现代仪器分析综述
仪器分析总结

仪器分析总结第一篇:仪器分析总结1.绪论要求:1.仪器分析概念及性质*2.仪器分析方法的分类*3.仪器分析方法的主要评价指标*仪器分析概念:现代仪器分析是以物质的物理性质或化学性质及其在分析过程中所产生的分析信号与物质的内在关系为基础,借助比较复杂或特殊的现代仪器,对待测物质进行定性、定量及结构分析和动态分析的一类分析方法。
仪器分析的特点:1.灵敏度高,试样用量少。
2.选择性好。
3.操作简便,分析速度快,自动化程度高。
4.用途广泛。
5.相对误差较大,价格昂贵。
仪器分析方法分类:光分析法、分离分析法、电化学分析法、质谱法、分析仪器联用技术。
光分析法:光分析法是利用待测组分的光学性质(发射、吸收、散射、折射、衍射、偏振)进行分析测定的一种仪器分析方法。
光分析法分为光谱法和非光谱法,光谱法又分为原子吸收发射光谱,紫外可见吸收光谱,红外光谱,拉曼光谱法。
电化学分析法:电化学分析法是利用组分在溶液中的电化学性质进行分析测定的一种仪器分析方法,电化学分析法分为电导分析法、电位分析法等。
分离分析法:利用物质中各组分间的溶解能力、亲和能力、吸附和解吸能力、渗透能力、迁移速率等性能差异,先分离后分析的一类仪器分析方法,分离分析法分为气相色谱法、液相色谱法、超临界流体色谱法、离子色谱法等。
质谱法:质谱法是将待测物质置于离子源中电离形成带电离子,让离子加速并通过磁场或电场后,离子将按质荷比(m/z)大小分离,形成质谱图。
联用分析技术:联用分析技术已成为当前仪器分析的重要发展方向,将几种方法结合起来,特别是分离方法(如色谱法)和检测方法(红外吸收光谱法、质谱法、原子发射光谱法)的结合,汇集了各自的优点,可以更好地完成试样分析。
气相色谱-质谱法(GC-MS)、气相色谱-质谱法-质谱法(GC-MS-MS)、液相色谱-质谱法(HPLC-MS)仪器分析方法的主要评价指标:精密度、准确度、选择性、标准曲线、灵敏度、检出限。
精密度:旨在相同条件下用同一方法对同一样品进行多次平行测定结果之间的符合程度。
现代分析仪器的应用综述

现代分析仪器的应用----分析仪器在制药工程的应用近年来,仪器分析飞速发展,新方法、新技术、新仪器层出不穷,仪器分析的应用也日益普遍。
分析仪器的分析方法大致分为电化学分析法、光谱分析法、色谱分析法和核磁共振波谱法。
下面是分析仪器在制药过程中的应用。
1.电化学法分析仪器电化学分析法有电解法、电导法、电位法、伏安法等。
电解法在分析中除了作为测定方法,还用作分离方法。
很多电化学分析法,又能分析有机物又能分析无机物质,是仪器分析的重要组成部分,在生产、科研、医药等很多领域有广泛的应用。
以后还会出现更多新方法,尤其在自动化和与其他分析法联用等技术方面,会得到更多的发展。
2.光谱法分析仪器(1)紫外—可见分光光度法紫外—可见分光光度法在药学中主要用于有机物的分析。
大多有机药物分子中含有一些有共轭不饱和基团,能吸收紫外可见光,能显示出吸收光谱。
不同的化合物有不同的吸收光谱。
利用吸收光谱的特点可以进行药品与制剂的定性分析、纯物质鉴别和杂质的检测。
在药品和制剂生产时,可以用这种方法来对药品成分进行分析,以确保药品质量。
这种方法不需要复杂的分离,比较简便。
(2)荧光分析法虽然有天然荧光的物质数量不多,但很多重要的药物都有荧光的现象。
荧光衍生化试剂的使用,扩大了荧光分析法的应用范围。
荧光分析可用作初步鉴别和含量的测定,现在广泛应用在医药学,特别适用于药物在体液中的浓度测定及药物在体内代谢过程的研究。
例如测定复方炔诺酮中炔雌醇含量,可以通过荧光光谱法,与炔雌醇对照品同法测定,计算得到。
(3)红外光谱法红外分光光度法的用途可概括为定量鉴别、定性分析和结构分析等。
因红外光谱的高度特征性,在药物分析中,用于鉴别组分单一、结构明确的原料药。
在药物分析中,各国药典均将红外光谱法列为药物的常用鉴别方法并对晶型和异构体区分提供有用信。
