最新2016航空发动机典型故障分析

合集下载

航空发动机整机振动典型故障分析

航空发动机整机振动典型故障分析

航空发动机整机振动典型故障分析摘要:为解决航空发动机振动引起的设备故障问题,提升飞机的安全飞行系数。

本文立足实际,对航空发动机整机振动典型故障进行解析,提出相关的处理方法。

关键词:航空发动机;整机振动;典型故障引言在航空燃气涡轮发动机设计、生产环节,整机振动是极为严重的问题之一,很多发动机在研究和生产中都遇到过,必须切实解决,才能保证发动机的正常运行,促进航空发动机领域的发展。

有些发动机在研发阶段,就会遇到整机振动问题的影响,其振动超标的问题比较严重,通常占比为1/4—1/3,对于发动机的调试和运行造成不利的影响;有些发动机在投入使用后,由于振动偏大而产生的安全问题,返修率达5%。

振动发生后,极易导致结构的可靠性、安全性不合格,产生较大的经济损失。

整机振动故障的发生原因比较多,复杂性较高,是综合性因素构成的。

因此,深入分析整机振动的发生规律,总结形成原因,采取合理的有效措施解决整机振动的问题,对于航空发动机的研发和应用有积极作用。

本文主要分析整机振动典型故障,结合实际情况总结出解决措施,希望为发动机稳定运行提供帮助。

1转子热弯曲引发的振动故障在国内外的航空发动机研究机构日常工作中,极为重视转子发热的问题,投入的研究力量比较大。

美国空军涡轮发动机机构发布大纲中指出,从符合飞机的战术方面分析,首先要解决的问题就是热启动问题,这已经成为航空发动机研发和应用的重点,并且将挠区转子的启动问题作为研究和试验的重点。

在某航空发动机研发中,多次出现转子发热产生的振动偏大问题。

其振动的特点就是在启动时振动变得非常强烈,超过规定的振动峰值,有些还会导致启动终止,或者出现气压机转子的损伤,或者叶片出现严重的摩擦,导致结构损坏的问题,如果非常严重的情况下,极易导致转子出现掉角、裂纹的问题。

热启动时,转子热弯曲的问题就会出现在发动机停车后,这是系统工作温度相对较高,叶片—轮盘—转轴封闭机匣内,在冷却的过程中。

外部的气流会持续性进入到发动机内部,因为外部气流的温度比较低,发动机内部温度高,热气流会不断的向上移动,而冷气流则会向下移动。

某型航空发动机常见T45温度异常故障分析

某型航空发动机常见T45温度异常故障分析

某型航空发动机常见 T45温度异常故障分析摘要:某型航空发动机使用中多次出现T45温度异常现象,该现象可能由发动机性能下降、燃油流量控制异常、温度指示异常等多种因素造成,排查难度较大,影响发动机使用。

本文基于航空发动机涡轮工作、T45温度测量与匹配等原理,利用故障树的方法,分析影响发动机T45温度的常见故障部位及表现形式,总结了排故的方法和流程,提高工作效率。

在控制系统故障诊断不准确、不稳定时,T45温度异常问题的排除方法和经验也可作为发动机电子控制器故障诊断的补充,对同类故障的排除有一定的参考价值。

关键词:发动机、电子控制器、T45温度、故障树1.概述燃气涡轮出口温度(T45温度)是航空发动机运行的一个关键热力学参数,用于监控发动机性能,参与发动机状态控制,某型发动机的T45温度测量与指示系统由热电偶、T45匹配盒、电缆、电子控制器构成,发动机在使用过程中多次出现T45温度异常但控制系统未报故或故障告警不及时、不稳定的现象, 后期发现是发动机燃气涡轮叶片热腐蚀或热电偶、匹配盒故障。

