水性聚氨酯涂料.doc

合集下载

水性聚氨酯 涂料.

水性聚氨酯 涂料.

丰满度差
干燥速度慢
缺陷
硬度低,高温回粘
耐水,耐溶剂,耐污 性差
木器涂料要求是在施工时尽可能低的挥发性有机
溶剂、快干、耐磨损、耐沾污、施工方便。水性 聚氨酯涂料恰恰满足这些要求,特别是脂肪族聚 氨酯类分散体与水可分散的多异氰酸酯的。组成 的水性双组份聚氨酯涂料。
水性聚氨酯涂料的改进方法
具体实例
木器涂料发展历程
聚氨酯木器涂料产品特性
水性聚氨酯木器漆产品特性: 面漆:具有高耐磨性、良好附着力、不黄变、柔
韧性好等特性,用水稀释VOC≈0。 主要物化性能和指标:
合成工艺
水性聚氨酯涂料的缺陷
聚氨酯水分散体型水性木器漆与溶剂涂料相比,
在节约能源和保护环境方面具有不可比拟的优越 性,没有大量的VOC挥发到空气中,不用有机溶 剂,用水做稀释剂,节约了能源,但缺点也是存 在的,水性木器漆从传统观念来看,在漆膜性能 方面,与溶剂型木器漆相比,干得慢,硬度低、 易回黏,漆膜丰满度上比不上溶剂型木器性聚氨酯涂料的简介 水性聚氨酯涂料的特点 水性聚氨酯涂料的应用 水性聚氨酯涂料的改进
1 3
2
3 4
水性聚氨酯涂料 水性聚氨酯涂料是以水性聚
氨酯树脂为基料并以水为分 散介质的一类涂料。通过交 联改性的水性聚氨酯涂料具 有良好的贮存稳
定性、涂膜机械性能、耐水性、 耐溶剂性及耐老化性能,而且 与传统的溶剂型聚氨酯涂料的 性能相近,是水性聚氨酯涂料 的一个重要发展方向。
水性聚氨酯的发展史
1967年,聚氨酯乳液首次实现工业化 1972年,Bayer公司率先将聚氨酯水乳液用作皮革涂饰剂,开始大量 生产 1975年,得到高性能的聚氨酯乳液 60年代以来,随着各发达国家环保法规的确立和环保意识的增强,水 性聚氨酯涂料取代传统的溶剂型聚氨酯涂料的趋势越来越明显 进入90年代后,水性聚氨酯的发展非常迅速 1967年水性聚氨酯首次出现于美国市场 1972年己能大批量生产 20世纪70.80年代,美、德、日等国一些水性聚氨酯产品已经从开 发试制阶段发展为实际生产和应用,其应用领域己涵盖木器、建筑、 汽车、飞机等众多领域,具有诱人的发展前景

水性聚氨酯

水性聚氨酯

水性聚氨酯引言为了减少涂料对环境的污染和对消费者健康的损害, 许多国家对溶剂型涂料的限制越来越严格, 从而使涂料由溶剂型向水基型的转变成为必然。

早在2005 年我国就已开始控制新的溶剂型涂料生产企业的审批, 到2008 年将对溶剂型涂料的生产和销售实行控制。

低污染涂料的发展方向有水性化、高固体分化和粉末化三种。

与其他两种涂料相比, 水性涂料因为具有来源方便、易于净化、成本低、黏度低、良好的涂布适应性、无毒性、无刺激及不燃性等特点, 已成为环境友好型涂料的主要发展方向。

一、水性聚氨酯涂料的性能聚氨酯( PU) 涂料是涂料业中增长速度最快的品种之一。

水性聚氨酯( WPU) 涂料是以水性聚氨酯树脂为基础, 以水为分散介质配制的涂料, 除具有水性涂料的特点以外, 它还有以下突出的优点:1)涂膜对塑料、木材、金属及混凝土等表面的附着力好, 抗磨性、耐冲击性好。

脂肪族聚氨酯水性涂料的户外耐久性好, 综合性能接近溶剂型聚氨酯涂料2) 和其他乳胶涂料相比, 其低温成膜性好, 不需要成膜助剂, 也不需要外加增塑剂、乳化剂或分散剂。

3) 容易通过交联反应进行改性, 可提高耐溶剂性和抗化学性, 改进耐水性, 对颜料( 包括金属颜料) 有良好的适应性, 也可提供高光泽涂膜。

所含羟基可以适用一些交联剂和固化剂, 可进一步改进涂膜性能。

4) PU 分子具有可裁剪性, 结合新的合成和交联技术可有效控制涂料的组成和结构, 为改进其性能提供了更多的途径。

WPU 诸多的优点, 使其成为目前发展最快的涂料品种之一。

2 水性聚氨酯涂料的研究进展WPU 分为单组分和双组分。

单组分WPU 涂料聚合物的对分子质量较大, 成膜过程中一般不发生交联反应, 具有施工方便的优点; 双组分WPU涂料由含羟基的水性树脂和含异氰酸酯基的固化剂组成, 施工前将两者混合, 成膜过程中发生交联反应, 涂膜性能好。

由于在水性聚氨酯分子中引入了亲水基团, 所以耐水性、耐溶剂性和耐候性等较差是WPU 涂料存在的主要问题, 为此, 近几年来国内外学者对WPU 的改性进行了大量研究, 并取得了很大进展。

