ABAQUS时程分析法计算地震反应的简单实例

合集下载

ABAQUS地震波资料

ABAQUS地震波资料

提供常用的P50%10(50年超越概率10%),一般的工程设计地震常用这个,时间增量0.02秒。

*Amplitude, name=HAMPX0.02, 0.014, 0.04, 0.014, 0.06, 0.014, 0.08, 0.0650.1, 0.014, 0.12, 0.016, 0.14, 0.219, 0.16, 0.130.18, 0.082, 0.2, 0.3, 0.22, 0.583, 0.24, 0.1290.26, -0.263, 0.28, -0.948, 0.3, -0.105, 0.32, -0.5240.34, -0.952, 0.36, 0.088, 0.38, 0.843, 0.4, 1.1520.42, 1.716, 0.44, 2.523, 0.46, 0.07, 0.48, -1.690.5, -0.708, 0.52, -1.42, 0.54, -1.807, 0.56, -1.0910.58, -1.674, 0.6, -2.547, 0.62, -1.639, 0.64, -2.5140.66, -5.463, 0.68, -5.08, 0.7, -5.128, 0.72, -6.9550.74, -7.118, 0.76, -5.805, 0.78, -3.695, 0.8, -1.8710.82, 3.558, 0.84, 6.373, 0.86, 4.406, 0.88, 5.7690.9, 10.47, 0.92, 11.534, 0.94, 10.337, 0.96, 12.440.98, 6.454, 1., 8.596, 1.02, 5.458,1.04, 6.4031.06, 0.05, 1.08, 1.007, 1.1, -5.859, 1.12, -9.4481.14, -6.851, 1.16, -8.897, 1.18, 12.645, 1.2, 16.451.22, 13.529, 1.24, 12.146, 1.26, 16.093, 1.28, 10.121.3, -9.287, 1.32, 24.022, 1.34, 22.118, 1.36, 21.6571.38, 17.831, 1.4, -1.39, 1.42, 10.005, 1.44, 8.1741.46, 4.502, 1.48, -2.972, 1.5, -7.108, 1.52, -8.635为方便大家使用,已经将其转化为标准的ABAQUS 输入格式,数据文件是加速度,加速度单位是cm,请在加界中按0.01缩放!在INP中加入以下字段:*AMPLITUDE, NAME=HAMPx, INPUT=X.inp*AMPLITUDE, NAME=VAMPy, INPUT=Y.inp*AMPLITUDE, NAME=VAMP, INPUT=Z.inp----------------------------------------------------------------------------------------------*Boundary, op=NEW, amplitude=HAMPx, type=ACCELERATION“定义的约束集合名”, 1, 1,0.01(红字)场地土层反应计算采用的输入地震波是以地震危险性分析结果得到的基岩加速度峰值和基岩加速度反应谱 基岩地震相关反应谱作为目标谱,用人工数值模拟方法合成得到的,并以此作为场地地震反应计算的输入地震波。

