数学建模汽车刹车距离

合集下载

刹车距离 数学建模

刹车距离 数学建模

刹车距离数学建模刹车距离是指车辆从发现需要停车的信号或情况到完全停下来所需的距离。

在驾驶中,我们常常需要根据道路情况和车速合理判断刹车距离,以确保安全停车。

本文将从数学建模的角度出发,探讨影响刹车距离的因素,并介绍一种常用的数学模型来计算刹车距离。

刹车距离受到车速的影响,一般来说,车速越高,刹车距离就会越长。

这是因为车辆在高速行驶时具有更大的动能,需要更长的距离来消耗这部分能量,才能停下来。

因此,在高速行驶时,我们需要提前做好刹车准备,以避免刹车距离过长导致事故发生。

刹车距离还受到刹车系统的性能和状态的影响。

刹车系统包括刹车片、刹车盘、刹车液等部件,它们的磨损程度和工作状态会直接影响刹车的效果。

如果刹车片磨损严重或刹车盘存在问题,会导致刹车距离增加。

因此,定期检查和维护刹车系统是确保刹车距离符合要求的重要措施之一。

刹车距离还与路面情况和天气条件有关。

在湿滑或结冰的路面上刹车,由于附着力减小,刹车距离会明显增加。

此时,驾驶员需要根据实际情况调整刹车力度,以减少刹车距离。

针对刹车距离的计算,数学建模提供了一种有效的方法。

常用的刹车距离计算模型是基于物理学中的运动学原理建立的。

根据运动学原理,刹车距离与车速的平方成正比,与刹车加速度的倒数成正比。

具体来说,刹车距离可以表示为刹车时间乘以车速的一半,即:刹车距离 = 时间× 速度 / 2。

在实际应用中,为了更加准确地计算刹车距离,需要考虑到刹车系统的响应时间。

刹车系统的响应时间是指从踩下刹车踏板到刹车系统开始工作的时间间隔。

在这段时间内,车辆仍然以原有的速度行驶,因此需要额外的距离来消耗动能。

因此,最终的刹车距离计算公式应为:刹车距离 = 响应时间× 速度 + 时间× 速度 / 2。

需要注意的是,刹车距离的计算模型只是一个理论模型,实际情况可能会受到多种因素的影响。

在实际驾驶中,驾驶员应根据实际情况综合考虑车辆性能、道路条件和天气因素,合理判断刹车距离,并采取相应的措施确保安全驾驶。

汽车刹车距离建模

汽车刹车距离建模
科学技术学院
上机报告
课程名称数学建模
上机项目汽车刹车距离
专业班级姓名学号
一、问题提出
司机在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到车完全停住汽车行驶的距离称为刹车距离,车速越快,刹车距离越长。
(1)已知交通部门提供的一组汽车的刹车距离数据如下:
车速
29.3
44
58.7
73.3
88
102.7
二、问题分析
反应距离由反应时间和车速决定,反应时间取决于司机个人状况(灵巧、机警、视野等)和制动系统的灵敏性(从司机脚踏刹车板到制动器真正起作用的时间),对于一般规则可以视反应时间为常数,且在这段时间内车速尚未改变。这里,我们取多数人的平均反应时间为0.75秒。
制动距离与制动器作用力(制动力)、车重、车速以及道路、气候等因素有关,制动器是一个能量耗散装置,制动力作的功被汽车动能的改变所抵消.设计制动器的一个合理原则是,最大制动力大体上与车的质量成正比,使汽车的减速度基本上是常数,这样,司机和乘客少受剧烈的冲击.至于道路、气候等因素,对于一般规则又可以看作是固定的。
f=[42 73.5 116 173 248 343 464] ;
k=lsqcurvefit('curvefun1',0,v,f)
jsd=0.75*v+k*v.^2
holdon
plot(v,f)
plot(v,jsd,'r+')
holdoff
k =
0.0255
拟合的刹车距离为jsd =
43.9076 82.4608 132.0553 192.2413 263.8432 346.4865 439.4965三、模型Fra bibliotek设符号说明

数学建模汽车刹车距离论文

数学建模汽车刹车距离论文

数学模型姓名:班级:学院:指导老师:摘要:司机在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到汽车完全停止住汽车行驶的离称为刹车距离,车速越快,刹车距离越长。