本文从航空发动机涡轮工作、T45温度测量与匹配等原理出发,总结排除T45温度异常故障的方法和流程,提高排故效率。

在控制系统故障诊断不准确,不稳定时,应重视T45温度数据变化,异常时查明原因,及时处理,排除故障隐患。

1.T45温度测量原理2.1 热电偶测温原理热电偶是利用两种导体的热电效应制作成的一种传感器,组成热电偶的两种导体称为热电极,测温点称为工作端(热端),另一端为自由端(冷端),利用热端和冷端之间的温度差所产生的热电势的关系可以求出被测处的温度值,如图1所示,当两节点的温度为T和T时,回路中的热电势为: (1)TB式1中的eAB (T)、eAB(T)为节点的分热电势;T、T为两点处的温度;A、B为两种电极材料。

2.2 冷端温度补偿7个打孔节点热电偶直接测量的是热端与冷端的温差,为转化为热端与0℃的实际温差,发动机电子控制器中内置冷端温度补偿装置对热电偶测量值进行实时修正。

航空发动机失效故障分析及预测

航空发动机失效故障分析及预测

航空发动机失效故障分析及预测航空发动机作为航空器的“心脏”,是航空安全的重要组成部分。

然而,随着飞机在使用过程中的不断更新和改善,航空发动机所遇到的挑战也日益增多。

航空发动机失效故障的发生可能导致航班延误、航空器事故等严重后果,因此对于航空发动机失效故障的分析和预测,具有非常重要的意义。

航空发动机常见失效故障的分析航空发动机失效故障通常分为机械故障和电子故障两类。

机械故障主要包括以下情况:1、磨损随着使用时间的增长,航空发动机受到的磨损也会越来越大,因此就有可能出现某些机件的损坏、腐蚀和疲劳等问题。

2、断裂机械零件的过度应力或缺陷,会导致机械零件的断裂。

这种情况对于发动机的正常运行会造成很大的影响。

3、烧蚀高温燃气行经发动机内部的部件,也会导致零部件的烧蚀,当零件表面出现磨损或减轻时,零件替换是失效分析的解决方案。

电子故障主要包括以下情况:1、传感器故障传感器故障是航空发动机电子故障中的主要问题。

由于电子传感器接受燃油消耗、发动机温度等参数的数据,因此一旦发生故障,将会导致发动机的性能下降,从而影响飞行的安全。

2、电子控制单元故障电子控制单元指的是控制发动机性能和燃油消耗的电控系统,一旦出现故障,发动机就无法平稳运行。

航空发动机失效故障的预测航空发动机失效故障的预测需要航空公司在日常维护中进行维护记录的收集,并对各种可能的故障原因进行分析。

有关数据可以通过故障报告、技术文献、机械维修、工程服务和机上数据等不同渠道获悉。

然后,基于数据挖掘和统计分析等方法,对失效故障进行预测,以及对发动机失效故障的解决方案进行研究。

数据分析通过分析故障数据来了解航空发动机失效故障的全局状况,以及发现存在的问题和潜在故障,针对发现的问题进行研究,并优化航空发动机的设计,提高发动机的可靠性和安全性。

同时,通过确定可能导致失效故障的参数,采用各种算法技术,如神经网络、模糊逻辑、支持向量机等,对未来的失效故障进行预测。

统计分析通过对大量数据和信息的处理和分析,实现对失效故障的预测。

172R飞机发动机点火故障分析-航天工程论文-工程论文

172R飞机发动机点火故障分析-航天工程论文-工程论文

172R飞机发动机点火故障分析-航天工程论文-工程论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——在飞行训练中,活塞发动机故障60%左右为点火系统故障。

所以点火系统工作是否正常,对于飞行安全具有十分重要的意义。

下面由学术堂为大家整理出一篇题目为172R飞机发动机点火故障分析的航天工程论文,供大家参考。

原标题:浅析172R飞机点火系统故障摘要:点火系统是航空活塞发动机的重要组成部分。

活塞发动机的启动、运转,需要点火系统提供有序的、适时的、循环的电火花。

所以点火系统的可靠性,直接影响发动机工作性能和可靠性。

在飞行训练中,活塞发动机故障60%左右为点火系统故障。

所以点火系统工作是否正常,对于飞行安全具有十分重要的意义。

关键词:点火系统;故障;方法维护工作中遇到的大多数点火系统故障多为:单磁电机掉转多;转换磁电机不掉转;电嘴不点火或电嘴点火弱;磁电机内部渗油;冲击联轴器不释放或释放力弱;断电器烧蚀故障;高压导线破损等。