ABAQUS时程分析法计算地震反应的简单实例

ABAQUS时程分析法计算地震反应的简单实例

ABAQUS时程分析法计算地震反应的简单实例地震反应分析是工程结构设计中非常重要的一项内容,ABAQUS是一款常用的有限元分析软件,可以用于进行地震反应分析。

下面将通过一个简单的实例来介绍ABAQUS中的时程分析法计算地震反应的方法。

假设我们要计算一个两层楼的简化结构在地震作用下的反应。

该结构由两根弹性细杆组成,分别代表两层楼板的水平支撑,两层楼板分别由质点模拟。

结构的初始状态为静力平衡,无任何位移和速度,没有外力作用。

我们将利用ABAQUS中的时程分析法来计算结构在地震作用下的运动。

1.组建模型首先,我们需要在ABAQUS中组建结构的有限元模型。

在ABAQUS中,我们可以使用CONNECTION命令来定义模型的节点和单元。

在本例中,我们定义了两个节点表示两层楼板的连接处,再使用ELEMENT命令定义两根弹性细杆,将两个节点连接起来。

这样就创建了一个简化的两层楼模型。

2.定义材料和截面属性在ABAQUS中,我们还需要定义模型的材料和截面属性。

在本例中,楼板部分可以使用线性弹性材料进行模拟,我们可以使用ELASTIC命令定义材料的弹性模量和泊松比。

而弹性细杆可以使用线性弹性的截面,我们可以使用SECTION命令定义截面的几何特性和材料特性。

3.定义边界条件为了模拟地震作用下的结构反应,我们需要定义结构的边界条件。

在本例中,我们希望模型底部节点固定,即节点的位移和旋转均为零。

我们可以使用BOUNDARY命令来定义节点的边界条件。

4.定义地震荷载在ABAQUS中,我们可以使用ACCELERATION命令来定义地震的加速度时程。

地震时程是描述地震波动过程的函数,通常由科学家通过实测数据进行获取。

在本例中,假设我们已经获取到地震波动的加速度时程,并将其转换为ABAQUS可用的格式。

5.设置时程分析参数在进行时程分析之前,我们还需要设置模型的时程分析参数。

在ABAQUS中,我们可以使用STEP命令设置分析的步数、步长和加载参数。

ABAQUS时程分析法计算地震反应的简单实例

ABAQUS时程分析法计算地震反应的简单实例

ABAQUS时程分析法计算地震反应的简单实例ABAQUS时程分析法计算地震反应的简单实例(在原反应谱模型上修改)问题描述:悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2、1e11Pa,泊松比0、3,所有振型的阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg的集中质量。

反应谱按7度多遇地震,取地震影响系数为0、08,第一组,III类场地,卓越周期Tg=0、45s。

图1 计算对象第一部分:反应谱法几点说明:λ本例建模过程使用CAE;λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱;λ *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。

λ ABAQUS的反应谱法计算过程以及后处理要比ANSYS方便的多。

操作过程为:(1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。

continue(3) Create lines,在分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800mechanical-->>elasticity-->>elastic,young‘s modulus:2、1e11,poisson’s ratio:0、3、(5) Create section,name:Section-1,category:beam,type:beam,Continuecreate profile, name:Profile-1, shape:I,按图1尺寸输入界面尺寸,ok。

基于ABAQUS的框架结构抗震分析

基于ABAQUS的框架结构抗震分析

基于ABAQUS的框架结构抗震分析朱秀亭;于广杰;杨晨辉【摘要】介绍了应用ABAQUS对框架结构进行时程分析法和反应谱分析法的具体的建模及分析要点,通过对框架结构的应力云图、位移云图和加速度云图的分析,以及后处理的数据分析结果可以看出,运用ABAQUS分析抗震分析的正确性及可靠性都是可以保证的,为研究人员运用ABAQUS进行更为复杂的分线性分析工作奠定了基础.【期刊名称】《山西建筑》【年(卷),期】2013(039)011【总页数】3页(P36-38)【关键词】时程分析法;地震波;反应谱【作者】朱秀亭;于广杰;杨晨辉【作者单位】扬中市市政园林工程处,江苏扬中212200【正文语种】中文【中图分类】TU375.40 引言目前ABAQUS由于其强大的计算器功能已成为极为流行的有限元分析工具,现已广泛的应用于机械、化工、土木、航空及船舶等各个工程和科研领域[1-3]。

