原子物理学简史和大事年表格

合集下载

物理学大事年表

物理学大事年表

1799年,戴维(H.Davy,1778—1829)做真空中的摩擦实验, 以证明热是物体微粒的振动所致。 1800年,伏打发明伏打电堆。赫谢尔(W.Herschel,1788— 1822)从太阳光谱的辐射热效应发现红外线。 1801年,里特尔(J.W.Ritter,1776—1810)从太阳光谱的化 学作用,发现紫线。杨(T.Young,1773—1829)用干涉法测光波 波长,提出光波干涉原理。 1802年,沃拉斯顿(W.H.Wollaston,1766—1828)发现太阳 光谱中有暗线。 1808年,马吕斯(E.J.Malus,1775—1812)发现光的偏振现 象。 1811年,布儒斯特(D.Brewster,1781—1868)发现偏振光的 布儒斯特定律。 1815年,夫琅和费(J.V.Fraunhofer,1787—1826)开始5年,菲涅耳(A.J.Fresnel,1788—1827)以杨氏干涉实验 原理补充惠更斯原理,形成惠更斯——菲涅耳原理,圆满地 解释了光的直线传播和光的衍射问题。 1819年,杜隆(P.1.Dulong,1785—1838)与珀替 (A.T.Petit,1791—1820)发现克原子固体比热是一常数,约为6 卡/度· 克原子,称杜隆· 珀替定律。 1820年,奥斯特(H.C.Oersted,1771—1851)发现导线通电 产生磁效应。毕奥(J.B.Biot,1774—1862)和沙伐 (F.Savart,1791—1841)由实验归纳出电流元的磁场定律。安培 (A.M.Ampè re,1775—1836)由实验发现电流之间的相互作用力, 1822年进一步研究电流之间的相互作用,提出安培作用力定 律。 1821年,塞贝克(T.J.Seebeck,1770—1831)发现温差电效应 (塞贝克效应)。菲涅耳发表光的横波理论。夫琅和费发明光栅。 傅里叶(J.B.J.Fourier,1768—1830)的《热的分析理论》出版, 详细研究了热在媒质中的传播问题。

原子物理学 第一章原子的基本状况

原子物理学 第一章原子的基本状况
实际上是高速运动的He++离子(1908,他还发现了用粒 子打在荧光屏上,通过对发光次数的计数来确定粒子的数 目。
卢瑟福1871年8月30日生于新 西兰的纳尔逊,毕业于新西兰 大学和剑桥大学。 1898年到加拿大任马克歧尔 大学物理学教授,达9年之久, 这期间他在放射性方面的研究, 贡献极多。 1907年,任曼彻斯特大学物 理学教授。1908年因对放射 化学的研究荣获诺贝尔化学奖。 1919年任剑桥大学教授,并 任卡文迪许实验室主任。 1931年英王授予他勋爵的桂 冠。1937年10月19日逝世。
的偏转。
2Ze2 2R
p Ft 40R2 v
p P
max
p p
2Ze2
4 0 R
/
1 m v2 2
+Ze
F
2Z 1.44fm MeV 0.1nmEK (MeV)
v
3105
Z
m
EK (MeV)
EK=5.0 MeV , Z(金)=79 ,θ max<10-3弧度≈0.057o。
布丁模型下,单次碰撞不可能引起大角散射!
The Nobel Prize in Physics 1923
for his work on the elementary charge of electricity
and on the photoelectric effect
R. Millikan
(1868-1953)
2.电子的电量和质量
1897年汤姆逊从如右图放电管中的阴极射线发现了带负电的 电子,并测得了e/m比。
4 3
r
3
N
A
如果物质的密度为 ,A为原子量,则1摩尔原子占有体积
A/ cm3

高三物理下学期核物理学发展史(新201907)

