性质习题课》示范课教学设计【高中数学人教B版必修第一册】

《函数的基本性质习题课》教学设计教学重点:理解函数的基本性质,应用函数的性质进行运算求解、推理论证. 教学难点:应用函数的性质进行运算求解、推理论证.用软件制作动画;PPT 课件.一、复习导入问题1:请同学们梳理第3.2节(课本P 76~P 85)的内容,回答以下几个问题: (1)函数的基本性质有哪些?你能依次从图象特征和代数符号的角度叙述这些性质吗?(2)你能说说研究函数的性质的方法吗?师生活动:学生先独立阅读思考,老师根据学生的回答补充. 预设的答案:(1)的答案见表1:表1表1中,函数y =f (x )的定义域为I ,区间D ⊆I .(2)先观察具体函数图象,分析图象特征,形成对函数性质的感性认识;再结合解析式从代数的角度定量刻画函数性质,抽象出一般概念;最后应用概念分析解决问题.设计意图:通过复习帮助学生梳理学习方法,构建函数基本性质的知识结构. 引语:我们在第3.2节主要学习了三种函数性质,本节课我们一起来深入体会这些性质的作用.(板书:函数的基本性质习题课)二、新知探究1.单调性的应用例1 (习题3.2 P 86第8题)(1)根据函数单调性的定义证明函数y =x +9x 在区间(3,+∞)上单调递增;(2)讨论函数y =x +9x 在区间(0,+∞)上的单调性;(1)证明:∀x 1,x 2∈(3,+∞),且x 1<x 2,有 y 1-y 2=(x 1+9x 1)-(x 2+9x 2)=(x 1-x 2)+(9x 1-9x 2)=(x 1-x 2)+9(x 2-x 1)x 1x 2 =(x 1-x 2)-9(x 1-x 2)x 1x 2 =(x 1-x 2)(1-9x 1x 2)=(x 1-x 2)(x 1x 2-9x 1x 2)由x 1,x 2∈(3,+∞),得x 1>3,x 2>3,所以x 1x 2>9,x 1x 2-9>0. 由x 1<x 2,得x 1-x 2<0,于是(x 1-x 2)(x 1x 2-9x 1x 2)<0,即y 1<y 2.所以,函数y =x +9x在区间(3,+∞)上的单调递增.增.2.单调性与奇偶性的综合应用例2(习题3.2P86第11题)已知函数f(x)是定义域为R的奇函数,当x≥0时,f(x)=x(1+x).画出函数f(x)的图象,并求出函数的解析式.追问1:求f(-1).(f(1)=1×(1+1)=2,又因为函数f(x)是奇函数,所以f(-1)=-f(1)=-2.)追问2:求f(t).(当t≥0时,f(t)=t(1+t);当t<0时,-t>0,f(-t)=-t×(1+(-t))=-t(1-t),又因为函数f(x)是奇函数,所以f(t)=-f(-t)=t(1-t).)师生活动:学生先独立地根据奇偶性画出函数的图象,体会该函数在定义域R内的不同范围内的对应关系不同,明确所求函数是分段函数.求解解析式对于大多数高一学生来说)追问4:在例2与追问3中,分别判断在(-∞,0)上的单调性,据此你能得到奇函数和偶函数单调性的哪些特点?(例2中,函数在(-∞,0)上单调递增;追问3中,函数在(-∞,0)上单调递减.据此得到猜想:奇函数在对称区间上单调性相同,偶函数在对称区间上单调性相反.)追问5:下面的命题是真命题吗?如果是请你证明,如果不是,请你举出反例:已知函数f(x)是偶函数,而且在[a,b]上单调递减,则f(x)在[-b,-a]上单调递增.(这是个真命题.证明:∀x1,x2∈[-b,-a],且x1<x2,由-b≤x1<x2≤-a,得a≤-x2<-x1≤b,由f(x)在[a,b]上单调递减,得f(-x2)>f(-x1),即f(-x1)-f(-x2)<0,得f(x1)-f(x2)=f(-x1)-f(-x2)<0,所以,函数f(x)在[-b,-a]上单调递增.)设计意图:追问1,2是引导学生从具体的函数求值入手过渡到一般的函数求值,然后比较自然地求解例2,追问3巩固例2中所学的思路与方法,提升学生的逻辑推理和数学运算素养.追问4,5引导学生体会单调性与奇偶性之间的关系,提升学生的直观想象和逻辑推理素养.三、归纳小结,布置作业问题2:回忆本节课的内容,请你回答以下几个问题:(1)奇偶性与单调性如何互相影响?(2)应用奇偶性和单调性的定义,我们可以解决什么问题?