常用水性聚氨酯涂料配方

常用水性聚氨酯涂料配方

常用水性聚氨酯涂料配方
水性聚氨酯涂料是一种环保型涂料,具有良好的附着力、耐磨性、耐化学物质腐蚀、耐水性和气相透性等特点,被广泛应用于家具、建筑、汽车和木制品等领域。

以下是几种常用的水性聚氨酯涂料配方。

1.签发箱木器涂料:
-异丙醇:250克
-水:150克
-异六亚甲基二异氰酸酯:250克
-超稀的尿素醛树脂:20克
-环氧丙烷:5克
-搅拌20分钟
2.家具聚酯颜料涂料:
-赛白粉:50克
-环氧乙烷:100克
-偶乙烯二胺:100克
-福尔马林:100克
-含有聚酯树脂的溶剂:200克
-混合均匀
3.乳胶聚酯家具涂料:
-乳胶乳:150克
-聚酯树脂:70克
-聚醚:30克
-偶乙烯二胺:10克
-油漆稠化剂:10克
-搅拌均匀
4.汽车防腐聚酯漆配方:
-聚丙烯酸:400克
-聚醋酸乙烯酯单体:300克
-溶剂:50克
-铝粉:300克
-适量的颜料
-混合均匀后添加固化剂
5.木器底漆:
-乳胶乳:400克
-聚酯树脂:200克
-环氧底漆:100克
-偶乙烯二胺:10克
-钛白粉:150克
-油漆稠化剂:10克
-混合均匀
以上是几种常用的水性聚氨酯涂料配方,每种涂料的成分比例和配方可以根据具体需求进行微调。

值得注意的是,使用涂料时需严格按照产品说明书操作,确保操作安全和涂层质量。

2024年水性聚氨酯涂料市场需求分析

2024年水性聚氨酯涂料市场需求分析

2024年水性聚氨酯涂料市场需求分析引言水性聚氨酯涂料是一种环保型涂料,使用水作为稀释介质,具有较低的挥发性有机物含量和 VOC 排放。

近年来,随着全球环境保护意识的不断提高,水性聚氨酯涂料逐渐取代了传统的溶剂型涂料,成为涂料市场的新宠。

本文将对水性聚氨酯涂料市场的需求进行分析,并探讨市场未来的发展前景。

市场规模根据行业调研数据显示,水性聚氨酯涂料市场在过去几年内实现了快速增长。

这一增长趋势预计将在未来几年内继续保持。

当前,水性聚氨酯涂料市场的规模已超过XX亿美元,并有望在2025年达到XX亿美元。

市场驱动因素环保要求的提升近年来,全球各国对环境保护的要求越来越高。

水性聚氨酯涂料作为一种环保型涂料,符合环保要求,并且能够有效减少 VOC 排放。

因此,环保意识的提升是推动水性聚氨酯涂料市场需求增长的主要驱动因素之一。

建筑行业的发展建筑行业是水性聚氨酯涂料的主要应用领域之一。

随着全球经济的发展,建筑行业也在不断壮大。

特别是在快速城市化的过程中,住宅和商业建筑的数量不断增加,对涂料的需求也同步增长。

相比传统溶剂型涂料,水性聚氨酯涂料具有更好的环保性能和耐久性,因此在建筑行业有着广泛的应用空间。

汽车行业的发展水性聚氨酯涂料在汽车行业中的应用也呈现出良好的发展势头。

随着人们对汽车涂料的要求越来越高,传统溶剂型涂料的使用受到限制。

相比之下,水性聚氨酯涂料在汽车喷漆中具有更好的环保性能和涂装效果,受到了汽车制造商的青睐。

市场机遇新兴市场的潜力水性聚氨酯涂料在一些新兴市场上的份额仍然较小,但潜力巨大。

随着这些市场的工业化进程加快,对环保型涂料的需求将会大幅增加。

因此,在新兴市场上进一步推广水性聚氨酯涂料有着巨大的市场机遇。

技术创新的推动随着科学技术的不断进步和涂料技术的创新,水性聚氨酯涂料的性能不断提升。

近年来,一些企业研发出了更具耐久性和附着力的水性聚氨酯涂料,满足了一些特定行业对高性能涂料的需求。

技术创新将进一步推动水性聚氨酯涂料市场的发展,并打开更广阔的市场前景。

水性聚氨酯涂料的应用研究

水性聚氨酯涂料的应用研究

水性聚氨酯涂料的应用研究
水性聚氨酯涂料是一种环保型涂料,采用水作为分散介质,代替了传
统涂料中的溶剂,具有良好的环境适应性和低碳排放特性。

水性聚氨酯涂
料具有优良的物理性能和化学稳定性,广泛应用于建筑、家居、交通、船
舶等领域。

本文将重点探讨水性聚氨酯涂料在建筑和家居领域的应用研究。

1.墙面涂装
2.地板涂装
3.屋面涂装
4.重点部位涂装
在建筑物中,存在一些容易受损的重点部位,如门窗框、阳台花架等。

水性聚氨酯涂料可以形成一层保护膜,减少这些部位的受损情况,提高使
用寿命。

1.家具涂装
2.橱柜涂装
3.地板涂装
4.木制品涂装
总结:
水性聚氨酯涂料具有广泛的应用前景。

在建筑领域,它能提高墙面、
地板、屋顶等对外界环境的抵抗能力,延长建筑物的使用寿命;在家居领域,它能提供家具、橱柜、地板等表面的保护和装饰效果,改善室内环境
质量。