在定量分析方面,红外光谱上可供选择的波长较多,但操作比较麻烦,准确度也比紫外分光光度法低,除用于测定异构体的相对含量外,一般很少用于定量分析。
现代仪器分析期末总结

现代仪器分析期末总结一、概述现代仪器分析是化学专业的一门重要课程,主要研究化学分析中所采用的现代仪器的原理、操作和应用等方面的知识。
通过该课程的学习,我对现代仪器分析技术有了更深入的了解和认识。
二、仪器分析的基本原理仪器分析是应用现代仪器技术和计算机技术来对样品进行分析和检测的方法。
其核心原理是利用仪器的某一特定性质来对样品进行定性和定量分析。
常用的仪器分析技术有光谱分析、色谱分析、电化学分析、质谱分析等。
光谱分析是利用物质与辐射相互作用时的一系列现象来进行分析的方法。
其中,紫外可见吸收光谱、红外光谱、拉曼光谱等是常用的光谱分析方法。
色谱分析是利用物质在载气或液相流动中的迁移速度差异来分离和测定成分的方法。
其中,气相色谱、液相色谱是常用的色谱分析技术。
电化学分析是利用电化学电流和电势的变化来测量物质浓度的一种方法。
常见的电化学分析技术有电位滴定法、电流计时法、伏安法等。
质谱分析是利用粒子质量分选特性来对样品进行检测的方法。
常见的质谱分析技术有质子质谱、电喷雾质谱、飞行时间质谱等。
三、常用的仪器分析技术1. 紫外可见吸收光谱紫外可见吸收光谱是利用物质对紫外可见光的吸收特性进行分析的方法。
它有很多应用领域,如药物分析、环境监测、食品检测等。
通过紫外光谱的测定,可以得出物质的吸收峰位、吸光度、摩尔吸光系数等重要信息。
2. 气相色谱-质谱联用技术气相色谱-质谱联用技术是将气相色谱和质谱两种分析技术结合起来,既可以进行物质的分离,又可以进行物质的鉴定。
该技术在环境、食品、生物、药物等领域有广泛的应用。
3. 电化学分析技术电化学分析技术是利用物质在电化学条件下的电流和电势的变化来分析物质的浓度、速度等性质的方法。
电化学分析技术广泛应用于电解质分析、电化学传感器、电池和电解等领域。
四、现代仪器分析的应用现代仪器分析技术在科学研究、工业生产和环境监测等方面有着广泛的应用。
在科学研究方面,现代仪器分析成为了研究领域的重要工具。
现代仪器分析小结

现代仪器分析1.绪论(一)分析信息:分析化学的目标是通过测定与获取物质样品的某种特征,以确定其化学结构与组成。
这种分析所依据的样品特征在分析可惜中就是分析信息。
(二)仪器分析:仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。
(三)分析信号:仪器分析并不直接测定待测量,而是通过分析仪器,测定这些物理或物化特征,得到与样品待测量有关的电学,光学,热学等物理,物化参数,一这些物理量承载分析信息,分析中它们是分析信息的载体称为分析信来号。
(四)仪器分析的操作流程:九个操作步骤(书上2 、3页)重点(五)仪器分析信息传递的四个环节:分析信息的加载、转化、关联与解析。
(六)分析仪器的四大结构:1.分析信号发生器 2.信号检测器3.信号处理器4.显示器(七)分析仪器的主要性能指标是准确度、检出限、精密度。
(八)根据分析原理,仪器分析方法通常可以分为光分析法、电分析化学方法、色谱法、其它仪器分析方法四大类。
2.光谱分析导论1.作用光:为了得到被测物质的有关信息,需要产生某种能量,以作用于待测物,可称为作用能量,能量的形式若是光则为作用光。
2.分析光:被测物与用于分析的能量发生相互作用,产生负载了分析信息的光信息。
3.光谱分析通过测定待测物的某种光谱,分别由样品光谱中的波长特征和强度特征进行定性、定量分析。