就要对刹车距离与车速进行分析,它们之间有怎样的数量关系?美国的某些司机培训课程中有这样的规则:在正常驾驶条件下车速每增加10英里/小时,后面与前面一辆车的距离应增加一个车身长度。

又云,实现这个规则的一种简便方法是所谓“2秒规则”,即后车司机从前车经过某一标志开始默数2秒钟后到达同一标志,而不管车速如何。

试判断“2秒规则”与上述规则是否一致?是否有更好的规则?并建立刹车距离的模型。

汽车在10英里/小时(约16千米/小时)的车速下2秒钟下行驶多大距离。

容易计算这个距离为:10英里/小时*5280英尺/英里*1小时/3600秒*2秒=29.33英尺(=8.94米),远远大于一个车身的平均长度15英尺(=4.6米),所以“2秒准则”与上述规则并不一样。

所以我们还要对刹车距离与速度做更仔细的分析,通过各种分析(主要通过数据分析)以及各种假设,我们提出了更加合理的准则,即“t秒准则”。

在道路上行驶的汽车保持足够安全的前后车距是非常重要的,人们为此提出各种五花八门的建议,就上面的“一车长度准则”,“2秒准则”以及我们提出的t秒准则。

这些准则的提出都是为了怎样的刹车距离与车速的关系来保证行驶的安全。

所以为了足够安全要做仔细的分析。

关键字:刹车距离;车速;t秒准则。

一问题分析问题要求建立刹车距离与车速之间的数量关系。

制定这样的规定是为了在后车急刹车情况下不致撞到前面的车,即要确定汽车的刹车距离。

刹车距离显然与车速有关,先看看汽车在10英里/小时(约16千米/小时)的车速下2秒钟下行驶多大距离。

容易计算这个距离为:10英里/小时*5280英尺/英里*1小时/3600秒*2秒=29.33英尺(=8.94米),远远大于一个车身的平均长度15英尺(=4.6米),所以“2秒准则”与上述规则并不一样。

数学建模汽车刹车距离

数学建模汽车刹车距离

数学建模汽车刹车距离1. 前言汽车刹车距离在车辆的安全行驶和驾驶过程中起着至关重要的作用。

单独考虑车辆的马力、制动能力和路面情况都是不够的,需要将这些因素综合考虑,以保证行驶的安全性。

本文通过建立模型,探究车辆刹车距离的影响因素,以及如何优化车辆的行驶效率。

2. 模型的建立在考虑汽车刹车距离时,需要综合考虑车辆的制动性能、车速、路面状态等多个因素。

为了更好地探究这些因素之间的关系,我们建立了如下的数学模型。

设汽车在行驶过程中的车速为v,制动的加速度为a,路面的摩擦系数为μ,刹车距离为d。

根据牛顿第二定律可得:$$F=ma$$其中F为刹车制动力,m为车辆质量,a为制动加速度。

由于制动力与车速、制动器摩擦系数均有关系,因此可以通过以上参数进行表达。

可得到如下公式:$$F=C_{f}+C_{r}mg(v)$$式中,Cf和Cr分别为车轮前后制动器产生的制动力,g(v)为与车速有关的函数,m为车辆质量。

在刹车的过程中,系统对车辆施加一定的制动力,车速逐渐降低,直到最终停止。

设t为刹车的时间,可得如下公式:$$d=\frac{1}{2}at^{2}+\frac{1}{2}vt$$式中,第一项为制动过程加速度造成的路程,第二项为刹车前车辆的行驶路程。

将制动加速度a代入上述公式,可以得到:代入刚才的F公式,可以得到:这便是本文研究的汽车刹车距离的数学模型。

从中可以看出,刹车距离与车速、制动力、摩擦系数等参数均有关系,需要综合考虑。

3. 模型的应用和分析在上一章节中,我们得到了汽车刹车距离的数学模型。

下面将具体分析模型中的各个参数。

3.1 制动加速度制动加速度是指行驶中车辆的减速度,即刹车踏板产生的力作用在车辆质量上所产生的减速度。

制动加速度越大,车速下降的速率就越快,刹车距离也就相应越短。

反之,制动加速度越小,刹车距离就越长。

3.2 车速3.3 摩擦系数摩擦系数是路面与轮胎之间的摩擦力系数。

摩擦系数越大,所产生的摩擦力也就越大,车辆制动效果就越好,刹车距离就相应更短。

数学建模作业一:汽车刹车距离

数学建模作业一:汽车刹车距离

汽车刹车距离一、 问题描述司机在遇到突发紧急情况时都会刹车,从司机决定刹车开始到汽车停止行驶的距离为刹车距离,车速越快,刹车距离越长。

那么刹车距离与车速之间具有什么样的关系呢?二、 问题分析汽车的刹车距离有反应距离和刹车距离两部分组成,反应距离指的是司机看到需要刹车的情况到汽车制动器开始起作用汽车行使的距离,刹车距离指的是制动器开始起作用到汽车完全停止的距离。