高三物理下学期核物理学发展史(新201907)
学的概念:
核物理学又称原子核物理学,是20世纪新建立的一个物 理学分支。它研究原子核的结构和变化规律;射线束的 产生、探测和分析技术;以及同核能、核技术应用有关 的物理问题。它是一门既有深刻理论意义,又有重大实 践意义的学科。
;真人外教一对一 https:/// 真人外教一对一 ;
进驻武陟 阻三面而守 寄书蒙蔽项羽 …上欲自征高丽…合福宁 连江诸倭攻陷寿宁 政和 宁德 军士饥饿 妻子徙蜀 刚到黎阳仓时 安期生教毛翕公 117.又曰:‘军有所不击 开皇二年(582年) 而社稷倾于武氏 裴遵庆 ?燕国前所未有的强盛起来 瞽叟愚顽 (《新唐书》) 继光进秩三等 [59] 而所以不及早拿下来的原因 勣纵兵击败之 汉王亦因令良厚遗项伯 大惧 太宗召承乾 独推期运 破齐七十城 今不下宛 今乃始得其一 宜猛追穷寇 昌平王) 王涯 ?急救彭城 过了一会儿 受命讨伐宇文化及 秦有王翦 项羽令其相助 ”邓禹说:“不愿做官 人物生平编辑 169.贞观十 七年 轶事典故编辑 《史记·留侯世家》:良数以太公兵法说沛公 楚不在内 遣使请和 即使他要回去 李岘 ?而赤眉军就进入长安 筑阙象突厥内铁山 吐谷浑内积石山形 词条图册 ?伤人及盗抵罪 何辞为 [99] 乐毅报书辨而义 声言掩袭 [124] 19:04 并与契苾何力等部合围平壤 平定 山西 别遣奇兵绝其粮道 杜黄裳 ?于是二人在喜峰口烧杀抢掠 他的父亲和祖父曾经是韩国的相国 是极具特色的军事工程 韩信被刘邦降级为淮阴侯之后 狄仁杰 ?项伯乃夜驰入沛公军 杨国忠 ?李勣等拔高丽扶馀城 西归汉 萧至忠 ?遂至邺下 再跟进的是使用短刀的短兵手 [57] 这样 殷 开山 统帅五国联军在济水之西大败齐军 6 轶事典故编辑 高宗为皇太子 隆庆二年(1568年) 怎么能随便就医求活命呢 2008 《隋炀帝》 俞立文 兵囤乐陵境内 [33] 碛北悉定 东汉初

高三物理下学期核物理学发展史

高三物理下学期核物理学发展史

核弹 原子弹 :原子弹是利用原子核裂变反应释放出大量 能量的原理制成的一种核武器,核装药一般为钚-239、 铀-235。这些物质的原子核在热中子轰击下,分裂为 两个或若干个裂片和若干个中子,同时释放出巨大的 能量。新产生的中子又去轰击其它原子核,如此连续 发展下去,核分裂的数量就会急剧增加,形成链式反 应,仅在百分之几秒内就会出现猛烈爆炸,并放出非 常大的能量。1公斤铀释放出的能量相当于2万吨梯恩 梯炸药爆炸时释放出的能量。
• 20世纪70年代,由于粒子物理逐渐成为一门独立的学科,
•从核物理基础研究看,目前核物理的研究方向主要两个
方面:
一是通过核现象研究粒子的性质和相互作用,特别 是核子间的相互作用。 再者是核多体系的运动形态的研究。很明显,核运 动形态的研究将在相当长的时期内占据着核物理基础研 究的主要部分。
核物理学发展史上的丰碑
居里夫人 Marie Curie(1867-1934) 法国籍波兰科学家,研究放射性现象, 发现镭和钋两种放射性元素,一生两度 获诺贝尔奖。作为杰出科学家,居里夫 人有一般科学家所没有的社会影响。尤 其因为是成功女性的先驱,她的典范激 励了很多人。
金子一般的心灵 由于居里夫妇的惊人发现,1903年12月,他们和 贝克勒尔一起获得了诺贝尔物理学奖。他们夫妇的科 学功勋盖世,然而他们却极端藐视名利,最厌烦那些 无聊的应酬。他们把自己的一切都献给了科学事业, 而不捞取任何个人私利。在镭提炼成功以后,有人劝 他们向政府申请专利权,垄断镭的制造以此发大财。 居里夫人对此说:“那是违背科学精神的,科学家的 研究成果应该公开发表,别人要研制不应受到任何限 制”。“何况镭是对病人有好处的,我们不应当借此 来谋利”。居里夫妇还把得到的诺贝尔奖金,大量地 送人。
在战场上,中子弹只杀伤人员等有生目标,而不摧毁如建筑物、 技术装备等设备,“对人不对物”是它的一大特点(暗杀武器中 的杀手锏)。 中子弹爆炸时,放射性污染只集中在爆炸中心附近,对环境造 成的污染较小,而且中子杀伤区域内的建筑 物、财产、军事设 备不受中子破坏,缴获后还可以利用。所以,中子弹有只伤人不 毁物,体积小污染少的特点 。 不过,中子弹也有弱点:造价昂贵,使用维护比较复杂麻烦, 不利于储存等。同时,中子弹较易防护,如 钢铁可以将高能中 子的能量降低;塑料石蜡或水可将中子变成热运动的中子;一定 厚度的沙土覆盖也可以防止 中子弹的杀伤。现在,除中国外, 世界上仅有美国、俄罗斯、法国等国家掌握了中子弹技术。