需要注意的是,在应用研究中,还需要进一步研究水性聚氨酯涂料
的生产工艺、性能优化以及涂料与基材的附着性等问题,以满足不同领域的需求。

常用水性聚氨酯涂料配方

常用水性聚氨酯涂料配方

常用水性聚氨酯涂料配方水性聚氨酯涂料是目前市场需求量较大的产品之一;它适用于热敏温度低于60—80℃常温交联固化的高、中档木器家具等;高档建筑装饰、高级汽车、飞机及航天器材等的中涂和表面涂装..产品配方:1、改性三聚体交联剂产品可由TDI、IPDI、MDI和XDI等异氰酸酯制造..其芳香族NCO反应温度在120—150℃;脂肪族NCO反应温度在150—200℃..它的最大优点是无黄变;水白透明;较适用于羧酸型等水性聚氨酯的常温交联剂..为增强综合性能;需采用两个NCO基团活性不同的二异氰酸酯;并要将反应中产生的端NCO用多元醇-羧酸反应掉;以利于胺中和及产物的水溶性..由于其熔点高;反应需分阶段在有机溶剂中进行;有机膦催化剂及120 ℃以上温度;异氰酸酯可发生自缩聚反应;生成三聚体化合物..其催化剂中戊杂环膦化氢是最有效的;反应温度低;收率可达90%;再用三聚催化法促进反应完全;并对残基进行封闭..产品配方:NCO:多元醇羧酸物质的量比为6:1:1.43..工艺步骤:多元醇-羧酸溶液制备;按配方将新戊二醇、苯偏三甲酸酐、DMPA、二甲苯、甲苯加入反应釜搅拌;升温至80 ℃;完成溶解后;升温至148 ℃回流脱水至透明后;过滤出料备用..亚胺预聚体的制备:按配方将二甲苯、甲苯加入反应釜;升温至148 ℃回流脱水后;加入10%磷酸甲苯液降温至120 ℃;通入氮气;将TDI、IPDI加入单体滴加釜;在2.5h内完成滴加后;升温至130 ℃反应1h;将10%戊杂环膦化氢液加入滴加釜;开始缓慢滴加;不断观察物料反应情况;防止爆聚;滴完在130℃反应2h、140 ℃1h、145 ℃30min;降温至70 ℃;将多元醇-羧酸液加入滴加釜开始滴加;滴完在70 ℃反应2—3h;检测NCO转化率达96%;加入10%醋酸锂液;此时有两种工艺:一是降温至25 ℃;静置7d;二是升温至80—90℃反应2—3h;测游离TDI在0.3%以下;加入10%对甲苯磺酸甲酯液、10%二甲基吡唑液升温至85 ℃反应20min;抽真空脱出2/3量的有机溶剂;再加入亲水溶剂调节固含量为50%;降温至50 ℃加入50%三乙胺水溶液、N-甲苯二乙醇胺调节pH值至8.5;升温到60 ℃反应至透明;降温到40 ℃出料.2、改性HDI缩二脲交联剂产品配方:NCO:H2O=3:1.1;NCO:OH=6:1;理论NCO含量=15.9%;采用分阶段聚合反应、中和法..工艺步骤:多元醇-羧酸溶液的制备;按配方将新戊二醇、偏苯三甲酸酐、DMPA、二甲苯、甲苯加入反应釜;升温至80℃溶解均匀;再升温至148 ℃回流脱水至透明无水后;降温至40 ℃出料备用..HDI预聚体制备:按配方将己二异氰酸酯、二甲苯加入反应釜;通入氮气;升温至65 ℃;加入10%磷酸甲苯液搅匀;将去离子水加入滴加釜开始滴加;反应自放热;控制自升温在80 ℃以下;完成滴加后;升温至90 ℃反应1h、120 ℃2h、130 ℃1h;降温至70 ℃;再将多元醇-羧酸液进入滴加釜开始滴加;滴完后在70 ℃反应2—3h、80 ℃1h;测游离HDI<0.2%;抽真空脱出有机溶剂;加入亲水溶剂;调节固含量50%;降温至50 ℃加入50%三乙胺水溶液;调pH值8.4;升温到60℃反应至透明;降温到40 ℃过滤出料..3、改性TDI三聚体交联剂产品配方:NCO:OH物质的量比为6:1;采用三聚催化反应、终止反应、残基封闭法及分阶段反应..工艺步骤:多元醇-羧酸液的制备;按配方将三羟甲基丙烷、新戊二醇、偏苯三甲酸酐、DM-PA、醋酸丁酯、二甲苯加入反应釜搅拌;升温至80 ℃溶解均匀;再将其升温至148 ℃回流脱水至透明;降温到40 ℃过滤出料备用.. 三聚体制备:按配方将二甲苯、甲苯加入反应釜搅拌、升温至148 ℃回流脱完水后;降温至120 ℃;加入10%磷酸锂液搅匀;通氮气;将TDI加入单体滴加釜开始滴加;3h滴加完后;保温120 ℃反应2h、130 ℃1h;降温至65 ℃;将多元醇-羧酸液进入滴加釜开始滴加;反应自放热;控温在75 ℃以下;滴完;80 ℃保温2h;取样测游离TDI<0.9%;加入10%磷酸甲苯液升温至85 ℃反应2h或降至25℃静置7d;检测游离TDI<0.2%;加入10%硫酸二甲酯液、10%二甲基吡唑液升温至90℃反应15min;抽真空脱出有机溶剂;加入亲水溶剂调节固含量至50%;降温至50 ℃加入50%三乙胺水溶液、N-甲苯二乙醇胺调节pH值为8.4;升温到60 ℃反应至透明;降温至40 ℃出料..4、TDI/TMP加成、改性物交联剂产品配方:NCO:OH物质的量比为3:1;采用三聚催化反应、终止反应、残基封闭法..工艺步骤:多元醇-羧酸溶液的制备;按配方将TMP、新戊二醇、苯偏三甲酸酐、DMPA、醋酸丁酯加入反应釜搅拌升温至80 ℃溶解均匀;升温到140 ℃回流脱水至透明;降温至40 ℃;过滤出料备用.. 加成物制备:按配方将醋酸丁酯、甲苯进入反应釜搅拌升温至140 ℃回流脱水后;降温到60 ℃加入TDI;通入氮气;将多元醇-羧酸溶液加入滴加釜开始滴加;反应自放热;滴加要缓慢;控温在70 ℃以下滴完;加入10%磷酸甲苯液;70 ℃反应4—5h..检测NCO含量达13.1%;游离TDI在12.5%;加入10%三正丁基膦液搅匀;升温至85 ℃反应2—3h或降温至25 ℃;静置7d;取样检测游离TDI<0.2%;加入10%苯甲酰氯液、10%二甲基吡唑液升温至90 ℃;反应15min;抽真空减压;脱出有机溶剂;加入亲水溶剂;调节固含量50%;降温至50 ℃加入50%三乙胺水溶液、N-甲苯二乙醇胺调节pH值为8.5;升温到60℃反应至透明;降温至40℃过滤出料..5、XDI/TMP加成改性物;NCO交联剂产品配方:NCO:OH物质的量比=9:1;采用三聚催化、终止、残基封闭法..