反应距离有反应时间和车速决定,反应时间取决于司机个人状况(灵敏、机警等)和制动系统的灵敏性,由于很难对反应时间进行区别,因此,通常认为反应时间为常数,而且在这段时间内车速不变。

刹车距离与制动作用力、车重、车速以及路面状况等因素有关系。

由能量守恒制动力所做的功等于汽车动能的改变。

设计制动器的一个合理原则是,最大制动力大体上与汽车的质量成正比,汽车的减速度基本上是常数。

路面状况可认为是固定的。

三、 问题求解1、 模型假设根据上述分析,可作如下假设:①刹车距离d 等于反应距离1d 和制动距离2d 之和;②反应距离1d 与车速v 成正比,且比例系数为反应时间t ;③刹车时使用最大制动力F ,F 作的功等于汽车动能的改变,且F 与车质量m 成正比; ④人的反应时间t 为一个常数;⑤在反应时间内车速v 不变 ;⑥路面状况是固定的;⑦汽车的减速度a 基本上是一个常数。

2、 模型建立由上述假设,可得:⑴tv d =2; ⑵2221mv Fd =,而ma F =,则2221v ad =。

所以22kv d =。

综上,刹车距离的模型为2kv tv d +=。

3、 参数估计可用我国某机构提供的刹车距离实际观察数据来拟合未知参数t 和k 。

转化单位后得:车速(公里/小时)20 40 60 80 100 120 140实际刹车距离(米) 6.5 17.8 33.6 57.1 83.4 118.0 153.5用Mathematica进行拟合,代码如下:Clear[x,v,d];x={{20/3.6,6.5},{40/3.6,17.8},{60/3.6,33.6},{80/3.6,57.1},{100/3.6,83.4},{120/ 3.6,118},{140/3.6,153.5}};d=Fit[x,{v,v^2},v];Print["d=",d];Plot[d,{v,0,200/3.6}]结果:4、结果分析将拟合结果与实际结果对比:(代码)Clear[v,d];d=0.65218*v/3.6+0.0852792*(v/3.6)^2;For[v=20,v<=140,v=v+20,Print["速度为",v,"km/h时刹车距离为",d]]结果:车速(公里/小时)20 40 60 80 100 120 140实际刹车距离(米) 6.5 17.8 33.6 57.1 83.4 118.0 153.5计算刹车距离(米) 6.2 17.8 34.6 56.6 83.9 116.5 154.3计算刹车距离与实际刹车距离基本相当。

数学建模课件汽车刹车距离模型

数学建模课件汽车刹车距离模型

05 结论与展望
本研究的贡献与局限性
贡献
本研究建立了一个汽车刹车距离的数学模型,为预测汽车在给定条件下的刹车 距离提供了理论支持。同时,该模型考虑了多种影响因素,如车速、路面状况、 车辆类型等,具有较高的实用价值。
局限性
本研究主要关注于理想条件下的刹车距离模型,未考虑驾驶员反应时间、车辆 机械故障等实际情况。此外,模型的适用范围有限,仅适用于特定类型的车辆 和路面条件。
模型改进
考虑其他影响因素,对模型进行 改进,使其更贴近实际情况。
04 模型的应用
安全行车距离的计算
总结词
安全行车距离是保障道路交通安全的重要因素之一。通过数学建模,可以精确地计算出 在不同条件下的安全行车距离,为驾驶员提供科学的指导,提高道路交通的安全性。
详细描述
在计算安全行车距离时,需要考虑车速、车辆性能、驾驶员反应时间等因素。数学模型 可以建立这些因素之间的数学关系,从而计算出在不同条件下的安全行车距离。这个模 型可以为驾驶员提供科学的指导,让他们根据实际情况调整行车距离,提高道路交通的
预测不同路面条件下的刹车距离
总结词
不同路面条件下,车辆的刹车距离会有所不同。通过 数学建模可以预测在不同路面条件下的刹车距离,为 驾驶员提供科学的行车建议,提高道路交通的有很大的影响。在湿滑路 面、结冰路面等情况下,由于摩擦力减小,车辆的刹 车距离会明显增加。数学模型可以综合考虑路面状况 、车速、车辆性能等因素,预测在不同路面条件下的 刹车距离。这个模型可以为驾驶员提供科学的行车建 议,例如在湿滑路面上减速慢行或者保持更长的安全 距离等,从而提高道路交通的安全性。
对未来研究的建议与展望
建议
未来研究可以进一步优化模型,考虑更多实际因素,如驾驶员反应时间、车辆机 械故障等。同时,可以通过实验验证模型的准确性和适用范围,提高模型的实用 价值。