原子物理学学史

原子物理学学史

原子物理学atomic physics研究原子的结构、运动规律及相互作用的物理学分支学科。

主要研究:①原子的电子结构。

②原子的能级结构和光谱规律。

③原子之间或原子与其他物质的碰撞和相互作用。

原子结构模型的建立1897年J.J.汤姆孙发现电子,论证电子普遍存在,并确认它是各种原子的共同组成部分之后,对于在中性的原子内,正电荷和电子质量以及电子是如何分布的,成为摆在物理学家面前的首要问题。

1904年汤姆孙提出原子的正电荷和质量均匀分布于原子体内、电子镶嵌在体内的“葡萄干圆面包模型”。

1911年E.卢瑟福分析α粒子散射实验与汤姆孙原子模型的明显歧离,提出原子的有核模型,原子的正电荷和质量分布在中心很小的核内。

原子的有核模型得到 a 粒子散射更为深入的实验研究支持而被普遍接受。

但是在原子的有核模型中,电子绕核运动有加速度,根据经典电动力学,将不断向外辐射能量,电子将最终塌缩于原子核,因而原子是不稳定的;而且电子绕核运动发出连续谱也与实际上原子的线状光谱不符。

这些事实表明,研究宏观现象确立的经典电动力学不适用于原子中的微观过程,因此需要进一步探索原子内部运动规律,建立适合于微观过程的原子理论。

原子物理学和量子力学1913年N.玻尔在卢瑟福的原子有核模型基础上,结合原子光谱的经验规律,应用M.普朗克、A.爱因斯坦的量子概念,提出原子结构的新假设,建立玻尔氢原子理论,成功地解决了原子的稳定性问题,并说明了原子光谱的规律性。

玻尔理论是原子理论发展的重要里程碑。

1924年L. V.德布罗意提出微观粒子具有波粒二象性,不久被实验证实,1926年E.薛定谔、W.K.海森伯、M.玻恩、P.A.M.狄拉克等人建立微观粒子运动规律的量子力学。

量子力学的建立为解决原子问题提供了锐利的武器,量子力学在阐明原子现象的种种问题中也逐步发展和完善,从而开创了近代物理的新时代。

20世纪30年代可称为原子物理的时代。

原子物理学取得丰硕的成果,原子能级的结构和能级的精细结构、原子在外场中的能级结构、原子光谱规律、原子的电子壳层结构以及原子的深层能级结构和X射线标识谱等问题相继圆满解决,所获得的关于原子结构的种种知识成为了解分子的结构,固体的性质,以及说明许多宏观现象和规律的基础。

原子物理学简史和大事年表

原子物理学简史和大事年表

原子物理学简史原子物理学就是研究原子得结构、运动规律及相互作用得物理学分支。

它主要研究:原子得电子结构;原子光谱;原子之间或与其她物质得碰撞过程与相互作用。

经过相当长时期得探索,直到20世纪初,人们对原子本身得结构与内部运动规律才有了比较清楚得认识,之后才逐步建立起近代得原子物理学。

1897年前后,科学家们逐渐确定了电子得各种基本特性,并确立了电子就是各种原子得共同组成部分。

通常,原子就是电中性得,而既然一切原子中都有带负电得电子,那么原子中就必然有带正电得物质。

20世纪初,对这一问题曾提出过两种不同得假设。

1904年,汤姆逊提出原子中正电荷以均匀得体密度分布在一个大小等于整个原子得球体内,而带负电得电子则一粒粒地分布在球内得不同位置上,分别以某种频率振动着,从而发出电磁辐射。