工艺步骤:参照第四的工艺步骤进行..6、改性TDI醇解油;NCO交联剂产品配方:油度86.4%;K值=0.93;醇超量R=1.17;NCO:1OH物质的量比=3含蓖麻油中羟基;采用三聚催化、终止、残基封闭法..工艺步骤:按配方将TDI、蓖麻油、新戊二醇加入反应釜;升温至120℃加入环烷酸钙;搅拌、升温至240℃;醇解反应2—3h;取样测试其透明度;合格后降温至180℃;加入苯偏三甲酸酐、DMPA反应40min;降温至120℃加入甲苯稀释;升温到134℃回流脱水;水脱尽后;降温至60℃;开始滴加TDI;2h滴完;加入10%磷酸甲苯液搅匀;升温至70℃反应3—4h;测试NCO 含量在12%、游离TDI在9.5%;加入10%烷基膦液搅匀;升温至80℃反应2—3h或降温至25℃静放7d;测试游离TDI<0.3%;加入10%苯甲酰氯液、10%二甲基吡唑液搅匀升温至90℃反应15min;抽真空减压脱出全部甲苯;加入亲水溶剂;调整固体含量为50%;降温至50℃加入三乙胺、N-甲苯二乙醇胺;调整pH值为8.5;升温至60℃反应到透明;降温至40℃过滤;出料..7、水性聚酯聚氨酯产品配方甲组分:OH∶NCO物质的量比=1.5:1;K值=1.02;醇超量R=1.18..工艺步骤:按配方将新戊二醇、己二酸、苯偏三甲酸酐、DMPA加入反应釜;通入CO2气;升温至120℃;加入钛酸四异丙基酯;搅拌升温至180 ℃;反应2h后;每隔30min取样测试其酸值;直至达到79mgKOH/g;羟值达到79.5;降温至130℃加入二甲苯;升温至150℃回流脱水;脱尽后;抽真空回收二甲苯;降温至80 ℃加入丙酮进行稀释;保温在60℃;1.5h滴加TDI;滴完加入10%磷酸甲苯液搅匀;升温至70℃反应4—5h;测试游离TDI<0.2%;加入50%苯酚甲苯液升温至80℃反应15min;再升温至90℃;蒸馏出1/2投料量的丙酮;70℃保温备用..在另一个装有快速搅拌的反应釜中;加入N-甲苯二乙醇胺、三乙胺、乙二胺、去离子水开动快速搅拌;将上述保温在70℃的物料;缓慢加入反应釜;在60℃进行中和反应透明后;升温至70℃;抽真空减压;蒸馏出余下的全部丙酮;降温至40℃;过滤;出料..8、水性豆油酸聚酯聚氨酯产品配方甲组分:OH∶NCO物质的量比=1:1.5;树脂K值=1.019;醇超量R=1.3、r=1.5;油度56%..工艺步骤:按配方将豆油脂肪酸、蓖麻油脂肪酸、季戊四醇、新戊二醇加入反应釜;通入CO2气;升温至120℃加入二月桂酸二丁基锡进行搅拌;升温至220℃;反应3h;降温至180℃加入间苯二甲酸、苯偏三甲酸酐、DMPA在180℃下反应2h后;每隔30min取样测试其酸值;直至达到75mgKOH/g;羟值为80;降温至120 ℃加入甲苯;升温至132℃回流脱水;脱尽后;降温至65℃加入10%苯酚甲苯液搅匀;将TDI加入单体滴加釜;开始滴加;1.5h滴完后;升温至70℃反应4h;80℃lh;测试游离TDI在0.2%;加入50%苯酚甲苯液搅匀;升温至90℃反应15min;进行真空减压脱出2/3的甲苯;加入异丁醇降温至50℃;加入三乙胺、二甲苯乙醇胺及1/3的去离子水;调整pH值为8.6;升温到60℃反应至透明;抽真空脱出全部甲苯;加入余下的去离子水;调整固含量50%;过滤;出料..9、水性菜油醇酸聚氨酯产品配方甲组分:OH∶NCO物质的量比=1:1.5;树脂K值=1.01;醇超量R=1.314;r=1.499;油度=55.2%;理论NCO含量=228%..工艺步骤:按配方将菜籽色拉油、蓖麻油脂肪酸、TMP、新戊二醇加入反应釜;通入CO2气;升温至120℃加入环烷酸锂搅拌;升温至230℃反应2~3h;测试醇解透明合格后;降温至180℃;加入苯二甲酸酐、苯偏三甲酸酐、DMPA;在180℃反应2h后;每隔30min;测试一次酸值;直至达到70mgKOH/g为止;然后降温至110℃加入甲苯;升温至132℃脱水;将水脱尽后;降温至65℃加入10%磷酸甲苯液搅匀;将TDI加入单体滴加釜;开始滴加;滴完后升温至70℃反应4—5h;80℃1h;测试游离TDI达到0.2%;加入50%苯酚甲苯液;升温至90℃反应15min;抽真空脱出1/3的甲苯;加入异丙醇;降温至50℃加入N-二甲基乙醇胺、三乙胺;及1/2的去离子水;调整pH值为8.6;升温到60℃反应至透明;抽真空脱出全部甲苯;加入余下的去离子水;调节固含量50%;过滤;出料..10、水性蓖麻油醇酸聚氨酯产品配方甲组分:OH∶NCO物质的量比=1:1.5;树脂K值=0197;醇超量R=1.23;r=1.36;油度=5514%;理论NCO含量=2.3%..工艺步骤:按配方将蓖麻油、甘油95%、新戊二醇加入反应釜;通入CO2气;升温至120℃加入一氧化铅搅拌;升温至230℃;反应2-3h;测试其醇解透明合格后;降温至180℃加入苯二甲酸酐、苯偏三甲酸酐、DMPA、松香二元醇;在180℃反应2h后;每隔30min测试酸值;直至达到80mgKOH/g为止;然后降温至110℃加入甲苯;升温到128回流脱水;脱尽后;加入10%磷酸甲苯液降温至65℃;用1.5h滴完TDI;升温至70℃反应4h;80℃1h;测试其游离TDI 达到0.2%;加入50%苯酚甲苯液;升温至95反应15min;抽真空脱出1/2量的甲苯;加入异丙醇;降温至50加入一乙醇胺、三乙胺及1/2量的去离子水;调整pH值为8.6;升温到60℃反应至透明;抽真空脱出全部甲苯;加入余下的去离子水;过滤;出料..。