排故工作应依据现象,遵循由外到内、由易到难的方法开展工作。

文章主要介绍172R飞机点火系统故障现象和处理方法。

172R使用的是LYCOMING IO-360-L2A型发动机。

发动机点火系统包括磁电机、磁电机点火开关、电嘴、高压导线等。

点火系统的功用是适时向各气缸提供满足点火需要的电火花,确保发动机可靠运转。

1磁电机不点火现象为:发动机无法启动或启动困难,发动机加速性差,最大转数上不去,检查磁电机单磁工作时,发动机停车。

故障原因:点火开关故障;电容器故障;线圈故障;触点间隙设定不正确;磁电机P极接地,冲击联轴器故障,驱动齿轮损坏。

处理措施:(1)使用万用表进行导电性测试,检查磁电机p极是否在磁电机开位接地,视情修理或更换有缺陷的P极。

使用万用表测量磁电机开关通断是否正常,视情修理或更换。

(2)拆下磁电机,冲击联轴器释放时应该听到较大的CLICK声响。

用仪器表来测量电容、线圈是否正常。

航空发动机失效原因分析及预测方法研究

航空发动机失效原因分析及预测方法研究

航空发动机失效原因分析及预测方法研究随着空中交通事故不断增加,对航空发动机的研究得到了更多的关注。

毕竟航空发动机的失效原因是导致空难的主要原因之一。

因此,航空发动机的失效预测成为了科学家追逐的目标。

一、航空发动机失效原因分析航空发动机失效通常会导致飞机跌落。

对于航空发动机的技术攻关,需要科学家探讨失效原因和解决方案。

1. 疲劳裂纹疲劳裂纹是导致航空发动机失效的一种常见原因。

当发动机的金属部件受到循环应力和振动时,强度会不断下降,时间久了会出现裂纹。

这个问题需要科学家针对疲劳裂纹的防治技术进行研究,以防止它的产生。

2. 计算机故障随着科技的发展,现代航空发动机越来越依赖计算机控制系统工作。

因此,计算机故障成为了导致航空发动机失效的另一种原因。

需要科学家从软件、硬件两方面进行深入研究。

3. 人为因素人为因素也是导致航空发动机失效的一个非常重要的因素。

例如,工人粗心大意、操作不当、驾驶员飞行误差等都是可能导致失效的因素。

科学家需要从深层次研究人的心理和行为,并通过完善管理流程来提高操作人员的操作水平。

二、航空发动机失效预测方法研究航空发动机的失效预测技术是一项非常重要的技术。

预测技术可以让飞机在出行前进行检查,确定发动机是否失效,从而保证安全。

1. 数据分析预测技术的第一步是收集和分析相关数据。

数据需要从各种各样的来源收集到,如传感器、运行故障、气象信息等。

科学家需要对获取的数据进行分析,预测出潜在的错误。

2. 机器学习随着人工智能的快速发展,机器学习已经成为了预测技术的主要手段之一。

科学家可以采用监督式、半监督式和无监督式的机器学习技术来对数据进行分析和预测。

3. 物理建模物理建模是通过模拟物理过程来预测未来的技术。

科学家可以通过3D建模或流体力学等模拟软件来建立物理模型,预测航空发动机失败的可能性。

物理建模适合于需要对特定物理环境具有更好的理解的预测问题。

4. 故障诊断故障诊断技术是将已经发生的故障与当前状态进行关联,然后预测未来故障的可能性。

航空发动机典型故障分析

航空发动机典型故障分析

