人教版七级上册 数学 课件 有理数的乘法
合集下载
七年级-人教版(2024新版)-数学-上册-【课件】初中数学-七年级上册-第二章-2

问题
珠穆朗玛峰是世界的最高峰, 它的海拔高度是8 848.86米.
把一张足够大的、厚度为0.1 毫米的纸连续对折30次,它的厚 度能超过珠穆朗玛峰吗?
对折1次: 0.1×2=0.2(毫米);
对折2次: 0.1×2×2=0.4(毫米);
对折3次: 0.1×2×2×2=0.8(毫米);
……
共30个2相乘
乘方运算的两种方法: (1)将乘方转化成乘法,再根据乘法法则计算; (2)先根据乘方运算的符号法则判断幂的符号, 再计算幂的绝对值.
例3 用计算器计算(-8)5和(-3)6. 解:用带符号键 (-)的计算器,有
显示结果为
( (-) 8 ) ▄a 5 =
-32768;
( (-) 3 ) ▄a 6 =
对折30次:0.1×2×2×…×2 =107 374 182.4(毫米) =107 374.182 4(米)>8 848.86(米).
因此,连续对折30次后,纸的厚度能超过珠穆朗玛峰.
这种是相同乘数的乘法,为了简便,我们把30个2相乘记作230, 读作“2的30次方”.
共30个2相乘 0.1×2×2×…×2(毫米)
5.乘除混合运算往往先_将__除__法__转__化__为__乘__法_,然后___确__定__积__ __的__符__号__,最后__求__出__结__果___.
6.有理数的加、减、乘、除混合运算,如无括号指出先做什 么运算,则与小学所学的混合运算一样,按照_“__先__乘__除__,__后__加__减__”_ 的顺序进行.
底数是-3,指数是4.
(2)3 4
3 4
3 4
3 4
3 4
3 4
3 4
6
,
底数是
【课件】有理数的乘法法则(第1课时)课件人教版数学七年级上册

相
反
数
只有符号不同
的两个数叫做
互为相反数.
a的相反
数是−a.
性质
判定
若a,b互为倒
数,则ab=1.
若 · = 1,则
,互为倒数.
相
同
点
都
成
对
若a,b互为相反 若 + = 0,则 出
数,则 + = 0. a,b互为相反数. 现
.
知识点3 多个有理数相乘的积的符号法则
思考:判断下列各式的积是正的还是负的?
后一乘数
逐次递减1
3 ×(-2)= -6 ,
3 ×(-3)= -9 .
【思考】观察下面的乘法算式,你又能发现什么规律 ?
可发现,随着前一乘数逐次递减1,
(2) 3 × 3 =9
积逐次递减3.要使这个规律在引入负数
2 × 3 =6
1 × 3 =3
0 × 3 =0
前一乘数
逐次递减1
后仍然成立,那么应有:
积的符号
几个不是零的数相乘,负因数的个数
为奇数时,积为负数
偶数时,积为正数
倒数
有理数中,乘积是1的两个数互为倒
1
数.a≠0时,a的倒数是
a
1.若ab>0,则有(
C )
A.a>0,b>0
B.a<0,b<0
C.a,b同号
D.a,b异号
2.若a+b>0,ab>0,则有( B
)
A.a,b均为负数
B.a,b均为正数
4.零与任何数相乘或任何数与零相乘结果是 零 .
有理数乘法法则
1.两数相乘,同号得正,异号得负,并把绝对值相乘.
2.任何数同0相乘,都得0.
人教版七年级上数学上册 有理数的乘法 课件

探究发现
判断:下列各式的积是正的还是负的?
( 1 ) 2 3 4( 5)
负
( 2 ) 2 3( 4)( 5) 正
( 3 ) 2 ( 3)( 4)( 5) 负
( 4 ) ( 2)( 3) (4)( 5) 正
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
归纳
1、几个不是0的数相乘, 负因数的个数是 偶__数__个_ 时,积是正数;
两点间的距离|AB|=|a-b|.