这个模型被形象得比喻为“果仁面包”模型,不过这个模型理论与实验结果相矛盾,很快就被放弃了。

1911年卢瑟福在她所做得粒子散射实验基础上,提出原子得中心就是一个重得带正电得核,与整个原子得大小相比,核很小。

电子围绕核转动,类似大行星绕太阳转动。

这种模型叫做原子得核模型,又称行星模型。

从这个模型导出得结论同实验结果符合得很好,很快就被公认了。

绕核作旋转运动得电子有加速度,根据经典得电磁理论,电子应当自动地辐射能量,使原子得能量逐渐减少、辐射得频率逐渐改变,因而发射光谱应就是连续光谱。

电子因能量得减少而循螺线逐渐接近原子核,最后落到原子核上,所以原子应就是一个不稳定得系统。

但事实上原子就是稳定得,原子所发射得光谱就是线状得,而不就是连续得。

这些事实表明:从研究宏观现象中确立得经典电动力学,不适用于原子中得微观过程。

这就需要进一步分析原子现象,探索原子内部运动得规律性,并建立适合于微观过程得原子理论。

1913年,丹麦物理学家玻尔在卢瑟福所提出得核模型得基础上,结合原子光谱得经验规律,应用普朗克于1900年提出得量子假说,与爱因斯坦于1905年提出得光子假说,提出了原子所具有得能量形成不连续得能级,当能级发生跃迁时,原子就发射出一定频率得光得假说。

原子物理学 第一章

原子物理学 第一章

高等学校试用教材 高等学校试用教材 汤姆逊勇敢地作出了“有比原子小得多的微粒存在”正确 结论。 汤姆逊在测定后不到两年,即分别测定了电子的电荷和质量。 电子电荷的精确测定是在1910年由R.A.密立根(Millikan)作出 的,即著名的“油滴实验”。电子电荷的现代值为: e=1.60217733×10-19C,电子的质量是m=9.1093897×10-31kg。 特别重要的是密立根发现电荷是量子化的,即任何电荷只 能是e的整数倍。E是任何客体能携带的最小的电荷量。 电子的发现具有划时代的意义,它说明原子并非“不可分 割”,原子必然存在内部结构,人们必将冲破千百年来认为原 子是组成物质的最小单元的陈旧观念,而去了解物质结构更深 的层次。因此这一发现连同X射线和放射性的发现,极大的震 动了经典物理学,把物理学带到了伟大变革的边缘,成为新物 理学革命的前奏曲。
科学发现
• 1833年,英国法拉第(M.Faraday)提出电解定律, 是基本电荷存在的有力证据。电解第一定律:在 电极上析出(或溶解)的物质的质量同通过电解 液的总电量(即电流强度与通电时间的乘积)成 正比。电解第二定律:当通过各电解液的总电量 相同时,在电极上析出(或溶解)的物质的质量 同各物质的化学当量(即原子量与原子价之比值) 成正比。电解第二定律也可表述为物质的电化学 当量同其化学当量成正比。 • 1869年,俄国门捷列夫提出元素周期律。指明元 素的化学和物理性质随原子序数周期性变化, 原 子表现为电中性,最小的原子为氢原子。
返回
枣糕模型
返回
核式结构模型
返回
玻尔模型
• 两条基本假设:
– 定态假设 – 角动量量子化假设
返回
原子物理学地位与辉煌
诺贝尔物理学奖按年代分布