航空发动机典型故障分析目录第1章绪论1.1 发动机概述 (2)1.2 可靠性与故障 (2)1.2.1 可靠性 (2)1.2.2 故障 (2)1.2.3 故障分析与排故方法 (3)第2 章压气机喘振故障分析2.1 概述 (5)2.2 喘振时的现象 (5)2.3 喘振的根本原因 (5)2.4 压气机的防喘措施 (6)第3 章压气机转子叶片故障分析3.1 概述 (9)3.2 压气机转子叶片受环境影响的损伤特征和有关安全准则与标准(9)3.3 压气机转子叶片故障模式及其分析 (10)3.3.1 WP7系列压气机转子叶片现行检查标准﹙含判废标准﹚ (10)3.4 WP7系列报废叶片主要失效模式统计分析 (12)第4 章发动机篦齿盘均压孔裂纹故障分析及预防4.1 概述 (14)4.2 篦齿盘结构与工作状态分析 (14)4.2.1 结构分析 (14)4.2.2 工作状态分析 (14)4.2.2.1 工作温度高 (14)4.2.2.2 工作转速高 (14)4.2.2.3 易产生振动 (14)4.3 裂纹特征与产生原因分析 (15)4.3.1 裂纹特征 (15)4.3.2 裂纹原因分析 (15)4.4 结论 (16)结束语 (17)致谢 (18)文献 (19)第 1 章绪论1.1发动机概述二十世纪以来,特别是第二次世界大战以后,航空和空间技术有了飞跃的发展。

现在,飞机已经成为一种重要的﹑不可缺少的作战武器和运输工具。

飞机的飞行速度﹑高度﹑航程﹑载重量和机动作战的能力,都已达到了相当高的水平。

这些成就的取得,在很大程度上取决于动力装置的发展。

然而,航空发动机属于高速旋转式机械,处于高转速﹑高负荷(高应力)和高温环境下工作的;发动机是飞机的心脏,是体现飞机性能的主要部件。

又由于发动机由许多零组件构成,即本身工作情况和外界环境都十分复杂,使发动机容易出现故障,因此航空发动机属于多发性故障的机械。

经过多年的努力,在航空领域工作的研究人员已经了解和解决了发动机许多故障,然而,一些故障还是无法完全解决的,只能尽量减少故障对飞机的危害。

发动机典型故障的统计分析

发动机典型故障的统计分析
2.4预防措施
2.4.1高速滚子轴承的轻载打滑
(1)减小滚子直径。由于高速运转时,滚子离心力与滚子直径的立方成正比,所以减小滚子直径可显著降低离心力,从而可以减小滚子在非载荷区脱载的可能性。
(2)增加载荷下的滚子数。在大多数滚子轴承中,最大载荷下滚子数约占滚子总数的20%,如施加一定的预载荷,则载荷下的滚子数可增加到60%。一般常采用椭圆滚道、柔性滚子和空心滚子的方法增加受载的滚子数。
1.4滑蹭损伤故障的防治措施
(1)增加拖动力
a.减小轴承的游隙—减小轴承游隙,使滚子在离心力作用下仍能保持与内环滚道的接触,但是,采用游隙的措施会带来其他更严重问题,特别对于处于发动机热端的轴承,应慎用。
b.将保持架定于内环—将保持架定位于内环上,不仅减小了阻力,还增加了拖动力,会减少滑蹭损伤。但是必须提高保持架的加工精度一提高平衡度。
2.1发动机性能故障
●发动机推力小、排气温度高故障
在飞行中,飞机作静升限爬升,飞行高度,飞大Ma数和飞机转弯时,都会使发动机的排气温度进一步升高。而推力小的故障可以用提高发动机排气温度来排除,但是排气温度过高也是故障,由于两者的排除方法是相互矛盾的,因此排气温度高和推力小的故障一般来说是同时存在的。出现此类故障,往往将发动机整机脱下交发动机生产商对Ⅰ级导向器面积进行调节或串换中机匣,故障现象严重的将对压气机进行全面分解,检查所有叶片形状是否超差。
打滑蹭伤
255
224
479
36.93
划伤压坑
95
70
165
12.72
疲劳剥落
1
30
31
2.39
其他
102
136
238
18.35
故障总数
647