(1)数轴上表示2和5的两点间的距离是__3___,数轴上表 示-2和-5的两点间的距离是__3___,数轴上表示1和-3 的两点之间的距离是__4___.
(2)数轴上表示x和-1的两点A和B之间的距离是_|_x_+_1,如| 果|AB|=2,那么x为__-_3_或__.1
(3)求|x+1|+|x-2|的最小值.
复习回顾 1、有理数的加法法则是什么?
同号两数相加,取相同的符号,并把绝对值相加.
绝对值不相等的异号两数相加,取绝对值较大的 加数的符号,并用较大的绝对值减去较小的绝对 值.互为相反数的两个数相加得0.
一个数同0相加,仍得这个数.
让每个学生在快乐中好好学习·天天向上!
人教版七级数学上册 有理数的乘法 课件
课后作业
课本P37,38复习巩固2、3题
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
拓展练习
1.如果-5x是正数,那么x的符号( ) A. X>0 B. X≥0 C. X<0 D. X≤0
2、若a·b=0,则 ( )
A. a = 0
判断:下列各式的积是正的还是负的?
( 1 ) 2 3 4( 5)
负
( 2 ) 2 3( 4)( 5) 正
( 3 ) 2 ( 3)( 4)( 5) 负
( 4 ) ( 2)( 3) (4)( 5) 正
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
归纳
1、几个不是0的数相乘, 负因数的个数是 偶__数__个_ 时,积是正数;
两点间的距离|AB|=|a-b|.
(1)数轴上表示2和5的两点间的距离是__3___,数轴上表 示-2和-5的两点间的距离是__3___,数轴上表示1和-3 的两点之间的距离是__4___.
(2)数轴上表示x和-1的两点A和B之间的距离是_|_x_+_1,如| 果|AB|=2,那么x为__-_3_或__.1
(3)求|x+1|+|x-2|的最小值.
复习回顾 1、有理数的加法法则是什么?
同号两数相加,取相同的符号,并把绝对值相加.
绝对值不相等的异号两数相加,取绝对值较大的 加数的符号,并用较大的绝对值减去较小的绝对 值.互为相反数的两个数相加得0.
一个数同0相加,仍得这个数.
让每个学生在快乐中好好学习·天天向上!
人教版七级数学上册 有理数的乘法 课件
课后作业
课本P37,38复习巩固2、3题
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
人教版七级数学上册 有理数的乘法 课件
拓展练习
1.如果-5x是正数,那么x的符号( ) A. X>0 B. X≥0 C. X<0 D. X≤0
2、若a·b=0,则 ( )
A. a = 0
有理数的乘法人教版七年级数学上册PPT精品课件

解:由题意得,a+b=0,cd=1,|m|=6, m=±6. 所以原式=m×0-1+6=5. 故m(a+b)-cd+|m| 的值为5.
三级拓展延伸练
15. 在整数集合{-3,-2,-1,0,1,2,3,4,5,
6}中选取两个整数填入“□×□=6”的□内
使等式成立,则选取并填入的方法有( C )
A. 2种
•
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
第一章 有理数
第13课 有理数的乘法(1)
新课学习
知识点1.有理数的乘法法则 1. 有理数的乘法法则
(1)两数相乘,同号为正,异号为负,并把绝 对值相乘.
(2)任何数与0相乘,都得0. 口诀:负负得正.
2. (例1)计算: (1) 8×(-4)=___-_3_2______; (2)(-7)×2=____-_1_4_____; (3)(-3)×(-12)=____3_6____; (4)(-4)×0=_____0_______.
•
7.文学本身就是将自己生命的感动凝 固成文 字,去 唤醒那 沉睡的 情感, 饥渴的 灵魂, 也许已 是跨越 千年, 但那人 间的真 情却亘 古不变 ,故事 仿佛就 在昨日 一般亲 切,光 芒没有 丝毫的 暗淡减 损。
•
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
B. 4种
C. 6种
D. 8种
16. 定义一种正整数的“H运算”是:①当它是奇
数时,则该数乘以3加13;②当它是偶数时, 则取该数的一半,一直取到结果为奇数停止.