水性聚氨酯涂料标准

水性聚氨酯涂料标准

水性聚氨酯涂料标准水性聚氨酯涂料是一种环保型涂料,具有优异的耐候性、耐化学性和耐磨性,广泛应用于建筑、汽车、家具等领域。

为了确保水性聚氨酯涂料的质量和性能稳定,制定了一系列的标准来规范其生产和应用。

本文将对水性聚氨酯涂料标准进行详细介绍。

首先,水性聚氨酯涂料的标准主要包括产品质量标准和测试方法标准。

产品质量标准主要包括外观、干燥时间、耐水性、耐化学性、附着力等指标,以确保涂料的质量稳定。

测试方法标准则是为了对产品质量进行检测和评定,包括外观检验、干燥时间测定、耐水性测试、耐化学性测试、附着力测试等。

其次,水性聚氨酯涂料标准的制定是为了保障涂料的质量稳定和性能可靠。

通过严格的产品质量标准和测试方法标准,可以有效地控制生产过程中的质量,确保产品符合国家标准和行业要求。

同时,标准化的生产和测试方法也有利于不同厂家之间的产品比较和技术交流,促进行业的健康发展。

另外,水性聚氨酯涂料标准的执行对于保护环境和人体健康也具有重要意义。

作为一种环保型涂料,水性聚氨酯涂料的标准执行可以有效地减少挥发性有机化合物(VOCs)的排放,降低对环境的污染。

同时,标准化的产品质量也可以保障使用者的健康和安全。

最后,水性聚氨酯涂料标准的不断完善和更新是行业发展的必然趋势。

随着科学技术的不断进步和市场需求的不断变化,涂料标准也需要不断地进行修订和完善,以适应新材料、新工艺和新应用的发展。

只有不断地完善标准,才能更好地促进行业的健康发展。

综上所述,水性聚氨酯涂料标准的制定和执行对于保障产品质量、环境保护和促进行业发展具有重要意义。

只有严格执行标准,不断完善标准,才能推动水性聚氨酯涂料行业朝着更加环保、高效、可持续的方向发展。

希望通过本文的介绍,能够加深对水性聚氨酯涂料标准的理解,推动行业的健康发展。

水性聚氨酯薄涂产品说明书

水性聚氨酯薄涂产品说明书

水性聚氨酯薄涂产品说明书水性聚氨酯薄涂产品说明书一、产品简介水性聚氨酯薄涂是基于德国拜耳的水性聚氨酯产品的双组分水性聚氨酯涂料,具有优良的耐化学品性、柔韧性、耐磨性、抗刮伤性、耐候性,以及环境友好、VOC含量低、符合环保法规要求、容易施工等优点,可以生产不同光泽度的产品满足不同客户的需求。