数学模型汽车刹车距离论文

数学模型汽车刹车距离论文

。k 合拟来�表下�据数际实的离距车刹组一的供提门 部通交用利而�秒 57.0�算计均平人数多按�值计估验经的 1t 间时应反用采里这�法方种 两合拟据数和计估验经有常通。k 和 1t 数参的中其道知要需�际实于用型模个这将了为 � 3�
2
vk � v1t � d
为离距车刹�1 设假由。2/a=k 上际实�数系例比为 k 中其 �2�
析分题问

。则准秒 t�速车�离距车刹 �字键关
。析分的细仔做要全安够足了为以所。全安的 驶行证保来系关的速车与离距车刹的样怎了为是都出提的则准些这 。则准秒 t 的 出提们我及以”则准秒 2“ � ”则准度长车一“的面上就�议建的门八花五种各出 提此为们人�的要重常非是距车后前的全安够足持保车汽的驶行上路道在 。 ”则准秒 t“即�则准的理合加更了出提们我�设假种各及以�析分据数过 通要主�析分种各过通�析分的细仔更做度速与离距车刹对要还们我以所 。样一不并则规述上与 ”则准秒 2“以所 � �米 6.4=� 尺英 51 度长均平的身车个一 于大远远� �米 49.8=�尺英 33.92=秒 2*秒 0063/时小 1*里英/尺英 0825*时小/ 里英 01�为离距个这算计易容。离距大多驶行下钟秒 2 下速车的�时小/米千 61 约�时小/里英 01 在车汽 。型模的离距车刹立建并�则规的好更有否是�致一 否是则规述上与”则规秒 2“断判试。何如速车管不而�志标一同达到后钟秒 2 数默始开志标一某过经车前从机司车后即�”则规秒 2“谓所是法方便简种一的 则规个这现实�云又。度长身车个一加增应离距的车辆一面前与面后,时小/里英 01 加增每速车下件条驶驾常正在:则规的样这有中程课训培机司些某的国美 �系关量数的样怎有间之们它�析分行进速车与离距车刹对要就 。长越离距车刹�快越速车�离距车刹为称离的驶行车汽住止 停全完车汽到车刹定决机司从 �车刹急紧会件事发突到遇中程过驶驾在机司 �要摘