如:数3经过1次“H运算”的结果是22,经过 2次“H运算”的结果为11,经过3次“H运算” 的结果为46.那么28经过2 020次“H运算”得
三级拓展延伸练
15. 在整数集合{-3,-2,-1,0,1,2,3,4,5,
6}中选取两个整数填入“□×□=6”的□内
使等式成立,则选取并填入的方法有( C )
A. 2种
•
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
第一章 有理数
第13课 有理数的乘法(1)
新课学习
知识点1.有理数的乘法法则 1. 有理数的乘法法则
(1)两数相乘,同号为正,异号为负,并把绝 对值相乘.
(2)任何数与0相乘,都得0. 口诀:负负得正.
2. (例1)计算: (1) 8×(-4)=___-_3_2______; (2)(-7)×2=____-_1_4_____; (3)(-3)×(-12)=____3_6____; (4)(-4)×0=_____0_______.
•
7.文学本身就是将自己生命的感动凝 固成文 字,去 唤醒那 沉睡的 情感, 饥渴的 灵魂, 也许已 是跨越 千年, 但那人 间的真 情却亘 古不变 ,故事 仿佛就 在昨日 一般亲 切,光 芒没有 丝毫的 暗淡减 损。
•
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
B. 4种
C. 6种
D. 8种
16. 定义一种正整数的“H运算”是:①当它是奇
数时,则该数乘以3加13;②当它是偶数时, 则取该数的一半,一直取到结果为奇数停止.
如:数3经过1次“H运算”的结果是22,经过 2次“H运算”的结果为11,经过3次“H运算” 的结果为46.那么28经过2 020次“H运算”得
人教版2024年新版七年级数学上册课件:2.2.2 第2课时 有理数的加减乘除混合运算

(2) (−7)×(−5)−90÷(−15)
=−8+(−2)
=35−(−6)
=−10.
=35+6
=41.
本题是有理数加减乘除混合运算,
如无括号,按照“先乘除,后加减”
的顺序进行.
新知探究
➢ 有理数加减乘除混合运算顺序:
1.先算乘除,再算加减;
2.同级运算从左往右依次计算;
3.如有括号,先算括号内的;
5
9
解:(2) (−36 ) ÷9
11
9
1
=−(36+ ) ×
11
9
1 9
1
=−(36 × + × )
9 11
9
1
=−(4+ )
11
1
=−4 .
11
1 1
=− ×
5 6
1
=− .
30
随堂练习
1.计算:
1
(3) (−12)÷(−4)÷(−1 )
5
2
8
(4) (− ) × ÷(−0.25)
3
5
1
2
8
解: (3)(−12)÷(−4)÷(−1 ) 解: (4)(− ) × ÷(−0.25)
(−) 1
1
.
.
5 ×
7 ×
4
3
+
3
+ (−) 2
2 ×
.
3
+
2
3 ×
2
=
显示结果为173.7,就可以得到答案173.7.
不同品牌计算器的操作方法可能有所不同,具体参见计算器的使用说明.
跟踪训练
3.某旅游景点某天13:00的气温是5 ℃,从午后开始,气温持续
=−8+(−2)
=35−(−6)
=−10.
=35+6
=41.
本题是有理数加减乘除混合运算,
如无括号,按照“先乘除,后加减”
的顺序进行.
新知探究
➢ 有理数加减乘除混合运算顺序:
1.先算乘除,再算加减;
2.同级运算从左往右依次计算;
3.如有括号,先算括号内的;
5
9
解:(2) (−36 ) ÷9
11
9
1
=−(36+ ) ×
11
9
1 9
1
=−(36 × + × )
9 11
9
1
=−(4+ )
11
1
=−4 .
11
1 1
=− ×
5 6
1
=− .