4.光谱分析的分类(书上7页第二段)5.光的粒子性:光的波动参数和粒子参数见的关系由普朗克常数h联系起来的:若某种光的频率为v则光的每个光子的能量E为:E=hv=h*C*& =hc/λ式中:6.626*10^-27 erg.s=4.14*10^-15 eV.s因此,对于波长为λ的光,其每个光子的能量E由下式计算:E=1240/λ6.光谱分析中,负载分析信息的分析光光子的能量E负载了分子中两个能级的能量间距的特征信息:ΔE=E2-E1=hυ=hc/λ电子跃迁一般在1—20ev设ΔE=5ev 5=4.136*10-15*3*108/λλ=1.24*10-6m=1240nm7.光吸收定律;吸光度A= -lgT=ε*b*c比耳吸收定律所确定的微观信息与宏观量之间的关系,需要一定的条件才能成立:(书上22—23页)3紫外-可见吸收光谱分析1.紫外-可见吸收光谱分析是指利用分子在紫外可见谱区的吸收光谱,进行的定性、定量分析。
仪器分析的综述

仪器分析的综述简介仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。
仪器分析与化学分析(chemical analysis)是分析化学(analytical chemistry)的两个分析方法。
仪器分析的分析对象一般是半微量(0.01-0.1g)、微量(0.1-10mg)、超微量(<0.1mg)组分的分析,灵敏度高;而化学分析一般是半微量(0.01-0.1g)、常量(>0.1g)组分的分析,准确度高。
仪器分析大致可以分为:电化学分析法、核磁共振波谱法、原子发射光谱法、气相色谱法、原子吸收光谱法、高效液相色谱法、紫外-可见光谱法、质谱分析法、红外光谱法、其它仪器分析法等。
基本特点1、灵敏度高:大多数仪器分析法适用于微量、痕量分析。
例如,原子吸收分光光度法测定某些元素的绝对灵敏度可达10^-14g。
电子光谱甚至可达10^-18g。
2、取样量少:化学分析法需用10^-1~10^-4g;仪器分析试样常在10^-2~10^-8g。
3、在低浓度下的分析准确度较高:含量在10-5%~10-9%范围内的杂质测定,相对误差低达1%~10%。
4、快速:例如,发射光谱分析法在1min内可同时测定水中48个元素,灵敏度可达ng?-1级。
5、可进行无损分析:有时可在不破坏试样的情况下进行测定,适于考古、文物等特殊领域的分析。
有的方法还能进行表面或微区分析,或试样可回收。
6、能进行多信息或特殊功能的分析:有时可同时作定性、定量分析,有时可同时测定材料的组分比和原子的价态。
放射性分析法还可作痕量杂质分析。
7、专一性强:例如,用单晶X衍射仪可专测晶体结构;用离子选择性电极可测指定离子的浓度等。
8、便于遥测、遥控、自动化:可作即时、在线分析控制生产过程、环境自动监测与控制。
9、操作较简便:省去了繁多化学操作过程。
随自动化、程序化程度的提高操作将更趋于简化。
现代仪器方法的简单综述

现代仪器方法的简单综述一气相色谱与质谱联用分析原理色谱是利用物质在两相间的分配吸附、排阻、交换对物质的各组分先行分离并同时进行定性定量分析。
质谱法主要是利用阳离子的运行轨迹与加速电压和磁场强度的关系测定分子量、分子式及分子结构,是起着色谱仪检定器的作用,组成气相色谱组成1.气路部分提供稳定的气相环境。
2.进样部分提供试样瞬间汽化的环境。
3.分离部分色谱柱把混合物分离成单一组分。
4.检测部分实现物质的物理或化学特性与电信号之间的转化。
5.记录部分记录试样某一组分电信号的大小、保留值的大小、组分分离情况等。
质谱仪组成1.真空系统提供真空环境2.进样系统从分离装置来的组分(气体或者液体)或者从直接进样杆进液体或者固体样品。
3.离子源使试样分子在高真空条件下离子化4.质量分析器将同时进入其中的不同质量的离子,按质荷比m/z大小分离5.离子检测器采集放大离子信号特点色谱法能够在较短时间内,分离分析性质极其相似的物质,且检测灵敏度高,应用范围广泛。
质谱仪定性专属性强,灵敏度高,检测快速。
应用范围一般物质沸点较低(低于4000C)、热稳定性好、相对分子量低(低于400)的有机物用气相色谱分析,先实现对有机混合物的分离,质谱用于并对分离后的物质进行定性、定量分析,分析分子结构、分子量或官能团等。