地震由于对人们的生命财产造成了极其严重的破坏,对其的研究分析已成为重要的课题[4-7]。

本文将介绍用ABAQUS进行建筑抗震分析的方法,以作为从事建筑工程设计及学习人员的学习参考。

1 抗震时程分析时程分析法是对结构动力方程直接进行逐步积分求解的一种动力分析方法。

时程分析法将地震波按时段进行数值化后,输入结构体系的振动微分方程,采用直接积分法计算出结构在整个强震时域中的振动状态全过程,给出各个时刻各个杆件的内力和变形。

1.1 数值分析模型本文的模型为一榀钢结构框架结构,框架柱子为300 mm×300 mm的矩形钢柱,框架梁为工字形钢梁,模型的具体尺寸如图1所示。

钢柱采用二级钢HRB335,弹性模量为Es=2.1×105MPa,钢梁采用一级钢HPB300,弹性模量为Es=2.0×105MPa。

模型采用Beam单元,并进行B31单元离散。

ABAQUS进行时程分析时选择DYNAMIC IMLICITY进行分析。

具体的数值分析模型如图2所示。

ABAQUS钢框架结构抗震仿真分析

ABAQUS钢框架结构抗震仿真分析

一、引言时程分析法是对结构动力方程直接进行逐步积分求解的一种动力分析方法。

时程分析法将地震波按时段进行数值化后,输入结构体系的振动微分方程,采用直接积分法计算出结构在整个强震时域中的振动状态全过程,给出各个时刻各个杆件的内力和变形。

现已成为多数国家抗震设计规范或规程的分析方法之一。

二、有限元软件ABAQU简S介ABAQUS 是美国ABAQUS公司(原名HKS公司.即Hibbitt ,Karlsson &Sorensen,INC.2005 年被法国达索公司收购,2007 年公司更名为SIMULIA)。

ABAQUS已成为国际上最先进的大型通用有限元力学分析软件之一。

ABAQUS是一套功能强大的进行工程模拟的有限元软件。

其解决问题的范围从相对简单的线性分析到许多复杂的非线性问题。

ABAQUS拥有CAE工业领域最为广泛的材料模型,它可以模拟绝大部分工程材料的线形和非线形行为,可以进行结构的静态和动态分析,如应力、变形、振动、热传导以及对流等。

也可以模拟广泛的材料性能,如金属、橡胶、塑料、弹性泡沫等,而且任何一种材料都可以和任何一种单元或复合材料的层一起用于任何合适的分析类型。

三、模型建立与求解1、PartCreate Part :Name:Ban,3D,Deformable ,Shell ,Planar ,输入坐标创建一个18X9m的壳部件,作为混凝土楼板部件;Create Part :Name:Zhu,3D,Deformable,Wire ,Planar ,输入坐标创建一个长3m线部件,作为柱部件;Create Part :Name:Liang ,3D,Deformable ,Wire ,Planar ,输入坐标创建一个长6X3m,宽4.5X2m的线网部件,作为梁网部件;2、SectionCreate Material :Name:steel ,General ,Density 7800 ;Mechanical ,Elasticity ,Young’s Modulus 2.1e11 ,Poisson’Ratio 0.3 ;Create Material :Name:concrete ,General ,Density 2500;Mechanical ,Elasticity ,Young’s Modulus 3e10 ,Poisson ’Ratio 0.3 。

ABAQUS时程分析实例

ABAQUS时程分析实例

ABAQUS时程分析实例ABAQUS是一款由达索系统公司(Dassault Systemes)开发的有限元分析软件,广泛应用于工程领域,可以进行静力学、动力学、热力学等各种类型的分析。