30
随堂练习
1.计算:
1
(3) (−12)÷(−4)÷(−1 )
5
2
8
(4) (− ) × ÷(−0.25)
3
5
1
2
8
解: (3)(−12)÷(−4)÷(−1 ) 解: (4)(− ) × ÷(−0.25)
(−) 1
1
.
.
5 ×
7 ×
4
3
+
3
+ (−) 2
2 ×
.
3
+
2
3 ×
2
=
显示结果为173.7,就可以得到答案173.7.
不同品牌计算器的操作方法可能有所不同,具体参见计算器的使用说明.
跟踪训练
3.某旅游景点某天13:00的气温是5 ℃,从午后开始,气温持续
人教版初中七年级上册数学课件 《有理数的乘除法》课件(第一课时有理数乘法)

课堂测试
例1.计算 1)3×(-7) 2)(-8)×(-2)
绝对值相乘
1)3×(-7)= - (3 × 7) =21
绝对值相乘
2)(-8) × (-2)=+(8 × 2)=16
异号相乘结果符号为负
同号相乘结果符号为正
思考
(1)
1
2
1
_____
2
(2)( 1) (2) _1____ 2
(3)( 4) ( 7) _1____ 74
观察左侧的乘法算式,你能发现什么规律?
规律:随着后一个乘数依次递减1, 积逐渐递减3.
引入负数后规律成立吗? 成立
1)(-1)+(-1)+(-1)=3×(-1)=-3 2)(-2)+(-2)+(-2)=3×(-2)=-6 3)(-3)+(-3)+(-3)=3×(-3)=-9 …
思考
交换顺序 第四天 第三天 第二天 第一天 起始位置
➢ 1.正数乘正数,积为正数。 ➢ 2.正数乘负数,积为负数。 ➢ 3.负数乘正数,积为负数。 ➢ 4.积的绝对值等于各乘数绝对值的积。
思考
第四天 第三天 第二天 第一天 起始位置
乙
(-3)×4=-12 (-3)×3=-9 (-3)×2=-6 (-3)×1=-3 (-3)×0=0
观察左侧的乘法算式,你 能发现什么规律?
甲
4×3=12 3×3=9 2×3=6 1×3=3 0×3=0
观察左侧的乘法算式,你 能发现什么规律?
规律:随着前一个乘数依 次递减1,积逐渐递减3.
引入负数后规律成立吗? 成立
1)(-1)+(-1)+(-1)=(-1)×3=-3 2)(-2)+(-2)+(-2)=(-2)×3=-6 3)(-3)+(-3)+(-3)=(-3)×3=-9 …
有理数的乘法法则+课件+人教版七年级数学上册
因数 因数 积的符号 积的绝对值 积
+3 +3
+
9
9
+3 +2
+
6
6
+3 +1
+
3
3
+3 0
0
0
正数乘正数积的符号为_正_;
积的绝对值等于各因数绝对值相_乘_.
正数乘0积为_0_;
-3×3=-9, -3×2=-6, -3×1=-3, -3×0=0.
因数 因数 积的符号 积的绝对值 积
-3 +3
-
9
3×(-1)= -3 3×(-2)= -6 3×(-3)= -9
3×(-4)= -12
(-3)×(-1)= 3 (-3)×(-2)= 6 (-3)×(-3)= 9
(-3)×(-4)= 12
寻找规律
①正数乘正数积为_正_数; ②负数乘正数积为_负_数;
③正数乘负数积为_负_数; ④负数乘负数积为_正_数; 积的绝对值等于各因数绝对值相_乘_. ⑤0与任何数相乘结果是 0 . →1.两数相乘,同号得正,异号得负,并把绝对值相乘. →2.任何数同0相乘,都得0.
为更有效的开展抢险救援工作,研究者发现抢险前后水库当中 的水位变化具有如下规律:抢险前的水位每天升高3厘米,抢险 后的水位每天下降3厘米,抢险之前,3天的水位总变化情况如何? 抢险之后,3天的水位的总变化又如何?