师生活动:师生一起总结.预设的答案:(1)如果函数是奇函数,则在对称区间上的单调性是相同的;如果函数是偶函数,则在对称区间上的单调性是相反的.(2)利用单调性定义,可以用于证明一些图象已知的函数的单调性,还可以用于判定图象未知的函数的单调性.利用奇偶性定义,可以判定奇偶性,还可以解决对称区间上的函数求值问题.设计意图:通过梳理本节课的内容,让学生明确函数性质的各种作用.作业布置:教科书复习参考题3第3,4,9,12题.四、目标检测设计1.已知f(x)=2xx2+1,x∈R.(1)求证:f(x)在区间[-1,1]上单调递增;(2)你还能得到函数的哪些性质?设计意图:考查函数单调性、奇偶性、最值等性质.2.已知函数f(x)是定义域为R的偶函数,当x<0时,f(x)=x(x+1),则当x>0时,f(x)=________.设计意图:考查运用奇偶性的定义求解析式.3.函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上单调递减,则a的取值范围是______.设计意图:考查单调性的应用.参考答案:1.(1)∀x1,x2∈[-1,1],且x1<x2,则f(x1)-f(x2)=2(x2-x1)(x1x2-1) (x12+1)(x22+1),因为x2-x1>0,x1x2-1<0,所以f(x1)-f(x2)<0,即f(x1)<f(x2),所以函数f(x)=2x x2+1在区间[-1,1]上单调递增.(2)①f(x)在区间(-∞,-1]和[1,+∞)上单调递减;②f(x)是奇函数;③值域为[-1,1].2.x(x-1).3.(-∞,-5].。
高一数学上册《函数的基本性质》教案、教学设计

3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。
教案板书设计怎么写【优秀】

教案板书设计怎么写【优秀】一、教学内容本节课我们将学习《高中数学》教材第二章“函数”的2.3节“函数的性质”。
具体内容包括函数的单调性、奇偶性以及函数的极值。
二、教学目标1. 让学生掌握函数单调性、奇偶性的定义,能够判断给定函数的单调性和奇偶性。
2. 使学生了解函数极值的概念,能够找出函数的极值点。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点教学难点:函数单调性、奇偶性的判断,函数极值的求解。
教学重点:函数单调性、奇偶性的定义,函数极值的概念。
四、教具与学具准备1. 教具:PPT、黑板、粉笔、教鞭。
2. 学具:教材、笔记本、练习本。
五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中的现象,如温度变化、物体高度变化等,引导学生思考这些现象与函数的关系,从而引出本节课的主题。
2. 例题讲解(15分钟)例题1:判断函数f(x) = x^2 2x + 1的单调性和奇偶性。
解答:此函数为二次函数,开口向上,顶点坐标为(1,0)。
因此,函数在x=1处取得最小值0,单调递增区间为(∞,1),单调递减区间为(1,+∞)。
同时,f(x)为偶函数,因为f(x) = (x)^2 2(x) + 1 = x^2 + 2x + 1 = f(x)。
例题2:求函数f(x) = x^3 3x的极值。
解答:求导数f'(x) = 3x^2 3,令f'(x) = 0,得x = ±1。
当x = 1时,f(x)取得极大值2;当x = 1时,f(x)取得极小值2。
3. 随堂练习(10分钟)练习1:判断函数f(x) = x^3 3x^2 + 2的单调性和奇偶性。
练习2:求函数f(x) = x^2 2x + 1的极值。
4. 课堂小结(5分钟)六、板书设计1. 函数单调性、奇偶性的定义及判断方法。
2. 函数极值的定义及求解方法。
3. 例题及解答。
七、作业设计1. 作业题目:(1)判断函数f(x) = x^3 3x^2 + 2的单调性和奇偶性。
高一数学必修1《函数的基本性质》教案

高一数学必修1《函数的基本性质》教案教学目标:1. 理解函数以及函数的各种表达方式。
2. 掌握函数的基本性质,包括单调性、奇偶性、周期性和零点。
3. 实现函数的简单变换,例如平移、伸缩和反转等。