汽车刹车距离问题数学建模

汽车刹车距离问题数学建模

汽车刹车距离问题数学建模汽车刹车距离是指当驾驶员踩下刹车踏板后,车辆从开始刹车到停下所需行驶的距离。

汽车刹车距离的计算是为了评估车辆的刹车性能和安全性能。

下面将介绍几种数学建模方法,用于计算汽车的刹车距离。

1. 牛顿第二定律建模方法:根据牛顿第二定律,力等于物体质量乘以加速度。

在刹车过程中,刹车力是指向相反方向的力,且大小与刹车系统的设计和工作状态有关。

刹车力可以表示为负的阻力力,即R = -μmg,其中μ是摩擦系数,m是车辆质量,g是重力加速度。

根据牛顿第二定律,可以得到刹车过程中的加速度为a = -μg。

刹车距离S可以通过速度v和加速度a之间的关系得到:v^2 = u^2 + 2aS,其中u是刹车前的速度。

将a代入该公式,可以计算得到刹车距离S。

2. 动力学模型建模方法:动力学模型将车辆作为一个动力学系统进行建模。

在刹车过程中,刹车系统提供的刹车扭矩将车辆减速,直到停下。

刹车扭矩可以表示为:M = r · F,其中M是刹车扭矩,r是车轮半径,F是刹车力。

根据动力学原理,车辆减速度a可以表示为:a = (M - F_r) / m,其中F_r是车辆的滚动阻力。

根据物理定律,可以得到刹车距离S:v^2 = u^2 - 2aS,其中u是刹车前的速度。

将a代入该公式,可以计算得到刹车距离S。

3. 统计建模方法:除了基于物理原理的建模方法外,还可以通过实际测试数据进行统计建模。

这种方法利用实际刹车测试数据,通过拟合函数来建立刹车距离和刹车速度之间的关系。

可以采用多项式拟合、指数函数拟合等方法来得到刹车距离的计算公式。

这种建模方法可以更直接地反映实际刹车距离与刹车速度之间的关系。

除了上述方法外,还可以考虑其他因素对刹车距离的影响,如路面状况、气候条件等。

这些因素可能对刹车性能产生重要影响,因此在建模过程中应该综合考虑。

总结起来,汽车刹车距离问题的数学建模可以基于牛顿第二定律、动力学模型和统计建模等方法来计算刹车距离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:汽车刹车距离问题
(杨彬201100301007 卓越自111)
摘要:
随着现代科学技术的进步,人民生活得到了改善,私家汽车成了普通家庭的生活必需品。

为了避免不必要的交通事故,我们将应用初等方法,揭示在公路上驾驶司机应该选择刹车的最佳时间和最佳距离。

控制车距的影响因素:反应时间,车速,车身重,路面状况等。

此模型将回答2S法则适不适用的问题,提供了司机在行驶中应注意的各种事项,有利于交通的安全与便捷。

司机在驾驶过程中遇到突发事件会紧急刹车,从司机决定刹车到汽车完全停止住汽车行驶的离称为刹车距离,车速越快,刹车距离越长。

就要对刹车距离与车速进行分析,它们之间有怎样的数量关系?
问题重述:
美国的某些司机培训课程中有这样的规则:在正常驾驶条件下车速每增加10英里/小时,后面与前面一辆车的距离应增加一个车身长度。

又云,实现这个规则的一种简便方法是所谓“2秒规则”,即后车司机从前车经过某一标志开始默数2秒钟后到达同一标志,而不管车速如何。

试判断“2秒规则”与上述规则是否一致?是否有更好的规则?并建立刹车距离的模型。

汽车在10英里/小时(约16千米/小时)的车速下2秒钟下行驶多大距离。

容易计算这个距离为:10英里/小时*5280英尺/英里*1小时/3600秒*2秒=29.33英尺(=8.94米),远远大于一个车身的平均长度15英尺(=4.6米),所以“2秒准则”与上述规则并不一样。

所以我们还要对刹车距离与速度做更仔细的分析,通过各种分析(主要通过数据分析)以及各种假设,我们提出了更加合理的准则,即“t秒准则”。

在道路上行驶的汽车保持足够安全的前后车距是非常重要的,人们为此提出各种五花八门的建议,就上面的“一车长度准则”,“2秒准则”以及我们提出的t秒准则。

这些准则的提出都是为了怎样的刹车距离与车速的关系来保证行驶的安全。

所以为了足够安全要做仔细的分析。

问题分析:
问题要求建立刹车距离与车速之间的数量关系。

制定这样的规定是为了在后车急刹车情况下不致撞到前面的车,即要确定汽车的刹车距离。

刹车距离显然与车速有关,先看看汽车在10英里/小时(约16千米/小时)的车速下2秒钟下行驶多大距离。

容易计算这个距离为:10英里/小时*5280英尺/英里*1小时/3600秒
*2秒=29.33英尺(=8.94米),远远大于一个车身的平均长度15英尺(=4.6米),所以“2秒准则”与上述规则并不一样。

为了判断规则的合理性,需要对刹车距离做教仔细的分析。

一方面,车速是刹车距离的主要影响因素,车速越快,刹车距离越长;另一方面,还有其他很多因素会影响刹车距离,包括车型.车重,刹车系统的机械状况,轮胎类型和状况,路面类型和状况,天气状况,驾驶员的操作技术和身体状况等。

为了建立刹车距离与车速之间的函数关系,需要提出哪几条合理的简化假设呢?
可以假设车型,轮胎类型,路面条件都相同;假设汽车没有超载;假设刹车系统的机械状况,轮胎状况,天气状况以及驾驶员状况都良好;假设汽车在平直道路上行驶,驾驶员紧急刹车,一脚把刹车踏板踩到底,汽车在刹车过程没有转方向。