第三天 第二天 第一天
第一天 第二天 第三天
抢险前的水库
抢险后的水库
合作探究
抢险之前:
-9
-3 +2
-
6
-6
-3 +1
-
3
人教版七年级数学上册有理数的乘法法则课件
第一章 有理数
1.4 有理数的乘除法
1.4.1 有理数的乘法 第1课时 有理数的乘法法则
学习目标
1.掌握有理数的乘法法则并能进行熟练地运算.(重点) 2.掌握多个有理数相乘的积的符号法则.(难点)
讲授新课
有理数的乘法运算 如图,一只蜗牛沿直线 l爬行,它现在的位置在l上的点O.
O
l
1.如果一只蜗牛向右爬行2cm记为+2cm,那么向
4.零与任何数相乘或任何数与零相乘结果是 零 .
有理数乘法法则
1.两数相乘,同号得正,异号得负,并把绝对值相乘. 2.任何数同0相乘,都得0. 讨论: (1)若a<0,b>0,则ab< 0 ; (2)若a<0,b<0,则ab > 0 ; (3)若ab>0,则a、b应满足什么条件?a、b同号 (4)若ab<0,则a、b应满足什么条件?a、b异号
(3)(-10.8)(- 5 )= 54 5 2; 27 5 27
(4)原式=0.
3.计算:
(1)(125) 2 (8) 2000
(2)( 2) ( 7) ( 6 ) 3 3
3
5 14 2
5
(3)8 ( 2) (3.4) 0 0 73
4.气象观测统计资料表明,在一般情况下,高 度每上升1km,气温降落6℃.已知甲地现在地面 气温为21℃,求甲地上空9km处的气温大约是多 少?
探究4
(4)如果蜗牛一直以每分钟2 cm的速度向左爬 行,3分钟前它在什么位置?
2
-2
0
2
4
6l
结果:3钟分前在l上点O 右 表示:(-2)×(-3)=+6
边6 . (4)
cm处
探究5
(5)原地不动或运动时间为零,结果是什么?
1.4 有理数的乘除法
1.4.1 有理数的乘法 第1课时 有理数的乘法法则
学习目标
1.掌握有理数的乘法法则并能进行熟练地运算.(重点) 2.掌握多个有理数相乘的积的符号法则.(难点)
讲授新课
有理数的乘法运算 如图,一只蜗牛沿直线 l爬行,它现在的位置在l上的点O.
O
l
1.如果一只蜗牛向右爬行2cm记为+2cm,那么向
4.零与任何数相乘或任何数与零相乘结果是 零 .
有理数乘法法则
1.两数相乘,同号得正,异号得负,并把绝对值相乘. 2.任何数同0相乘,都得0. 讨论: (1)若a<0,b>0,则ab< 0 ; (2)若a<0,b<0,则ab > 0 ; (3)若ab>0,则a、b应满足什么条件?a、b同号 (4)若ab<0,则a、b应满足什么条件?a、b异号
(3)(-10.8)(- 5 )= 54 5 2; 27 5 27
(4)原式=0.
3.计算:
(1)(125) 2 (8) 2000
(2)( 2) ( 7) ( 6 ) 3 3
3
5 14 2
5
(3)8 ( 2) (3.4) 0 0 73
4.气象观测统计资料表明,在一般情况下,高 度每上升1km,气温降落6℃.已知甲地现在地面 气温为21℃,求甲地上空9km处的气温大约是多 少?
探究4
(4)如果蜗牛一直以每分钟2 cm的速度向左爬 行,3分钟前它在什么位置?
2
-2
0
2
4
6l
结果:3钟分前在l上点O 右 表示:(-2)×(-3)=+6
边6 . (4)
cm处
探究5
(5)原地不动或运动时间为零,结果是什么?
人教版数学七年级上册1.有理数的乘方课件
结论二:
1、1的任何次幂都为1
1n=1 (-1)n=?