4. 能够应用函数的基本性质,解决实际问题。
教学重点:1. 理解函数的概念以及函数的各种表达方式。
2. 掌握函数的基本性质,实现函数的简单变换。
3. 能够应用函数的基本性质,解决实际问题。
教学难点:1. 如何理解函数的概念以及函数的各种表达方式。
2. 如何应用函数的基本性质,解决实际问题。
教学方法:一、讲授法。
二、探究法。
三、案例分析法。
教学过程:一. 引入新知识(5分钟):教师简单介绍函数的概念和历史背景,引导学生关注函数在实际生活中的应用,引出本节课的学习目标,激发学生的学习兴趣。
二. 讲解函数的概念(10分钟):1. 函数的定义:任何能够使$x$值唯一对应一个$y$值的规律都称为函数,可以表示为$y=f(x)$。
$x$为自变量,$y$为因变量,函数$f(x)$表示$y$与$x$之间的关系。
2. 函数的图像:函数可以通过绘制它们的图像进行可视化。
函数的图像是平面直角坐标系上的一条曲线。
3. 函数的表示方法:函数可以用表格、图像、公式等多种方式表示。
例如$f(x)=x^2$就是一种表示方式。
三. 掌握函数的基本性质(30分钟):1. 单调性:单调递增和单调递减;2. 奇偶性:奇函数、偶函数和常函数;3. 周期性:周期函数和非周期函数;4. 零点:零点定义以及求零点的方法。
四. 实现函数的简单变换(10分钟):1. 平移变换:表示为$f(x-a)$或$f(x)+b$,注意$a$和$b$的正负性;2. 伸缩变换:表示为$f(kx)$或$f(x)/k$,注意$k$的正负性;3. 反转变换:表示为$f(-x)$或$f(-y)$,注意反转后的坐标轴位置变化。
五. 应用函数的基本性质(10分钟):1. 求函数的最值。
《函数的概念与性质》教案设计范例

《函数的概念与性质》教案设计范例一、教学目标:1. 了解函数的概念,理解函数的三个基本要素:定义域、值域、对应关系。
2. 掌握函数的性质,包括单调性、奇偶性、周期性等。
3. 学会运用函数的性质解决实际问题,提高解决问题的能力。
二、教学内容:1. 函数的概念:函数的定义、函数的表示方法、函数的三个基本要素。
2. 函数的单调性:单调递增函数、单调递减函数、单调性判断方法。
3. 函数的奇偶性:奇函数、偶函数、非奇非偶函数。
4. 函数的周期性:周期函数的定义、周期性判断方法。
5. 函数性质在实际问题中的应用。
三、教学重点与难点:1. 重点:函数的概念与性质,函数的单调性、奇偶性、周期性的判断方法。
2. 难点:函数性质在实际问题中的灵活运用。
四、教学方法:1. 采用讲授法,系统地讲解函数的概念与性质。
2. 利用案例分析法,引导学生运用函数性质解决实际问题。
3. 运用互动教学法,鼓励学生提问、讨论,提高学生的参与度。
五、教学过程:1. 导入:通过生活实例引入函数的概念,激发学生的兴趣。
2. 新课导入:讲解函数的三个基本要素,引导学生理解函数的定义。
3. 案例分析:分析具体函数的单调性、奇偶性、周期性,让学生掌握判断方法。
4. 课堂练习:布置练习题,让学生巩固所学函数性质。
5. 实际问题解决:引导学生运用函数性质解决实际问题,提高解决问题的能力。
7. 作业布置:布置课后作业,巩固所学知识。
六、教学评估:1. 课后作业:布置相关的习题,让学生巩固课堂所学知识。
2. 课堂练习:及时检查学生在课堂上的学习情况,对学生的学习进度进行掌握。
3. 小组讨论:组织小组讨论,让学生分享自己的学习心得,提高学生的合作能力。
七、教学反思:在教学过程中,要时刻关注学生的学习情况,根据学生的反馈及时调整教学方法和教学进度。
针对学生的难点问题,可以进行重点讲解,或者组织课后辅导,确保学生能够掌握函数的概念与性质。
八、教学拓展:1. 深入了解函数在其他领域的应用,如数学分析、物理、化学等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.3.函数的单调性(一)课型:新授课教学目标:(1)知识与能力:理解增函数、减函数、单调区间、单调性等概念,掌握增(减)函数的证明和判别, 学会运用函数图象理解和研究函数的性质。
(2)过程与方法:引导学生通过观察,归纳,抽象,概括自主构建单调性的概念,使学生领会数形结合的思想方法。