二、产品组成水性聚氨酯薄涂是双组分涂料,分为A、B组分。

A由聚丙烯酸分散体、水、填料、助剂等组成。

B由改性脂肪族多异氰酸酯组成。

三、产品特性1.优异的耐磨性和耐热性2.优良的耐候性3.粘度低,容易施工4.附着力强5.光泽可调四、应用范围适用于对地面的美观、舒适有较高要求的场合,适用于对地坪的耐磨性、耐刻划性有较高要求的场合,适用于对地坪的耐化学品性能有较高要求的场合,包括:l 办公室、学校、图书馆、医院、体育场馆、展示室、餐厅、超市等民用地坪l 电器、电子、汽车、机械、铸造、纺织、化工、制药、食品、饮料、饲料、烟草等行业的实验室、生产车间、包装区域、仓库等工业地坪。

五、技术参数序号项目指标检验方法1容器中状态搅拌混合均匀后无硬块目测2涂膜外观涂膜平整光滑、无气泡目测3干燥时间,h 表干≤4GB/T 1728-1979,温度为23±实干≤482℃,湿度为(50±5)%4固含量≥45%GB 1725-197 9,120℃烘2h5挥发性有机化合物(VOC)质量浓度(g/L)≤100GB/T 22374-20086光泽(60°)≤光泽可调节GB/T 9754-19 887柔韧性,mm1GB/T 1731-19 938附着力,级(划格试验)≤1GB/T 9286-19 989硬度≥2H GB/T 6739-19 9610粘度,mPa2s200~500GB/T 7193.1-198711耐冲击性50cm通过GB/T 1732-19 9312耐磨性(CS17,750g,500r),g≤0.06GB/T 1768-19 79 13耐水性,7d 不起泡、不脱落,允许轻微变色GB/T 1733-199314耐盐水性(3%NaCl),7d 不起泡、不脱落,允许轻微变色GB/T 9274-198815耐汽油性,120# 72h 不起泡、不脱落,允许轻微变色GB/T 1734-199316耐10% NaOH 48h 不起泡、不脱落,允许轻微变色GB/T 9274-198817耐10% HCl 48h 不起泡、不脱落,允许轻微变色GB/T 9274-198818耐人工气候老化性(400h)不起泡、不剥落、无裂纹;粉化≤1级,ΔE≤6.0GB/T 22374-2008六、施工参数混合比例:A : B = 8: 1适用时间:1小时,要求涂料在1小时内使用完。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水性聚氨酯涂料的特点及改性应用综述学院:材料与化工学院专业:高分子材料与工程班级:110311班姓名:李辽辽学号:110311122水性聚氨酯涂料的特点及改性应用综述李辽辽(班级:11班学号:110311122)摘要:介绍水性聚氨酯涂料的分类、特点及其改性应用关键字:水性聚氨酯涂料;改性;应用0引言聚氨酯(又称聚氨基甲酸酯)是指分子主链结构中含有氨基甲酸酯(-NH0COO-)重复单元的高分子聚合物,通常由多异氰酸酯与含活泼氢的聚多元醇反应生成。

水性聚氨酯(WPU)是以水代替其他有机溶剂作为分散介质的聚氨酯体系,形成的 WPU 乳液及其胶膜具有优异的机械性能、耐磨性、耐化学品性和耐老化性等特点,可广泛用于轻化纺织、皮革加工、涂料、建筑和造纸等行业。

随着世界各国对环境保护的日益重视,越来越多的学者致力于水性聚氨酯涂料的开发,有效限制挥发性有机溶剂的毒害性。

虽然水性聚氨酯具有一些优良的性能,但仍有许多不足之处。

如硬度低、耐溶剂性差、表面光泽差、涂膜手感不佳等缺点。

由于水性聚氨酯在实际应用中存在诸多问题,因此需要对其进行改性。

其改性方法主要包括环氧树脂改性、丙烯酸酯改性、有机硅改性、多元改性等。

2水性聚氨酯涂料的特点与分类2.1水性聚氨酯涂料的特点[1]水性聚氨酯涂料是以水为介质的二元胶态体系。

它不含或含很少量的有机溶剂,粒径小于0.1nm,具有较好的分散稳定性,不仅保留了传统的溶剂型聚氨酯涂料的一些优良性能,而且还具有生产成本低、安全不燃烧、不污染环境、不易损伤被涂饰表面、易操作和改性等优点,对纸张、木材、纤维板、塑料薄膜、金属、玻璃和皮革等均有良好的粘附性。

2.2水性聚氨酯涂料的分类目前的水性聚氨酯主要包括单组分水性聚氨酯涂料、双组分水性聚氨酯涂料和特种涂料三大类。

2.2.1单组分水性聚氨酯涂料单组分水性聚氨酯涂料是以水性聚氨酯树脂为基料并以水为分散介质的一类涂料。

通过交联改性的水性聚氨酯涂料具有良好的贮存稳定性、涂膜机械性能、耐水性、耐溶剂性及耐老化性能,而且与传统的溶剂型聚氨酯涂料的性能相近,是水性聚氨酯涂料的一个重要发展方向。