2、-1的幂很有规律, -1的奇次幂是-1 , -1的偶次幂是1
1)在 11中10 ,11是 数底,10是
指数,读作 11的1;0次方
2 7
2
2)
3的底数是
,指3 数是
作
2 3
的;7次方
,读7
3)在 2中16,-2是 数底,16是 数指,读
32 32 ;
你有什么发现?
(1)负数的乘方,在书写时一定要把整个负数(连同 符号),用小括号括起来,这样便于辨认底数;
(2)分数的乘方,在书写时一定要把整个分数用小 括号括起来。
探究3
不计算下列各式,你能确定其结果的符号吗?从计 算结果中,你能得到什么规律?
⑴(-2)51; ⑵(-2)50; ⑶250; ⑷251; ⑸(-1)2012;⑹(-1)2013;⑺02012;⑻12013.
2.填空: 310的意义是 10个3,相3乘10 =
.59049
3.判断正误:(对的画“√”,错的画“×”) (1)32 =3×2=6. ( ×) 32=3×3=9.
(2)(-2)3=(-3)2. ( ×) (-2)3=-8,(-3)2=9.
(3)-32=(-3)2. ( )× -32=-9,(-3)2=9.
作
-2的;16次方
4)在 a中17,底数是 ;指a 数是 ;读17
作 a 的1;7次方
1.回答下列问题:
(1)23中底数是 2,指数是 3,幂是 . 8
(2)
34中2 底数是
,指数是
,2幂是
(3)(-5)4中底数是 -,5 指数是 ,幂4 是
.
. 625
人教版初中数学七年级上册《有理数的乘法》课件
第一章 有理数
1.4 有理数的乘除法
1.4.1 有理数的乘法
我们已经熟悉正数及0的乘法运算,引入负 数以后,怎样进行有理数的乘法运算呢?
问题:怎样计算? (1)(-4)×(-5) (2) (-5)×(+6)
如图,一只蜗牛沿直线 爬行,它 现在的位置在直线上的点O处.
O
1、如果一只蜗牛向右爬行2cm记为+2cm,那 么向左爬行2cm应该记为 -2cm。 2、如果3分钟以后记为+3分钟,那么3分钟 以前应该记为 -3分钟。
口答:
(1)6×(-9) ; (3)(-6)×9;
(2)(-6)×(-9) ; (4)(-6)×1;
(5)(-6)×(-1); (6)6×(-1);
(7)(-6)×0 ; (8)0×(-6) ; (9)(-6)×0×25
(10)(-0.5)×(-8);
三、巩固法则,提高技能
练习一 填写下表: 开始抢答
二、新课探究
情景1:森林里住着一只蜗牛,每天都要离开家去寻找食
物,如果蜗牛一直以每分钟2cm 的速度向右爬行,那么3分 钟后蜗牛在什么位置?
3分钟后蜗牛应在0点的右边6cm处。 可以表示为:(+2)×(+3)=+6
探索规则:方向规定:向左为负,向右为正 时间规定:现在前为负,现在后为正
情景2:如果蜗牛一直以每分钟2cm的速度向
A. a=b=0 C. a=0
B. a,b至少有一个为0 D. a,b最多有一个为0
1、有理数乘法法则 归纳总结
• 两数相乘,同号得正,异号得负,并 把绝对值相乘。 任何数同0相乘,都得0。
2、有理数的求解步骤:有理数相乘,先确定积的符 号,再确定积的绝对值。
3、乘积是1的两个数互为倒数。
1.4 有理数的乘除法
1.4.1 有理数的乘法
我们已经熟悉正数及0的乘法运算,引入负 数以后,怎样进行有理数的乘法运算呢?
问题:怎样计算? (1)(-4)×(-5) (2) (-5)×(+6)
如图,一只蜗牛沿直线 爬行,它 现在的位置在直线上的点O处.