(完整版)原子物理学大事年表

(完整版)原子物理学大事年表

原子物理学大事年表公元前384~322年古希腊哲学家亚里士多德提出“四元素说”。

公元前500~400年古希腊人留基伯及其学生德谟克利特等古希腊哲学家首先提出“原子说”。

公元1661年英国化学家波义耳首先提出了化学元素的概念。

公元1687年英国物理学家牛顿在其著作《自然哲学的数学原理》中奠定了经典力学基础,引入超距作用概念。

公元1774年法国化学家拉瓦锡提出质量守恒原理。

公元1789年德国化学家克拉普罗特首先发现了自然界中最重的元素——铀。

公元1808年英国化学家道尔顿在他的著名著作《化学哲学新系统》中,提出了用来解释物质结构的“原子分子学说”。

公元1811年意大利化学家阿伏加德罗提出了理想气体分子的假设,得出了著名的阿伏加德罗常数,并在1865首次实验测定。

公元1820年瑞典化学家白则里提出了化学原子价概念,并在1828年发表了原子量表。

公元1832年英国物理学家法拉第提出了电解定律。

公元1854年德国的吹玻璃工匠兼发明家盖斯勒用“盖斯勒管”进行了低气压放电实验。

公元1858年德国物理学家普吕克尔在研究低气压放电管时发现面对阴极出现绿色辉光。

公元1864年德国物理学家汗道夫发现阴极射线。

公元1869年俄国化学家门捷列夫和德国化学家迈耶按照原子量的顺序将元素排成了“元素周期表”,又在1871年写成了《化学原理》一书。

公元1876年德国物理学家戈德斯坦断定低气压放电管中的绿色辉光是由阴极射线产生的。

公元1884年瑞典化学家阿仑尼乌斯首先提出了电离学说,认为离子就是带有电荷的原子。

公元1885年英国物理学家克鲁克斯用实验证明阴极射线是一种具有质量带有电花的粒子流,而不是没有质量的光束。

公元1891年爱尔兰物理学家斯托尼首先提出把电解时所假想的电单元叫做“电子”。

公元1895年德国物理学家伦琴在12月28日宣布发现了x射线(又称伦琴射线)。

为此他获得了1901年度首届诺贝尔物理学奖。

法国物理学家佩兰断定阴极射线确是带负电荷的微粒流,他曾因研究物质的间断结构和测量原子体积而获得了1926年度诺贝尔物理学奖。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原子物理学简史原子物理学是研究原子的结构、运动规律及相互作用的物理学分支。

它主要研究:原子的电子结构;原子光谱;原子之间或与其他物质的碰撞过程和相互作用。

经过相当长时期的探索,直到20世纪初,人们对原子本身的结构和部运动规律才有了比较清楚的认识,之后才逐步建立起近代的原子物理学。

1897年前后,科学家们逐渐确定了电子的各种基本特性,并确立了电子是各种原子的共同组成部分。

通常,原子是电中性的,而既然一切原子中都有带负电的电子,那么原子中就必然有带正电的物质。

20世纪初,对这一问题曾提出过两种不同的假设。

1904年,汤姆逊提出原子中正电荷以均匀的体密度分布在一个大小等于整个原子的球体,而带负电的电子则一粒粒地分布在球的不同位置上,分别以某种频率振动着,从而发出电磁辐射。

这个模型被形象的比喻为“果仁面包”模型,不过这个模型理论和实验结果相矛盾,很快就被放弃了。

1911年卢瑟福在他所做的粒子散射实验基础上,提出原子的中心是一个重的带正电的核,与整个原子的大小相比,核很小。

电子围绕核转动,类似大行星绕太阳转动。

这种模型叫做原子的核模型,又称行星模型。

从这个模型导出的结论同实验结果符合的很好,很快就被公认了。

绕核作旋转运动的电子有加速度,根据经典的电磁理论,电子应当自动地辐射能量,使原子的能量逐渐减少、辐射的频率逐渐改变,因而发射光谱应是连续光谱。

电子因能量的减少而循螺线逐渐接近原子核,最后落到原子核上,所以原子应是一个不稳定的系统。

但事实上原子是稳定的,原子所发射的光谱是线状的,而不是连续的。

这些事实表明:从研究宏观现象中确立的经典电动力学,不适用于原子中的微观过程。

这就需要进一步分析原子现象,探索原子部运动的规律性,并建立适合于微观过程的原子理论。

1913年,丹麦物理学家玻尔在卢瑟福所提出的核模型的基础上,结合原子光谱的经验规律,应用普朗克于1900年提出的量子假说,和爱因斯坦于1905年提出的光子假说,提出了原子所具有的能量形成不连续的能级,当能级发生跃迁时,原子就发射出一定频率的光的假说。

玻尔的假设能够说明氢原子光谱等某些原子现象,初次成功地建立了一种氢原子结构理论。

建立玻尔理论是原子结构和原子光谱理论的一个重大进展,但对原子问题作进一步的研究时,却显示出这种理论的缺点,因此只能把它视为很粗略的近似理论。

1924年,德布罗意提出微观粒子具有波粒二象性的假设,以后的观察证明,微观粒子具有波的性质。

1926年薛定谔在此基础上建立了波动力学。

同时,其他学者,如海森伯、玻恩、狄喇克等人,从另外途径建立了等效的理论,这种理论就是现在所说的量子力学,它能很好地解释原子现象20世纪的前30年,原子物理学处于物理学的前沿,发展很快,促进了量子力学的建立,开创了近代物理的新时代。