这些假设都是为了使我们可以仅仅考虑车速对刹车距离的影响。

这些假设是初步的和粗糙的,在建模过程中,还可能提出新假设,或者修改原有假设。

首先,我们仔细分析刹车的过程,发现刹车经历两个阶段:
在第一阶段,死机意识到危险,做出刹车决定,并踩下刹车系统开始起作用,汽车在反应时间行驶的距离称为“反应距离”;
在第二阶段,从刹车踏板被踩下,刹车系统开始起作用,到汽车完全停止,汽车在制动过程“行驶”(轮胎滑动摩擦地面)的距离称为“制动距离”。

在第三阶段,由于汽车的惯性,使汽车再往前行驶一段路程。

模型假设:
基于上述分析,做以下假设: 刹车距离d 等于反应距离1
d 和制动距离
2
d 及惯性距离d3之和。

反应距离
1
d 与车速v 成正比,比例关系为反应时间1t
刹车时使用最大制动力F ,F 作的功等于汽车动能的改变,且F 与车质量m 成正比。

(该模型来自/view/47211e61b84ae45c3b358c40.html )
分析与建立模型并求解:
由假设2)
11d t v
= (1)(该公式来自
/view/47211e61b84ae45c3b358c40.html )
由假设3,在F 作用下行驶距离2d 做的功2
21
2Fd mv =,使使车速从v 变到0,而
F=ma ,则
2
d =
2
12av ,按照牛二定律可知,刹车时的减速度a 为常数,于是
2
2d kv
= (2)(该公式来自
/view/47211e61b84ae45c3b358c40.html )
d3=b (3)
其中k 为比例系数,实际上k=a/2。

由假设1,刹车距离为
2
1d t v kv =+ +b (4)
为了将这个模型用于实际,需要知道其中的参数1t
、k
和d3。

通常有经验估计和
数据拟合两种方法,这里采用反应时间
1
t 的经验估计值(按多数人平均计算)0.75秒,
而利用交通部门提供的一组刹车距离的实际数据(下表)来拟合k 和d3。

(该表来自/view/47211e61b84ae45c3b358c40.html )
表(1) 车速和实际刹车距离
根据第二列和第三列数据由表(1)车速和距离数据,用MATLAB软件画出其图,,画出d 和v 的曲线图。

代码:
x=[29.3 44.0 58.7 73.3 88.0 102.7 117.3]; y=[44 73.5 116 173 248 343 464]; plot(x,y)
图1 实际刹车距离和速度的关系曲线图
利用上图和
1
t =0.75秒,可以得到模型(3)中k=0.0213 b=10.122,于是
d=0.75v+0.0213v^2+3.83(5)
模型验证
车 速 (英里/小时)
车速 (英尺/秒) 计算刹车距离
(英尺)
刹车时间 (秒) 20
29.3
43.98
1.5
30 44.0 82.45 1.8
40 58.7 131.92 2.1
50 73.3 192.37 2.5
60 88.0 263.82 3.0
70 102.7 346.25 3.6
80 117.3 439.68 4.3
(该表来自/view/47211e61b84ae45c3b358c40.html)
表(2)车速和计算距离
由表(1)和表(2)车速和距离数据,用MATLAB软件画出其图。

代码:
x=[29.3 44.0 58.7 73.3 88.0 102.7 117.3];
y1=[44 73.5 116 173 248 343 464];
y2=[44.04 77.87 120.904 173.25 240.95 325.5 434.9];
plot(x,y1,x,y2)
结果分析:
按照上述模型可以将所谓“2秒准则”修改为“t秒准则”,即后车司机从前车经过某一标志开始默数t秒钟后到达同一标志,t由表3给出。

表3 修正后的“t秒准则”
模型评价:
考察误差,发现当车速不超过108.43千米/小时,实际值都微小于理论值,但是当车速更快时,实际值就会大于理论值,而且随着车速的增加误差会越来越大。

误差分析说明制动距离子模型
2
1
d t v kv
=+
+b的模型假设适合较低的车速范围
内;当车速更高时,可能由于漏了考虑某些不容忽视的因素,导致模型解答不那么令人信服。

参考文献:
1: 姜启源谢金星等高等教育出版社2003年
2: 任善强雷宁数学模型高等教育出版社2003年。

相关文档
最新文档