O
1、如果一只蜗牛向右爬行2cm记为+2cm,那 么向左爬行2cm应该记为 -2cm。 2、如果3分钟以后记为+3分钟,那么3分钟 以前应该记为 -3分钟。
口答:
(1)6×(-9) ; (3)(-6)×9;
(2)(-6)×(-9) ; (4)(-6)×1;
(5)(-6)×(-1); (6)6×(-1);
(7)(-6)×0 ; (8)0×(-6) ; (9)(-6)×0×25
(10)(-0.5)×(-8);
三、巩固法则,提高技能
练习一 填写下表: 开始抢答
二、新课探究
情景1:森林里住着一只蜗牛,每天都要离开家去寻找食
物,如果蜗牛一直以每分钟2cm 的速度向右爬行,那么3分 钟后蜗牛在什么位置?
3分钟后蜗牛应在0点的右边6cm处。 可以表示为:(+2)×(+3)=+6
探索规则:方向规定:向左为负,向右为正 时间规定:现在前为负,现在后为正
情景2:如果蜗牛一直以每分钟2cm的速度向
A. a=b=0 C. a=0
B. a,b至少有一个为0 D. a,b最多有一个为0
1、有理数乘法法则 归纳总结
• 两数相乘,同号得正,异号得负,并 把绝对值相乘。 任何数同0相乘,都得0。
2、有理数的求解步骤:有理数相乘,先确定积的符 号,再确定积的绝对值。
3、乘积是1的两个数互为倒数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
如图,一只蜗牛沿直线l 爬行,它现在的位置在l上的点O.
O
l
规定:向左为负,向右为正.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
(1)如果蜗牛一直以每分钟2cm的速度向右爬行, 3分钟后它在什么位置? 结果:3分钟后在l上点O右边6 cm处,表示: (1)(+2)×(+3)= +6
综合如下: (1) 2×3=6. (2)(-2)×3= -6. (3) 2×(-3)= -6. (4)(-2)×(-3)=6. (5) 被乘数或乘数为0时,结果是0.
总结法有则理: 数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘. 任何数与0相乘,都得0.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
相乘.任何数与0相乘,都得0. 2.如何进行两个有理数的运算:
先确定积的符号,再把绝对值相乘,当有一个 因数为0时,积为0.
人 教 版 七 年 级 级 上上 册册数 数 学 学课课件件有1理. 4数.1的有乘理法数的 乘法( 共19张 PPT)
人 教 版 七 年 级 级 上上 册册数 数 学 学课课件件有1理. 4数.1的有乘理法数的 乘法( 共19张 PPT)
观察(1)到(4)式,根据你对有理数乘法的思考 ,填空: 正数乘正数积为__正_数; 负数乘正数积为__负_数; 正数乘负数积为__负_数; 负数乘负数积为__正_数; 乘积的绝对值等于各乘数绝对值的_积__.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
(2)( 1 )×(-2)= 1.
2
(3) 7 × (-1) = 源自 7. (4)(-0.8)×1= - 0.8. 注意:乘积是1的两个数互为倒数.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 年 级 级 上上 册册数 数 学 学课课件件有1理. 4数.1的有乘理法数的 乘法( 共19张 PPT)
例2 用正负数表示气温的变化量,上升为正,下 降为负.登山队攀登一座山峰,每登高1km气温的 变化量为-6℃,攀登3 km后,气温有什么变化 ? 解:(-6)×3= -18(℃). 答:气温下降18℃.
人 教 版 七 年 级 级 上上 册册数 数 学 学课课件件有1理. 4数.1的有乘理法数的 乘法( 共19张 PPT)
0
l
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
(3)如果蜗牛一直以每分钟2cm的速度向右爬 行,3分钟前它在什么位置? 结果:3分钟前在l上点O左边6 cm处,表示:
(3)(+2)×(-3)= -6
-6
-4
2
-2
0
l
2
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
(4)如果蜗牛一直以每分钟2cm的速度向左爬行 ,3分钟前它在什么位置? 结果:3分钟前在l上点O右边6 cm处,表示: (4) (-2)×(-3)= +6
2
-2
0
2
4
6
l
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
C.a≥0,b≤0
D.a<0,b>0或a>0,b<0
【解析】选D.同号得正,异号得负.