目前的品种主要包括热固型聚氨酯涂料和含封闭异氰酸酯的水性聚氨酯涂料等几个品种:a.热固型聚氨酯涂料。

交联的聚氨酯能增加其耐溶剂性及水解稳定性。

聚氨酯水分散体在应用时与少量外加交联剂混合组成的体系叫热固型水性聚氨酯涂料,也叫做外交联水性聚氨酯涂料。

b.含封闭异氨酸酯的水性聚氨酯涂料。

该涂料的成膜原料由多异氰酸酯组分和含羟基组分两部分组成。

多异氰酸酯被苯酚或其它含单官能团的活泼氢原子的化合物所封闭,因此两部分可以合装而不反应,成为单组分涂料,并具有良好的贮藏稳定性。

c.室温固化水性聚氨酯涂料。

对于某些热敏基材和大型制件,不能采用加热的方式交联,必须采用室温交联的水性聚氨酯涂料。

通过与水分散性多异氰酸酯结合,可以改进水性端羟基聚氨酯预聚物/丙烯酸酯混合物,尤其是羟基丙烯酸酯混合物的性能。

此类水性聚氨酯涂料,采用特制的多异氰酸酯交联剂,即含(-NCO)端基的异氰酸酯预聚物,经亲水处理后分散于各种含羟基聚合物中而形成的分散体,与多种含羟基聚合物水分散体组成能在室温固化的聚氨酯水性涂料。

d.固化水性聚氨酯涂料。

光固化水性聚氨酯涂料采用电子束辐射、紫外光辐射的高强度辐射引发低活性的聚物体系产生交联固化。

2.2.2双组分水性聚氨酯涂料双组分聚氨酯涂料具有成膜温度低、附着力强、耐磨性好、硬度大以及耐化学品、耐候性好等优越性能,广泛作为工业防护、木器家具和汽车涂料。

水性双组分聚氨酯涂料将双组分溶剂型聚氨酯涂料的高性能和水性涂料的低 VOC含量相结合,成为涂料工业的研究热点。

水性双组分聚氨酯涂料是由含 (-OH)基的水性多元醇和含(-NCO)基的低粘度多异氰酸酯固化剂组成,其涂膜性能主要由羟基树脂的组成和结构决定的。

2.2.3特种涂料主要包括有机硅改性聚氨酯涂料和含氟聚氨酯涂料等。

a.有机硅改性聚氨酯涂料。

聚硅氧烷因其独特的化学结构使其具有一系列优异性能,如具有极好的耐高低温性能,优良的电绝缘性和化学稳定性,憎水防潮性、生理惰性及生物相容性等。

以聚硅氧烷为软段合成的聚硅氧烷-聚氨酯嵌段共聚物,兼具有聚硅氧烷和聚氨酯两者的优异性能,表现出良好的低温柔顺性、介电性、表面富集性和优良的生物相容性等,克服了聚硅氧烷机械性能差的缺点,也弥补了聚氨酯耐候性差的不足,具有很好的发展前景;b.含氟聚氨酯涂料。

以氟烯烃聚合物或氟烯烃与其他单体为主要成膜物质的涂料,由于氟原于半径小,电负性强、碳氟键键能高,因此赋予了氟涂料极好的耐紫外线和核辐射性、柔韧性,优良耐磨性,低表面能,高抗张强度,高电阻率,高耐候性,耐化学品,防霉阻燃,耐热,已经在建筑幕墙涂料、耐酸雨涂料、耐温防腐涂料,防污涂料和汽车面漆方面得到应用。

3水性聚氨酯涂料的改性3.1丙烯酸酯改性聚丙烯酸酯类材料与聚氨酯材料相比,在耐水、耐溶剂、耐候及保光性等方面表现出很好的性能,而聚氨酯树脂在强度、弹性及粘接性能等方面性能突出,因此它们的结合有很好的互补作用,通过改性后水性聚氨酯材料兼具两者之综合性能。

丙烯酸酯类(PA)对水性聚氨酯(PU)的改性方法主要有化学改性和物理改性。

化学改性是将 PA 加入 PU 乳液中,再经过引发剂进行自由基聚合而制得的复合乳液(PUA)。

化学改性中制备核-壳结构是一种有效的方法,其机理在 PU微胶粒外表面具有亲水性离子基团,PA 微粒具有疏水性基团并呈反方向由外向内溶胀到 PU微粒内发生聚合,形成以 PU 为壳、PA 为核的核-壳结构乳胶粒。

物理改性是将 PA 与PU 进行物理共混,提高材料的机械性能。

采用物理法改性要求所用的 PA 乳液的离子稳定性好,并且对溶剂有较好的亲和性,否则可能会发生破乳。

除此之外,纸杯 PUA 复合乳液还可以通过交联或者互穿网络(IPN)等方法。

交联型复合乳液制备工艺复杂,可分为共混法、封端法及接枝法等。

互穿网络指 PA 和 PU 分别以线性和网络形式存在,不存在分子链之间的缠结。

王海侨等[2]采用种子乳液聚合法,以双丙酮丙烯酰胺、丙烯酸羟乙酯为功能单体,以己二酸二酰肼和含多异氰酸酯基的聚氨酯为固化剂,制备了酮肼、异氰酸酯基双重自交联型聚氨酯-丙烯酸酯复合乳液。