航空发动机加力控制系统典型故障分析

航空发动机加力控制系统典型故障分析

航空发动机加力控制系统典型故障分析摘要:航空发动机是航空器系统运行的“心脏”,而加力控制系统为航空发动机相配套的重要构成,其运行的好坏直接关系到航空发动机的运作安全。

本文以某型发动机加力系统为例,首先简要分析了其基本构成,指出了加力燃油调节系统的工作原理,最后围绕加力控制系统“接加力时加力燃烧室未工作”这一典型故障,探讨了解决对策,望能为此方面实践研究提供一些参考。

关键词:航空发动机;加力控制系统;故障加力控制系统是整个航空发动机的重要组成部分,其所起到的主要作用就是对加力进行控制,使其处于正常工作状态,以此促进发动机推力的增大,促进飞机飞行性能的提高。

现阶段,尽管世界各国均在投入大量的人、财、物力,来强化自身在航空发动机先进应用技术、新型材料等领域水平的提升,使航空发动机加力控制系统逐步实现一体化、小型化、数字电子化,促进其安全性能的大幅提高,但在实际使用过程中,其加力控制系统仍会有故障情况发生,这不仅会对飞行安全造成严重影响,而且还易带来沉重的损失。

所以,对其故障产生的原因进行深入研究,制定相应的解决措施,尤为重要且必要。

本文围绕某型航空发动机,就其加力控制系统的基本工作原理进行分析,研究其典型故障及排除对策,现探讨如下。

1.某型发动机加力系统的基本构成针对某型发动机加力系统而言,其实为一种较新型(机电结合)的调节控制系统,主要由两部分构成,其一为加力燃油调节系统,其二是电子综合调节器。

(1)电子综合调节器。

其乃是某型发动机电子-液压机械控制系统当中的基础构成,主要作用就是对发动机的各项参数进行调节,将指令发送给发动机控制附件等。

需要指出的是,当发动机控制附件联合于综合调节器时,可以较好的控制发动机加力的整个接通过程。

(2)加力燃油调节系统。

其主要作用就是依据油门杆相对应的位置信号,将加力燃烧室的供油进行接通、切断等操作,而且还能依据发动机进口空气温度以及压气机出口的空气压力,对加力供油量进行适当调节;另外,依据发动机综合调节器指令,确保发动机的加力能够从最小加力状态进入;还需强调的是,其还能依据座舱电信号情况,将加力应急切断。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第 1章绪论1.1 发动机概述〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃21.2 可靠性与故障〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃21.2.1 可靠性〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃21.2.2 故障〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃21.2.3 故障分析与排故方法〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃3第 2 章压气机喘振故障分析2.1 概述〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃52.2 喘振时的现象〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃52.3 喘振的根本原因〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃52.4 压气机的防喘措施〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃6第 3 章压气机转子叶片故障分析3.1 概述〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃93.2 压气机转子叶片受环境影响的损伤特征和有关安全准则与标准〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃93.3 压气机转子叶片故障模式及其分析〃〃〃〃〃〃〃〃〃〃〃〃〃103.3.1 WP7系列压气机转子叶片现行检查标准﹙含判废标准﹚〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃103.4 WP7系列报废叶片主要失效模式统计分析〃〃〃〃〃12第 4 章发动机篦齿盘均压孔裂纹故障分析及预防4.1 概述〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃144.2 篦齿盘结构与工作状态分析〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃144.2.1 结构分析〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃144.2.2 工作状态分析〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃144.2.2.1 工作温度高〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃144.2.2.2 工作转速高〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃144.2.2.3 易产生振动〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃144.3 裂纹特征与产生原因分析〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃154.3.1 裂纹特征〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃154.3.2 裂纹原因分析〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃154.4 结论〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃16结束语〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃17致谢〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃18文献〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃19第 1 章绪论1.1发动机概述二十世纪以来,特别是第二次世界大战以后,航空和空间技术有了飞跃的发展。