人 教 版 七 年 级 级 上上 册册数 数 学 学课课件件有1理. 4数.1的有乘理法数的 乘法( 共19张 PPT)
人 教 版 七 年 级 级 上上 册册数 数 学 学课课件件有1理. 4数.1的有乘理法数的 乘法( 共19张 PPT)
1.4 有理数的乘除法
1.4.1 有理数的乘法 第1课时
计算: 5×3
2 3
×
7 4
0 ×1
4
解:5×3 = 15 277
解: 3 × =4 6 1
解:0 × =4 0
我们已经熟悉正数及0的乘法运算,引入负数以后 ,怎样进行有理数的乘法运算呢?
(4)(8)?
(5)6?
1.使学生掌握有理数乘法法则,并初步了解有理 数乘法法则的合理性. 2.学生能够熟练地进行有理数乘法运算.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
例如:(-5) ×(-3) (同号两数相乘)
(-5)×(-3)= +( ) (得正)
5×3=15
(把绝对值相乘)
所以(-5)×(-3)=15
又如:(-7)×4 (-7)×4= -( )
(异号两数相乘) (得负)
7×4=28
(把绝对值相乘)
5.计算: (1)(-13)×(-6) (2)- 1 ×0.15
3
(3)(+2)×(-1 ) 答案: (1)78 (2)-0.05 (3)-2
人 教 版 七 年 级 级 上上 册册数 数 学 学课课件件有1理. 4数.1的有乘理法数的 乘法( 共19张 PPT)
人 教 版 七 年 级 级 上上 册册数 数 学 学课课件件有1理. 4数.1的有乘理法数的 乘法( 共19张 PPT)
3. 1 的倒数是( )
3
A.-3
B. 1
C. 1
D.3
3
3
【解析】选A.乘积为1的两个数互为倒数.
4.如果ab<0,那么下列判断正确的
是( )
A.a<0,b<0
B.a>0,b>0
人 教 版 七 年 级 级 上上 册册数 数 学 学课课件件有1理. 4数.1的有乘理法数的 乘法( 共19张 PPT)
【跟踪训练】
计算(口答):
(1)6×(-9)=-54.
(2)(-4)×6=-24.
(3)(-6)×(-1)= 6.
(4)(-6) ×0=0.
(5) 2 ×(- 9 )= 3 .
3
4
2
(6)(- 1 ) × 1 = 1 .
3
4
12
人 教 版 七 年 级 级 上上 册册数 数 学 学课课件件有1理. 4数.1的有乘理法数的 乘法( 共19张 PPT)
人 教 版 七 年 级 级 上上 册册数 数 学 学课课件件有1理. 4数.1的有乘理法数的 乘法( 共19张 PPT)
1.有理数乘法法则: 两数相乘,同号得正,异号得负,并把绝对值
2
0
2
4
l
6
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
(2)如果蜗牛一直以每分钟2cm的速度向左爬行 ,3分钟后它在什么位置? 结果:3分钟后在l上点O左边6 cm处,表示: (2)(-2)×(+3)= -6
2
-6
-4
-2
1.计算3×(-2) 的结果是(
A.5
B.-5
C.6
2.如果 )
( 2 ) 1 ,则“
3
A. 3
2
B. 2
3
C. 2
3
【解析】选D. 3 ( 2)=1.
23
D) D.-6
”内应填的实数是(
D. 3
2
人 教 版 七 年 级 级 上上 册册数 数 学 学课课件件有1理. 4数.1的有乘理法数的 乘法( 共19张 PPT)
所以(-7)×4=-28
注意:有理数相乘,先确定积的符号,再确定积的值.
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
人 教 版 七 级 上册 数 学 课 件 有 理 数的乘 法
【例题】
例1 (1)(-3)×9. (2)( 1 )× (-2). 2
(3)7×(-1). (4)(-0.8)×1. 解:(1) (-3) ×9 = -27.