(3)情感,态度,价值观:培养学生主动探索,敢于创新的意识和精神,使学生理性思考生活中的增长和递减的现象。
教学重点:掌握运用定义或图象进行函数的单调性的证明和判别。
教学难点:理解概念。
教学过程:一、复习引入:1.. 观察下列各个函数的图象,并探讨下列变化规律:①随x的增大,y的值有什么变化?②能否看出函数的最大、最小值?2. 画出函数f(x)= x+2、f(x)= x2的图像,并观察。
(小结描点法的步骤:列表→描点→连线)二、讲授新课:1.教学增函数、减函数、单调性、单调区间等概念:(1)增(减)函数:(2)讨论:一次函数、二次函数、反比例函数的单调性及单调区间2.教学增函数、减函数的证明:定义法,步骤如下:(1)设自变量(2)做差变形(3)讨论定号(4)下结论例题讲解例1(P45)证明函数f(x)=2x+1,在R上是增函数例2:(P45)总结:三、巩固练习:1.判断f(x)=|x|、y=x3的单调性并证明。
2.讨论f(x)=x2-2x的单调性。
推广:二次函数的单调性3.课堂练习:书P46.1.2题。
四、小结:1.函数单调性概念2.单调性证明方法五、作业:P46、3—5题板书设计:反思:2.1.3 函数的单调性(二)课 型:新授课教学目标:(1) 知识与能力:更进一步理解函数单调性的概念及证明方法、判别方法,能利用单调性比较大小,理解函数的最大值及其几何意义.(2) 过程与方法:引导学生通过观察,归纳,抽象,概括自主构建单调性的概念,使学生领会数形结合的思想方法。
(3) 情感,态度,价值观:培养学生主动探索,敢于创新的意识和精神,使学生理性思考生活中的增长和递减的现象。
教学重点:会比较大小,熟练求函数的最值。
教学难点:理解函数的最值,能利用单调性求函数的最值。
教学过程:一、复习引入:1.指出函数f(x)=ax 2+bx +c (a>0)的单调区间及单调性。
2. f(x)=ax 2+bx +c 的最小值的情况是怎样的?3.知识回顾:增函数、减函数的定义。
二、讲授新课:1.教学函数最值的概念:指出下列函数图象的最高点或最低点,→ 能体现函数值有什么特征?()23f x x =-+, [1,2]x ∈-;2()21f x x x =++,[2,2]x ∈- 2.提出单调性的应用:比较大小,求值域举例如下:例题讲解:例1(练习册P28应用2)例2.求函数21y x =-在区间[2,6] 上的最大值和最小值.例3.求函数y x =+三、巩固练习:1. 求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-;(2)|1||2|y x x =+--2.求函数2y x =.四、小结:求函数最值的常用方法有:(1)配方法:即将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的最值.(2)换元法:通过变量式代换转化为求二次函数在某区间上的最值.(3)数形结合法:利用函数图象单调性求出最值.五、作业:练习册板书设计:反思;2.1.4 函数的奇偶性课 型:新授课教学目标:(1) 知识与技能:理解奇函数、偶函数的概念及几何意义,能熟练判别函数的奇偶性。
(2) 过程与方法:通过设置问题情景培养学生判断,推理的能力。
(3) 情感,态度,价值观:通过绘制和展示函数图像陶冶学生情操,培养学生合作精神,培养学生善于探索的思维品质。
教学重点:熟练判别函数的奇偶性。
教学难点:理解奇偶性。
教学过程:一、复习引入:1.提问:什么叫增函数、减函数2.指出f(x)=2x 2-1的单调区间及单调性。
3.对于f(x)=x 、f(x)=x 2、f(x)=x 3,分别比较f(x)与f(-x)。
并作图,观察图像特点。
二、讲授新课:1.奇函数、偶函数的概念:(1)偶函数:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数.(2)探究:仿照偶函数的定义给出奇函数的定义.如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数。
(3) 讨论:定义域特点,与单调性定义的区别,图象特点。