现在,飞机已经成为一种重要的﹑不可缺少的作战武器和运输工具。

飞机的飞行速度﹑高度﹑航程﹑载重量和机动作战的能力,都已达到了相当高的水平。

这些成就的取得,在很大程度上取决于动力装臵的发展。

然而,航空发动机属于高速旋转式机械,处于高转速﹑高负荷(高应力)和高温环境下工作的;发动机是飞机的心脏,是体现飞机性能的主要部件。

又由于发动机由许多零组件构成,即本身工作情况和外界环境都十分复杂,使发动机容易出现故障,因此航空发动机属于多发性故障的机械。

经过多年的努力,在航空领域工作的研究人员已经了解和解决了发动机许多故障,然而,一些故障还是无法完全解决的,只能尽量减少故障对飞机的危害。

本论文列举出发动机几种典型故障,并且尽可能的根据科学研究数据来研究分析这几种故障,给出科学的预防故障和排故方法。

1.2可靠性与故障1.2.1可靠性产品在规定的条件下和规定的时间内,完成规定功能的能力为产品的可靠性。

所谓产品,是指任何元器件、零部件、组件、设备、分系统或系统。

规定条件主要指环境条件和使用条件,如产品在工作中所承受的应力水平、温度、振动和腐蚀环境等。

规定时间是指广义时间,除产品的工作小时外,还可指其循环次数等。

1.2.2故障产品或产品的一部分不能或将不能完成预定功能的事件或状态。

对某些产品如电子元器件、弹药等称失效。

产品的故障:a. 在规定的条件下,不能完成其规定的功能;b. 在规定的条件下,一个或几个性能参数不能保持在规定的范围内;c. 在规定的应力范围内工作时,发生产品的机械零部件、结构件或元器件的破裂、断裂、卡死等损坏状态,从而导致产品不能满足其规定功能。

故障率:指工作到时刻t尚未发生故障产品,在该时刻后的单位时间内发生故障的概率。

为产品可靠性的一种基本参数。

故障率可分为:均故障率和瞬时故障率两种,其定义分别为:⑴平均故障率是在规定的条件下和规定的时间内,产品的故障总数与寿命单位总数之比,用λ表示。

λ=∑=r i i t r1﹙1∕寿命单位﹡﹚式中:r — 故障总数i t — 第i 个产品发生故障前的寿命单位⑵时故障率是在规定的条件下,工作到某时刻尚未发生故障的产品,在该时刻后单位时间内发生故障的概率。

用()t λ=()()t t s t r d N d 式中:()t s N —到t 时刻尚未发生故障的产品数 ()t r d —t 时刻后t d 时间内故障的产品数故障类别:从总体结构上将故障分为:性能故障、结构强度故障和附件系统故障。