二紫外及可见光谱分析原理利用物质对光的选择吸收和被测溶液对光的吸收程度与溶液中组分浓度之间存在的定量关系。
组成1.光源:一般采用氘灯,提供能使分子中电子产生跃迁的能量2.单色器:将光源的混合光分解为单色光并能随意改变波长。
3.样品池:石英池(用于紫外和可见区)和玻璃池(用于可见区)4.检测器:将光转变为电信号的装置。
5.记录仪:(数据处理系统或工作站)主要完成光谱图的绘制。
特点1.灵敏度高。
2.选择性强。
3.分析范围广。
4.精密度高,准确度好。
应用范围确定组成,含量推测结构,无机络合物及不饱和有机物的定量分析。
三红外光谱分析原理利用组成分子的原子之间的振动能级跃迁对光的吸收,某一特定的原子基团总是在相同的或者几乎是相同的频率处产生吸收谱带。
仪器分析总结

仪器分析总结概述:仪器分析是一种利用仪器设备进行定量或定性分析的方法,广泛应用于化学、生物、环境、材料等领域。
通过仪器分析,我们可以准确地测量样品的物理和化学性质,为科学研究、工业生产以及环境保护等提供重要的数据支持。
在这篇文章中,我将总结仪器分析的一些常见方法、应用以及发展趋势。
常见仪器分析方法:1. 光谱分析:利用样品对光的吸收、发射或散射特性进行分析。
常见的光谱分析包括紫外可见吸收光谱、红外光谱、核磁共振光谱等。
这些方法可以用于物质的结构分析、成分检测以及催化反应过程的研究。
2. 色谱分析:把混合物中的各个组分通过物理或化学性质的差异分离出来。
常见的色谱分析包括气相色谱、液相色谱以及超高效液相色谱等。
这些方法在食品安全、环境监测以及药物分析等领域有着广泛的应用。
3. 质谱分析:利用离子化和质量分析来确定样品中不同成分的质量和相对丰度。
质谱分析可以鉴定有机化合物的结构、分析环境样品中的有毒物质以及检测药物的残留等。
质谱分析技术的发展,如基质辅助激光解吸离子源 (MALDI-TOF) 技术的应用,使得质谱分析在生物医药领域有着重要的地位。
应用及价值:仪器分析在各个领域中有着广泛的应用和价值。
在医药领域,仪器分析可以用于药物的研发、制造和质量控制。
在环境保护方面,仪器分析可以用于监测大气、水体和土壤中的污染物,提供数据支持环境管理和治理。
在食品安全领域,仪器分析可以检测食品中的有害物质,确保人们的饮食安全。
在材料科学中,仪器分析可以用于材料表征和性能评估,促进新材料的研发和应用。
仪器分析的发展趋势:1. 连接性:现代仪器分析越来越注重与其他科学领域的连接,如化学与生物学、物理与材料科学等。
通过各个学科的交叉融合,促进了仪器分析技术的不断创新和应用。
2. 微型化:随着芯片技术和纳米技术的迅猛发展,仪器分析正朝着微型化方向发展。
微型化的仪器具有体积小、便携、高通量等特点,可以在实验室和现场进行快速分析。
现代仪器分析综述

现代仪器分析综述(1309011025 韩武)现代仪器分析为现代分析化学奠定了雄厚的学科理论基础—-信息理论,使现代仪器分析已经成为分析化学极其重要的组成部分,现代仪器分析所采用的分析仪器是化学、光学、电学、磁学、机械及计算机科学等现代科学综合发展的产物,仪器本身就是科学技术水平的标志。
若能充分利用现代仪器分析方法和技术,就能更加全面、准确地认识物质世界, 进一步促进科学技术向纵深发展。
1、现代分析仪器的发展及发展趋向现代仪器分析是在化学分析的基础上逐步发展起来的一类分析方法,现代分析仪器对科技领域的发展起着关键作用,一方面科技领域对分析仪器不断提出更高的要求,另一方面随着科学技术的飞速发展,新材料、新器件不断涌现又大大推动了分析仪器的快速更新,同时为仪器分析中老方法的不断更新、新方法的不断建立提供了物质和技术基础,大大地促进了现代仪器分析的快速发展。
现代分析仪器的发展趋向主要有以下特点:向多功能化、自动化和智能化方向发展,向专用型和微型化方向发展,向多维分析仪器方向发展,向联用分析仪器方向发展。