其中的时程分析是ABAQUS的一项重要功能,用于研究结构在时间上的响应和行为变化。

一个常见的时程分析实例是地震响应分析。

地震是自然灾害中最具破坏性的之一,对于建筑结构的安全性和可靠性来说非常重要。

通过进行地震时程分析,可以模拟结构在地震荷载下的受力情况,评估结构的抗震性能。

下面以一座建筑物的地震响应分析为例,介绍ABAQUS的时程分析步骤和相关参数设置。

首先,需要准备建筑物的有限元模型。

这一步通常包括进行几何建模、网格划分和材料特性设置等。

建筑物可以简化为一个二维平面模型,包括梁柱和板壳等。

根据实际情况,可以选择合适的元素类型和网格划分密度。

接下来,需要定义地震荷载。

地震荷载通常由地震波动力时程来表示,可以从相关地震研究机构获取或根据实际地震条件进行制定。

ABAQUS可以通过导入地震波时程文件的方式定义地震荷载。

然后,需要设置材料特性和边界条件。

材料特性包括弹性模量、泊松比、密度等,根据实际材料性质进行设置。

边界条件包括固定支撑、加载方式等,保证模型在分析过程中的力学平衡和合理约束。

接下来,设置分析步。

时程分析通常包括两个分析步:静载分析和响应谱分析。

静载分析用于确定结构在地震荷载之前的初始受力状态,响应谱分析用于模拟地震荷载作用下结构的动态响应。

在静载分析中,可以使用预加载的方法初始化结构;在响应谱分析中,需要定义谱函数和动力增益系数等参数。

最后,进行求解和后处理。

求解时程分析问题时,ABAQUS将根据定义的荷载和边界条件,对结构进行时间步积分,求解各个时间步的平衡方程。

求解完成后,可以通过ABAQUS提供的后处理功能,进行结果的可视化和分析,如位移云图、应力云图等。

总之,ABAQUS的时程分析功能可以用于研究结构在时间上的响应和行为变化。

ABAQUS时程分析法计算地震反应的简单实例

ABAQUS时程分析法计算地震反应的简单实例

时程分析法计算地震反应的简单实例时程分析法计算地震反应的简单实例(在原反应谱模型上修改)问题描述:悬臂柱高12m,工字型截面(图1),密度78003,2.1e11,泊松比0.3,所有振型的阻尼比为2%,在3m高处有一集中质量160,在6m、9m、12m处分别有120的集中质量。

反应谱按7度多遇地震,取地震影响系数为0.08,第一组,类场地,卓越周期0.45s。

图1 计算对象第一部分:反应谱法几点说明:本例建模过程使用;添加反应谱必须在中加关键词实现,不支持反应谱;*不可以在中添加,不支持此关键词读入。

的反应谱法计算过程以及后处理要比方便的多。

操作过程为:(1)打开,点击。

(2)进入模块,点击,命名为,3D、、。

(3),在分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入模块,,:,>>,:7800>>>>,‘s :2.1e11,’s :0.3.(5),:1,:,:,, : 1, ,按图1尺寸输入界面尺寸,。

在选择I,选择。

(6),选择全部,,弹出的对话框选择:1,。

(7),选择全部,默认值确定。

(8) >> ,在弹出的对话框里勾选,,以可视化梁截面形状。

(9)添加集中质量,>>>>,:1,:,,选择(0,3)位置点,:160,。

,:2,:,,选择0,6;0,9;0,12位置点(按多选),,:120,,。

(10) >> ,选(),。

(11) >> ,:1,选,在选项卡中,选择频率提取方法,本例选用法,,选,输入10。

再,,:2,选,在选项卡中,选择单向,选择()法,:(反应谱的,后面再中添加),方向余弦(0,0,1),:1.进入选项卡,阻尼使用直接模态(),勾选,:1,:8,:0.02。

(12)进入模块,>> ,:,选择,选择,选择,选择0,0点,,勾选u13所有6个自由度。

[土木] 在ABAQUS中对框架结构施加地震波(对初学者普及,同时向大虾们求教)

[土木] 在ABAQUS中对框架结构施加地震波(对初学者普及,同时向大虾们求教)

[土木]在ABAQUS中对框架结构施加地震波(对初学者普及,同时向大虾们求教)初学ABAQUS没多久,由于课程需要,想用实体单元建了一个五层的框架结构,要对其施加地震波。

但是我只学了石老师《实例》的前面部分,只知道些比较基本的操作之类的,于是上网求助于论坛。

在找完很多帖子后,建模并计算,基本算是成功的。

所以首先是要衷心感谢各位在论坛上指导了我的楼主及他们的帖子们。

不过感觉网上各位大侠可能都没体会到民间疾苦,只提了个大概,我们自己得总结半天。

所以在此详细点写下自己查到的方法,回报下论坛上的各位,给其他一些初学的人一些帮助,也达到交流学习的目的。

但同时还有许多自己不知其所以然的,想要请教各位大侠(红色字体是引用别人说的,蓝色字体是我的疑问,望大家讨论或帮忙解答)。

在网上查了些方法:module选load,在tools-----amplitude-----creat默认的continue在Edit Amplitude里面输入时间和加速度,点OK。