① 性能故障:多表现在发动机推力下降、转速摆动、耗油率过高、排气温度高、空中熄火和放炮等现象。

其故障比例约占航空发动机总故障的10℅—20℅。

性能故障多表现在发动机研制的早期,易于在厂内试车或出厂前发现和排除。

有时发动机老化也出现性能故障,属于寿命后期的耗损故障。

② 结构强度故障:结构强度故障反映的方面极广,类型众多,且往往后果严重。

大体上有强度不足而破坏与损伤,高周疲劳,低周疲劳,热疲劳损伤,蠕变与疲劳交互作用损伤现象等。

这些故障构成发动机主要故障事件,约占发动机总故障的60﹪~80﹪,故障比例相当高,对发动机的安全构成主要威胁。

③ 附件系统故障:由于组成附件系统的零、组件形式比较多,其中有电子元器件、机械元器件、外购成品与器件等。

故其故障现象,将依其各自特点进行分析。

1.2.3 故障分析与排故方法。

发动机故障分析与排故方法都有其一定规律和内在联系,通常可采用以下的步骤和方法,如图1-1所示。

图1-1 故障分析和排故方法①故障史调研。

零组件发生故障,首先要对该零组件原始设计情况进行查阅、调查研究。

查看是否存在有不合理的设计现象,是否存在潜在缺陷。

查看其使用状态和使用环境等,同时了解该零件的故障历史、发生频率等内容。

②故障现场调研。

对故障现场进行周密调研、记录并研究其故障现象、使用条件与使用环境。

除对故障件进行详细现场现象记录外,应保护好故障件及其相关件。

还应对操作人员﹙驾驶员﹚进行调查,记载故障发生前后的情况,了解人为因素的影响性质。

③材质与金相分析。

对故障的材质进行查对,检查该零件生产批次、力学特性、加工质量和零件的储存情况等。

故障件的金相分析是十分重要的,通过金相分析可以决定该故障属何种模式和性质,如强度不足断裂,或高、低循环疲劳断裂等。

④故障再现试验分析。

零件故障除对偶然性故障不作故障再现分析外,为进行故障机理研究,对重复出现的故障必须进行故障再现试验。

⑤故障机理理论分析。

故障机理的理论分析是故障分析与排良好的效果。

⑥故障机理的试验研究。

故障机理的试验研究与故障机理的理论研究是故障分析中两项并行的重要工作。

故障机理的试验研究是以一定的试验方法,研究故障发生的原因、条件和现象。

与理论研究并行以确定故障性质。

故障机理试验研究可对故障件单独进行等效试验,或在专门的试验装臵上进行模拟、等效试验,也可在发动机整机地面试车状态进行等效模拟与真实环境下的试验。

这是一项比较复杂,但很有实效的试验工作。

⑦排故措施与隔离措施。

故障排除措施与隔离措施是故障分析的后期工作,当故障原因得以解释或找到后,依其机理和现象,采取相应排故措施。

排故措施依故障机理不同而异。

例如对强度不足引起的故障,只需改变零件结构设计、可满足排故要求。

如零件属共振疲劳,则可改变零件的固有频率,即从调频措施的内因或改变激振频率的外因两方面着手,目的是要避开共振状态。

⑧改善后的实施考核。

经故障分析提出排故措施后,还需装机进行实地考核,或进行发动机的飞行考核。

经过排故的零件,一般情况下故障不会再出现,其可靠性提高。

但有些不恰当的排故措施反而会使其可靠性降低,这样就得重新研究进行改进。

所以说排故过程是产品可靠性增长的试验过程。

⑨效果分析与使用信息反馈。

经排故后的零件投入使用考核,要及时分析其使用效果,好则使用,否则还需要进一步改进。

故障分析与排故中的所有反馈资料都十分宝贵,为该项产品或同类产品积累了经验和教训,可供新产品设计、老产品改进参考。

航空发动机零组件的故障分析与排故是一项系统工程,有着严密的科学性、现实性、实用性和经济性,是可靠性、安全性分析中的重要环节之一。

第二章压气机喘振故障分析2.1概述喘振是气流沿压气机轴线方向发生的低频率、高振幅的振荡现象。

这种低频率高振幅的气流振荡是一种很大的激振力来源, 它会导致发动机机件的强烈机械振动和热端超温, 并在很短的时间内造成机件的严重损坏, 所以在任何状态下都不允许压气机进入喘振区工作。

2.2喘振时的现象发动机的声音由尖哨转变为低沉; 发动机的振动加大; 压气机出口总压和流量大幅度的波动; 转速不稳定, 推力突然下降并且有大幅度的波动; 发动机的排气温度升高, 造成超温; 严重时会发生放炮, 气流中断而发生熄火停车。

因此, 一旦发生上述现象, 必须立即采取措施, 使压气机退出喘振状态。

反推力装臵使用不当, 会造成超温; 当飞机滑跑速度很低时, 反推力装臵仍在工作,则会造成排出的燃气又重新被吸入发动机, 从而会造成喘振。

喘震是表象,大多数的情况可以说成因是气流分离,更确切的说是附面层分离(boundary layer separation ).诱发附面层分离的原因,在进气道喘振中,最重要的原因是攻角太大,导致气流在进气道的唇部发生分离,为避免这种分离现象发生,大家可以看到大型民用涡扇发动机的进气道表面内衬上有凹坑,就是为了把LAMINA 附面层转化为Turbulence 附面层,让附面层能够更常时间的粘在内壁上。

相关文档
最新文档