仪器分析的最主要的功能是人类五官感触的延伸,人类智慧利用了光、电和磁的物理特性通过物理和化学手段将微小的物理量放大,而获得感知小型化集成化(芯片)、多功能化(联用技术)和高稳定、高灵敏度检测是仪器分析发展的最高境界.20 世纪 70 年代中期首先出现了二维气相色谱技术,70 年代后期迅速发展了二维质谱技术和二维核磁共振波谱技术。
二维气相色谱技术可使用一种流动相在两根串联的色谱柱上对组成复杂的样品实现完全分离:二维质谱技术可同时提供强的碎片离子峰和强的分子离子峰,从而获得完整的结构信息;二维核磁共振波谱技术可提供固体物质、生物大分子的三维结构,显示原子核在样品中分布的立体图像。
由上述分析仪器的发展和发展趋向 ,可知现代分析仪器是一种高科技产品,它综合采用了各种技术的最新成果,在不断创新与自身发展的同时,又为各个科技领域的研究和发展提供有力的手段和重要的信息.2、现代仪器分析的内容和分类现代仪器分析方法内容丰富,种类繁多,每种方法都有相对独立的物理及物理化学原理,现已有三四十种,新的方法还在不断地出现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代仪器分析综述(1309011025 韩武)现代仪器分析为现代分析化学奠定了雄厚的学科理论基础——信息理论, 使现代仪器分析已经成为分析化学极其重要的组成部分,现代仪器分析所采用的分析仪器是化学、光学、电学、磁学、机械及计算机科学等现代科学综合发展的产物,仪器本身就是科学技术水平的标志。
若能充分利用现代仪器分析方法和技术, 就能更加全面、准确地认识物质世界, 进一步促进科学技术向纵深发展。
1、现代分析仪器的发展及发展趋向现代仪器分析是在化学分析的基础上逐步发展起来的一类分析方法,现代分析仪器对科技领域的发展起着关键作用,一方面科技领域对分析仪器不断提出更高的要求,另一方面随着科学技术的飞速发展,新材料、新器件不断涌现又大大推动了分析仪器的快速更新,同时为仪器分析中老方法的不断更新、新方法的不断建立提供了物质和技术基础,大大地促进了现代仪器分析的快速发展。
现代分析仪器的发展趋向主要有以下特点:向多功能化、自动化和智能化方向发展,向专用型和微型化方向发展,向多维分析仪器方向发展,向联用分析仪器方向发展。
仪器分析的最主要的功能是人类五官感触的延伸,人类智慧利用了光、电和磁的物理特性通过物理和化学手段将微小的物理量放大,而获得感知小型化集成化(芯片)、多功能化(联用技术)和高稳定、高灵敏度检测是仪器分析发展的最高境界。
20 世纪 70 年代中期首先出现了二维气相色谱技术,70 年代后期迅速发展了二维质谱技术和二维核磁共振波谱技术。
二维气相色谱技术可使用一种流动相在两根串联的色谱柱上对组成复杂的样品实现完全分离:二维质谱技术可同时提供强的碎片离子峰和强的分子离子峰,从而获得完整的结构信息;二维核磁共振波谱技术可提供固体物质、生物大分子的三维结构,显示原子核在样品中分布的立体图像。
由上述分析仪器的发展和发展趋向 ,可知现代分析仪器是一种高科技产品,它综合采用了各种技术的最新成果,在不断创新与自身发展的同时,又为各个科技领域的研究和发展提供有力的手段和重要的信息。
2、现代仪器分析的内容和分类现代仪器分析方法内容丰富,种类繁多,每种方法都有相对独立的物理及物理化学原理,现已有三四十种,新的方法还在不断地出现。
为了便于学习和掌握,根据测量原理和信号特点,大致分为电化学分析法、色谱分析法、质谱分析法,光化学分析法和其他仪器分析法几类。
2.1 电化学分析法利用物质的电学及电化学性质分析化学质来进行分析的一类方法。
1800年意大利物理学家伏打(A. V olta)制造了伏打堆电池,出现了电源。
1834年法拉第(M. Faraday) 发表了“关于电的实验研究”提出“电解质”、“电极”、“阳极”、“阴极”、“离子”、“阴、阳离子”等概念。
1864年Gibbs首次利用电解法测定铜,用称量方法测定沉积物的重量。