点creat boundary condition,出现对话框creat boundary condition,选择acceleration/angular acceleration,continue---选择要施加的边界---done----出现对话框edit bondary condition对话框,在amplitude里选择你所定义的时间和加速度。

点ok就完工了。

这是在CAE里输入地震波的方式,我用的方法是直接在inp文件里加地震波的。

首先在CAE里建好模型,定义两个分析步。

第一个分析步是加自重,采用线性加载的方式。

(a)加载方式:ABAQUS在施加Gravity时,默认为Instantaneous(瞬时加载),如果把结构自重以瞬间加载方式加到结构上,相当于对结构施加了一个脉冲荷载,会引起结构在竖向的振动,在不考虑结构阻尼的情况,这种振动会一直持续下去。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ABAQUS时程分析法计算地震反应的简单实例ABAQUS时程分析法计算地震反应的简单实例(在原反应谱模型上修改)问题描述:悬臂柱高12m,工字型截面(图1),密度7800kg/m3,EX=2.1e11Pa,泊松比0.3,所有振型的阻尼比为2%,在3m高处有一集中质量160kg,在6m、9m、12m处分别有120kg 的集中质量。

反应谱按7度多遇地震,取地震影响系数为0.08,第一组,III类场地,卓越周期Tg=0.45s。

图1 计算对象第一部分:反应谱法几点说明:λ本例建模过程使用CAE;λ添加反应谱必须在inp中加关键词实现,CAE不支持反应谱;λ *Spectrum不可以在keyword editor中添加,keyword editor不支持此关键词读入。

λ ABAQUS的反应谱法计算过程以及后处理要比ANSYS方便的多。

操作过程为:(1)打开ABAQUS/CAE,点击create model database。

(2)进入Part模块,点击create part,命名为column,3D、deformation、wire。

continue(3)Create lines,在分别输入0,0回车;0,3回车;0,6回车;0,9回车;0,12回车。

(4)进入property模块,create material,name:steel,general-->>density,mass density:7800mechanical-->>elasticity-->>elastic,young‘s modulus:2.1e11,poisson’s ratio:0.3.(5)Create section,name:Section-1,category:beam,type:beam,Continuecreate profile, name:Profile-1, shape:I,按图1尺寸输入界面尺寸,ok。

在profile name选择I,material name 选择steel。

Ok(6)Assign section,选择全部,done,弹出的对话框选择section:Section-1,ok。

(7)Assign beam orientation,选择全部,默认值确定。

(8)View-->>part display options,在弹出的对话框里勾选,render beam profiles,以可视化梁截面形状。

(9)添加集中质量,Special-->>inertia-->>create,name:mass1,type:point mass/inertia,continue,选择(0,3)位置点done,mass:160,ok。

create,name:mass2,type:point mass/inertia,continue,选择0,6;0,9;0,12位置点(按shift多选),done,mass:120,ok,dismiss。

(10)Assembly-->>instance part,instance type选dependent(mesh on part),ok。

(11)Step-->>create step,name:step-1,procedure type选freqency,continue在basic选项卡中,eigensolver选择频率提取方法,本例选用lanczos法,number of eigenvalues request,选value,输入10.ok。

再create step,create step,name:step-2,procedure type选response spectrum,continue在basic选项卡中,excitations选择单向single direction,sumations选择square root of the sum of squares(SRSS)法,use response spectrum:sp(反应谱的name,后面再inp中添加),方向余弦(0,0,1),scale factor:1.进入damping选项卡,阻尼使用直接模态(direct modal),勾选direct damping data,start mode:1,end mode:8,critical damping fraction:0.02.ok。