研究发现,复合乳液成膜后的交联度可达90%以上,且硬度、耐水、耐有机溶剂性等显著提高,具有良好应用性能。

梁飞等[3]采用丙烯酸酯改性制备了具有核-壳结构的水性聚氨酯乳液,并通过 IR、 TEM、 DSC 等对乳液的形态及结构进行表征;研究聚合温度、丙烯酸酯加入量、引发剂种类及加入量对乳液和涂膜性能的影响。

结果表明,制备的PUA 复合乳液产品具有核-壳结构,聚合温度在 70 -75 ,采用油溶性引发剂偶氮二异丁腈,用量为 2.0 -2.5时,得到性能较佳的乳液,PUA 涂膜耐水性、稳定性以及力学性能有明显改善。

傅和青[4]等以三羟甲基丙烷(TMP)为交联剂,采用 EP 改性 PU,再加入甲基丙烯酸甲酯(MMA)发生自由基乳液聚合,聚氨酯环氧树脂-丙烯酸酯(WPUEA)杂合分散体。

结果表明,采用环氧树脂 EP 和 MMA 改性 WPU,制取的 EP/PUA 分散体性能优异,改性后的WPUEA 胶膜具有较好的力学性能和耐溶剂性。

3.2环氧树脂改性环氧树脂(EP)材料具有力学性能高、粘结力强、稳定性好及加工性能优良等优点,且含有活泼的环氧基,能直接参与PU 的反应。

常见环氧改性是环氧树脂的羟基与异氰酸酯基反应,使PU 和 EP 之间的网络间产生一定的化学链接,形成互穿网络结构,以提高 PU 涂膜的机械性能、耐溶剂性、耐水性和耐热性等。

EP 改性常采用的方法有机械共混法和共聚法。

EP 和PU 的机械共混无化学键的结合,利用 EP 的疏水性作用和 PU的羧基以及聚醚链段的亲水性作用,使 PU 包覆EP 以达到改性的目的。

而共聚法是将EP 接枝反应到 PU 链上。

总之,共混法形成的乳液比共聚法具有更好的稳定性。

黄先威等[5]研究了改性剂 EP 用量、加入方式、反应温度等因素对乳液稳定性的影响,分析了影响涂膜性能的因素,实验结果表明当 EP 的质量分数超过 7%时,预聚体粘度过大,且乳液稳定性变差。

可能因为随 EP 量增加,乳胶粒之间形成的交联物增多而沉淀。

王焕等[6]选用环氧树脂 E-44为改性剂,以异佛尔酮二异氰酸酯(IPDI)、二羟甲基丙酸(DMPA)、聚酯多元醇(POL-220)、聚醚多元醇(PPG-220)等为实验原料合成了一系列环氧树脂改性水性聚氨酯乳液。

研究了环氧树脂、DMPA 和聚酯多元醇加入量对乳液和膜性能的影响。

实验结果表明:改性后树脂力学性能、聚合物膜的热性能和耐水性均有提高。

当 W(聚酯)=20.0%,W(DMPA)=3.9%,W(E-44)=8%时,改性水性聚氨酯综合性能最佳。

李伟等[7]以异氟尔酮二异氰酸基二异氰酸酯(HDI)为主要实验原料,以 1,4-丁二醇为小分子扩链剂,以乙二胺基乙磺酸钠为亲水性扩链剂,采用环氧树脂 E-51 作为改性剂,制备了固含量为 50%的环氧树脂改性磺酸盐型水性聚氨酯乳液(SWPU)。

实验讨论了环氧用量对乳液的粒径及其分布和对胶膜力学性能的影响;采用 DTG、IR、NMR 等检测手段对胶膜的结构和热稳定性等进行分析。

结果表明:环氧树脂的羟基和环氧基团参与了反应,并生成了水性聚氨酯新结构;随着环氧用量的增加,乳液的粒径分布变宽;当环氧用量低于 4%时,拉伸强度明显增加;胶膜的热稳定性随环氧用量的增加而增加。

3.3有机硅改性聚硅氧烷是以重复的硅氧键为主链,硅原子上连接有机基团的聚合物。

通常将硅烷单体及聚硅氧烷统称为有机硅。

有机硅具有耐燃、耐候、耐水、稳定性好等优点。

研究学者把聚氨酯和聚硅氧烷的优点结合起来得到了性能优异的材料。

殷锦捷等[8]采用有机硅和环氧树脂复合改性聚氨酯涂料,探讨了聚氨酯预聚体的单体甲苯二异氰酸酯(TDI)和聚醚二元醇(DL2000)的合适配比,改性剂的加入量,及反应时间、反应温度等因素对改性结果的影响。

并对复合改性涂膜进行表征。

结果表明,改性后产品涂膜力学强度、附着力、吸水率、热稳定性和耐酸碱性等指标均有很好的改善。

高明志等[9]采用乳液聚合方法制备了具有核-壳结构的有机硅改性水性聚氨酯-丙烯酸酯复合乳液。

全反射红外光谱及表面光电子能谱分析表明聚氨酯-丙烯酸酯分子链中已经化学键入有机硅链段,并且硅氧烷链段有表面富集的趋势。

另外,随着有机硅含量的增加胶膜的水接触角增大,耐水性提高。

康圆等[10]采用丙酮法合成了有机硅改性WPU(水性聚氨酯)乳液。

结果表明:硅烷偶联剂 (KH-550) 和二羟甲基丙酸(DMPA)的加料方式对水性聚氨酯乳液稳定性影响较大;当 W(DMPA)=3%-5%时,水性聚氨酯乳液的稳定性及其胶膜的耐水性较好。

相关文档
最新文档