1908年H. J. S. Sand使用控制电位方法进行了电解分析。
1942年A. Hickling研制成功三电极恒电位仪。
上世纪50年代后普遍应用运算发大电路,恒电位仪、恒电流仪和积分仪成型。
为控制电位电解和库仑分析提供方便。
库仑分析的种类恒电位库仑法,控制电位电解,积分电流,记录时间,恒电流库仑法(库仑滴定),使用恒电流源和指示终点的方法。
电位分析法是基本而经典的分析方法,利用指示电极和参比电极与试液组成的电池,根据电池电动势的变化进行分析的方法。
伏安法和极谱分析法是使用电极电解被测溶液,根据电流-电压极化曲线进行分析的方法。
2.2 色谱分析法色谱法是各种分离技术中效率最高和应用最广的一种方法,是利用样品中共存组分在两相(流动相和固定相)中溶解能力、亲和能力、渗透能力、吸附和解吸能力、迁移速率等分配比的差异而进行分离和分析。
色谱法是利用样品中各种组分在固定相与流动相中受到的作用力不同,在流动相的推动下使被分离的组分与固定相发生反复多次的吸附(或溶解)、解吸(或挥发)过程,这样就使那些在同一固定相上吸附(或分配)系数只有微小差别的组分,在固定相上的移动速度产生了很大的差别,从而达到了各个组分的完全分离,最后按顺序进入检测仪器获得分析。
色谱分离的作用力可以是吸附力(吸附色谱)、溶解能力(分配色谱)、离子交换能力(离子交换色谱)和渗透能力(凝胶色谱)。
在分配色谱中,用于描述某一组分对流动相和固定相的作用力的参数是分配系数。
某一组分的分配系数K是指在一定温度下,该组分在固定相和流动相中分配达到平衡时,组分在固定相和流动相中的浓度C S 和C M之比,因此也称为浓度分配比。
以K表示如下式:K=C M ∕C S ,式中,C S为每毫升固定相中溶解溶质的量;C M 为1ml毫升流动相中溶解溶质的量。
分配系数的差异是所有色谱分离的实质性的原因,各种类型的色谱分析都可以类似地定义分配系数。
分配系数取决于组分和两相的热力学性质,柱温是影响分配系数的重要参数,分配系数与柱温成反比。
目前色谱法已广泛应用于许多领域,成为十分重要的分离分析手段。
当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。
可完成这种分离检测的仪器称为色谱仪。
2.3 光化学分析法凡是以电磁辐射为测量信号的分析方法均为光学分析法。
从红外到紫外的各种光谱,就是光谱分析所要研究和利用的范围。
1802年,英国化学家沃拉斯通发现,在太阳的连续光谱上有许多黑的谱线。
1814年,德国物理学家弗朗荷费在重复牛顿和沃拉斯通实验的基础上,改进了实验设备,进一步研究各种灯光(如油灯、酒精灯、蜡烛等)和太阳的光谱,探明太阳连续谱中的黑线是太阳外围大气层吸收太阳辐射的结果。
后来约在1858—1859年间,德国化学家本生和物理教授基尔霍夫一起研究了纯元素的光谱,取得了一系列重要成果.他们发现太购太阳内含有很多的金属元素,发现了铷和铯两种元素,他们的重大的成果中,最有价值的是发现每种元索都产生自己特有的谱线,这些谱线都有固定的位置.例如,把含钠、钾等盐类混在一起,放在火焰中燃烧时,通过分光镜观察,可以看到黄、紫、红、蓝等不同颜色的谱线,也就是说,它们在不同的波长处出现谱线。
如果只把含钠的盐放在火焰上燃烧,则只在黄色的位置出现谱线;同样地,如果只是单独地把钾盐、成锂盐放在火焰上燃烧,则只在紫色的位置、或红色的位置、位置出现谱线这些有意义的发现,奠定了一种新的化学分析方法——光谱分析法的基础。
基尔霍夫和本生被公认为这种新方法的创始人。
因此光谱法是依据物质对电磁辐射的吸收、发射或拉曼散射等作用建立的光学分析法。
属于这类方法的有原子发射光谱法、原子吸收光谱法、原子荧光光谱射线荧光法、紫外和可见吸收光谱法、红外光谱法、荧光法、磷光法、法、化学发光法、拉曼光谱法、核磁共振波谱法和电子能谱法等。
光学原子光谱是基于原子外层电子能级的跃迁。