(12)进入load模块,Load-->>create boundary condition,name:fixed,step选择initial,category选择mechanical,types选择displacement/ rotation,continue选择0,0点,done,勾选u1~ur3所有6个自由度。

Ok。

(13)进入mesh模块,object选择part,点seed edge by number,选择所有杆,done,输入3,done点assign element type,选择全部杆,done,默认B31,ok。

点mesh part,yes。

(14)进入job模块,name:demo-spc,source:model,continue,默认,ok。

进入job manager,点击write input,在工作目录生成demo-spc.inp文件。

(15)进入ABAQUS工作目录,使用UltraEdit软件(或其他类似软件)打开demo-spc.inp,*Boundary关键词的后面加如下根据问题叙述确定的反应谱:*Spectrum,type=acceleration,name=sp0.1543,0.167,00.1915,0.25,00.2102,0.333,00.2241,0.444,00.25,0.5,00.3295,0.667,00.4843,1,00.5987,1.25,00.7868,1.667,01.0342,2.222,01.0342,10,00.3528,10000,0第一列为加速度,第二列为频率,第三列为阻尼比。

图2保存。

(16)进入job模块,create job,name:spc,source选择input file,input file select:工作目录下的demo-spc.inp,continue默认,ok,进入job manager,选择spc,submit,计算成功!Frequency must be increasing continuously in a spectrum definition(17)点击results进入后处理模块,可以看到最大位移为3.159cm,这与陆新征博士讲解的ansys结果3.1611cm基本一致。

可以查看工作目录下的spc.dat文件查看详细的频率和模态分析结果。

第二部分:时程分析(1)进入step模块,删除原step1、step2。

建立step1(static general),用于施加重力(2)将step1结果作为动态分析的初始状态,time period 设置为1e-10(很短时间)。

建立step2(dynamic implicit),进行动力时程分析time period 设置为20(施加的加速度记录共20s,间隔0.02s),type:automatic,最大增量数量设置为2000步,将初始时间增量设置为0.02,最小增量设置为1e-15,最大增量设置为0.02,half-step residual tolerance:100(控制automatic求解精度的值,在地震分析中应该设置多大为好?还没弄清楚!请大家赐教!)。

另外,将非线性开关打开:在Step Manager对话框中点击Nlgeom(3)将模型顶端节点设置为set-1:tools-->>set-->>create(在tools中设置,用于观察顶端节点的反应情况),同样的方法,底端节点设置为set-2在output中设置需要输出结果,在edit history output request 将domain改为set,选择set1,在displacement里面选择U。

output-->> history output request-->>manager-->>editCreat H-Output-2,选择set-2,同上(3)进入property模块,material editor-->>edit-->>mechanical-->>damping在材料中补充damping,使用瑞利阻尼,质量系数alpha为0.15,刚度系数beta为0.01。

(3)进入load模块,boundary condition manager,将fix在step2的propagated改为inactive(点击deactivate)create一个新的边界条件(在step2),取消z向位移约束(以在该方向施加加速度)再create一个边界条件(在step2),type为acceleration/ angular acceleration,continue选择基底节点,勾选A1,输入1(加速度记录单位m/s^2),在amplitude后点create,name:Amp-1,type:tabular,continuetime span:total time从excel文件ac5复制时间和加速度至date数据栏中(加速度时程按规范将最大值调整为0.35m/s^2)再amplitude下拉栏中选Amo-1,ok。

Dimiss(4)进入job模块,Create job,submit。

点击result(5) result->history output—>Special Displacement :U1 at Node 1 in NSET SET—2 和U1 at Node 5 in NSET SET—1(同时按住SHIFT键可同时选择)—>plot(6)点击左“XY Data”前的加号出现,对_temp_1,_temp_3分别单击右键,点击edit,可将时程数据导出到excel文件中,利用excel 计算功能,算出相对位移(求差),再利用excel做出相对位移的时程曲线。

注:原例中时程曲线如下本算法得到的曲线如下图。

相关文档
最新文档