(定义域关于原点对称;整体性)2.奇偶性判别:例1.P48判断下列函数的奇偶性.例2研究函数21()f x x =.的性质并做出它的图像3、奇偶性与单调性综合的问题:①出示例:已知f(x)是奇函数,且在(0,+∞)上是减函数,问f(x)的(-∞,0)上的单调性。
②找一例子说明判别结果(特例法) → 按定义求单调性,注意利用奇偶性和已知单调区间上的单调性。
(小结:设→转化→单调应用→奇偶应用→结论) ③变题:已知f(x)是偶函数,且在[a,b]上是减函数,试判断f(x)在[-b,-a]上的单调性,并给出证明。
三、巩固练习:1、判别下列函数的奇偶性:f(x)=|x +1|+|x -1| 、f(x)=23x 、f(x)=x +x 1、 f(x)=21x x +、f(x)=x 2,x ∈[-2,3]2.设f(x)=ax 7+bx +5,已知f(-7)=-17,求f(7)的值。
3.已知f(x)是奇函数,g(x)是偶函数,且f(x)-g(x)=11+x ,求f(x)、g(x)。
4.已知函数f(x),对任意实数x 、y ,都有f(x+y)=f(x)+f(y),试判别f(x)的奇偶性。
(特值代入)5.已知f(x)是奇函数,且在[3,7]是增函数且最大值为4,那么f(x)在[-7,-3]上是( )函数,且最 值是 。
四、小结本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称,单调性与奇偶性的综合应用是本节的一个难点,需要学生结合函数的图象充分理解好单调性和奇偶性这两个性质.五、作业P49页1——5板书设计:反思:函数的基本性质(习题课)课 型:练习课教学目标:(1)知识与技能:掌握函数的基本性质(单调性,奇偶性),能应用函数的基本性质解决一些问题。
(2)过程与方法:通过设置问题情景培养学生判断,推理的能力。
(3)情感,态度,价值观:通过绘制和展示函数图像陶冶学生情操,培养学生合作精神,培养学生善于探索的思维品质。
教学重点:掌握函数的基本性质。
教学难点:应用性质解决问题。
教学过程:一、复习引入:1.讨论:如何从图象特征上得到奇函数、偶函数、增函数、减函数、最大值、最小值?2.提问:如何从解析式得到奇函数、偶函数、增函数、减函数、最大值、最小值的定义?二、教学典型习例:1.函数性质综合题型:例1:作出函数y =x 2-2|x|-3的图像,指出单调区间和单调性。
分析作法:利用偶函数性质,先作y 轴右边的,再对称作。
→学生作 →口答→ 思考:y =|x 2-2x -3|的图像的图像如何作?→讨论推广:如何由()f x 的图象,得到(||)f x 、|()|f x 的图象?例2:已知f(x)是奇函数,在(0,+∞)上是增函数,证明:f(x)在(-∞,0)上也是增函数分析证法 → 教师板演 → 变式训练讨论推广:奇函数或偶函数的单调区间及单调性有何关系?(偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性一致)2.函数性质的应用:例 1:求函数f(x)=x +x1 (x>0)的值域。
分析:单调性怎样?值域呢?→小结:应用单调性求值域。
→ 探究:计算机作图与结论推广例2:某产品单价是120元,可销售80万件。
市场调查后发现规律为降价x 元后可多销售2x 万件,写出销售金额y(万元)与x 的函数关系式,并求当降价多少个元时,销售金额最大?最大是多少?分析:此题的数量关系是怎样的?函数呢?如何求函数的最大值?小结:利用函数的单调性(主要是二次函数)解决有关最大值和最大值问题。
3.基本练习题:1、判别下列函数的奇偶性:y =1+x +1-x 、 y =⎪⎩⎪⎨⎧≤+>+-)0()0(22x x x x x x2、求函数y =x三、巩固练习:1.已知函数f(x)=ax 2+bx+3a+b 为偶函数,其定义域为[a-1,2a],求函数值域。
2. f(x)是定义在(-1,1)上的减函数,如何f(2-a)-f(a -3)<0。
求a 的范围。
3. 求二次函数f(x)=x 2-2ax +2在[2,4]上的最大值与最小值。
四、小结:本节课通过讲练结合全面提高对函数单调性和奇偶性的认识,综合运用函数性质解题。
五、作业:练习册板书设计:反思:。