光谱线的波长是定性分析的基础,光谱线强度是定量分析的依据。
以光分析方法定性、定量测定物质中元素的存在和含量,主要有光学光谱、X射线光谱、质谱法。
在光学光谱法中,通过所谓的原子化过程,将待测元素转化为气态原子或简单离子,然后测定蒸气中原子的紫外、可见吸收、发射或荧光光谱。
在质谱法中,也要将试样原子化,不过气态原子需要进一步转变为正离子,再按照它们的质荷比不同进行分离,最后通过计算被分离的离子获得定量数据。
在X射线光谱法中,由于大多数元素的射线光谱在很大程度上与它们在试样中的化学状态无关,故不需要通过原子化,即能直接测定试样的荧光、吸收或发射光谱。
以原子和分子的光谱学为基础建立起来的一大类分析方法称为光谱分析法,即利用待测物质受到光的作用后,产生光信号或光信号的变化,检测和处理这些信号,从而获得待测物质定性和定量信息的分析方法。
光谱分析法是现代仪器分析中应用最广泛的一类分析方法,在组分的定量或定性分析中,有的已成为常规的分析方法,在结构分析的四谱(红外光谱、核磁谱13C和1H及质谱)中光谱分析法占了三谱,是结构分析共振的谱和中不可缺少的分析工具。
目前,光谱学已经拓宽到物质与其他能量形式间的相互作用。
光谱学和光谱方法则涉及用光电子换能器或其他电子仪器测定辐射强度,应用最广的光谱学方法仍是那些以电磁辐射为基础,容易被人们认识的各种能量形式的光和辐射热,射线、而X射线、γ射线以及微波和射频辐射则稍为逊色。
色谱法的基本原理是混合物中各组分在互不相溶的固定相和流动相之间的分配;而每一种形式的色谱分离的物理化学过程可以是不同的。
主要包括:气相色谱、薄层色谱、纸色谱、高效液相色谱、离子色谱、超临界流体色谱和高效毛细管电泳等分析方法。
2.4质谱法:质谱法(是根据物质带电粒子的质荷比(质量与电荷的比值)在电磁场作用下进行定性、定量和结构分析的方法,它是研究有机化合物结构的有力工具。
样品在真空条件下受电子流的“轰击”或强电场的作用,电离成离子,同时发生某些化学键有规律的断裂,生成具有不同质量的带正电荷的离子,这些离子按质荷比m∕z(离子质量与其所带电荷数之比)的大小被分离、收集并记录,形成质谱图,根据质谱图提供的信息可以进行有机物及无机物的定性和定量分析、复杂化合物的结构分析、样品中各种同位素比的测定及固体表面的结构和组成分析等。
2.5 仪器联用技术将两种或两种以上仪器分析方法结合起来的技术称为仪器联用技术。
常见的仪器联用技术有气相色谱--质谱、液相色谱--质谱、气相色谱--傅里叶变换红质谱、毛细管电泳--质谱等,其主要问题是解决仪器之间的外光谱、质谱接口及相关信息的获取与贮存问题。
早在20世纪60年代就开始了气相色谱--质谱联用技术的研究,并出现了早期的气相色谱--质谱联用仪。
在70年代末,已经达到很高的水平,近年来又有长足进展,并且已经相当普及,目前已成为一种重要的分析仪器。
下面以气相色谱质谱联用技术为例,介绍仪器联用技术的发展。
气相色谱--质谱联用仪主要由三部分组成:色谱部分、质谱部分和数据处理系统。
气相色谱仪对样品中的各个组分进行分离,起着样品制备的作用。
色谱部分和一般的色谱仪基本相同,包括进样系统、柱箱、汽化室和载气系统,但不再安装色谱检测器,而是利用质谱仪作为色谱的检测器。
在色谱部分,混合样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。
色谱仪常压下工作,而质谱仪需要高真空,因此色谱仪到质谱仪之间需经过种接口装置-分子分离器,将色谱载气去除,使被测组分进入质谱仪。
气相色谱质谱联用中的质谱仪部分可以是磁式质谱仪、四极质谱仪,也可以是飞行时间质谱仪和离子阱。
目前使用最多的是四极质谱仪。
离子源主要是电子轰击离子源和化学离子源。
气相色谱质谱联用中的另外一个组成部分是数据处理系统,现在其主要操作都由计算机控制进行,这些操作包括利用标准样品校准质谱仪,设置色谱和质谱的工作条件,数据的收集和处理以及库检索等。