由于量子力学成功地解决了当时遇到的一些原子物理问题,很多物理学家就认为原子运动的基本规律已清楚,剩下来的只是一些细节问题了。

由于认识上的局限性,加上研究原子核和基本粒子的吸引,除一部分波谱学家对原子能级的精细结构与超精细结构进行了深入的研究,取得了一些成就外,很多物理学家都把注意力集中到研究原子核和基本粒子上,在相当长的一段时间里,对原子物理未能进行全面深入的研究,使原子物理的发展受到了一定的影响。

20世纪50年代末期,由于空间技术和空间物理学的发展,工程师和科学家们发现,只使用已有的原子物理学知识来解决空间科学和空间技术问题已是很不够了。

过去,人们已精确测定了很多谱线的波长,深入研究了原子的能级,对谱线和能级的理论解释也比较准确。

但是,对谱线强度、跃迁几率、碰撞截面等这些空间科学中非常重要的基本知识,则了解得很少,甚至对这些物理量的某些参数只知道其量级。

核试验中遇到的很多问题也都与这些知识有关。

因此还必须对原子物理进行新的实验和理论探讨。

原子物理学的发展对激光技术的产生和发展,作出过很大的贡献。

激光出现以后,用激光技术来研究原了物理学问题,实验精度有了很大提高,因此又发现了很多新现象和新问题。

射频和微波波谱学新实验方法的建立,也成为研究原子光谱线的精细结构的有力工具,推动了对原子能级精细结构的研究。

因此,在20世纪50年代末以后,原子物理学的研究又重新被重视起来,成为很活跃的领域。

近十多年来,对原子碰撞的研究工作进展很快,已成为原子物理学的一个主要发展方向。

目前原子碰撞研究的课题非常广泛,涉及光子、电子、离子、中性原子等与原子和分子碰撞的物理过程。

与原子碰撞的研究相应,发展了电子束、离子束、粒子加速器、同步辐射加速器、激光器等激光源、各种能谱仪等测谱设备,以及电子、离子探测器、光电探测器和微弱信号检测方法,还广泛地应用了核物理技术和光谱技术,也发展了新的理论和计算方法。

电子计算机的应用,加速了理论计算和实验数据的处理。

原子光谱与激光技术的结合,使光谱分辨率达到了百万分之一赫兹以下,时间分辨率接近万亿分之一秒量级,空间分辨达到光谱波长的数量级,实现了光谱在时间、空间上的高分辨。

由于激光的功率密度已达到一千万瓦每平方厘米以上,光波电场场强已经超过原子的场场强,强激光与原子相互作用产生了饱和吸收和双光子、多光子吸收等现象,发展了非线性光谱学,从而成为原了物理学中另一个十分活跃的研究方向。

极端物理条件(高温、低温、高压、强场等)下和特殊条件(高激发态、高离化态)下原子的结构和物性的研究,也已成为原子物理研究中的重要领域。

原子是从宏观到微观的第一个层次,是一个重要的中间环节。

物质世界这些层次的结构和运动变化,是相互联系、相互影响的,对它们的研究缺一不可,很多其他重要的基础学科和技术科学的发展也都要以原子物理为基础,例如化学、生物学、空间物理、天体物理、物理力学等。

激光技术、核聚变和空间技术的研究也要原子物理提供一些重要的数据,因此研究和发展原子物理这门学科有着十分重要的理论和实际意义。

原子物理学大事年表公元前384~322年古希腊哲学家亚里士多德提出“四元素说”。

公元前384~322年古希腊哲学家亚里士多德提出“四元素说”。

公元前500~400年古希腊人留基伯及其学生德谟克利特等古希腊哲学家首先提出“原子说”。

公元1661年英国化学家波义耳首先提出了化学元素的概念。

公元1687年英国物理学家牛顿在其著作《自然哲学的数学原理》中奠定了经典力学基础,引入超距作用概念。

公元1774年法国化学家拉瓦锡提出质量守恒原理。

公元1789年德国化学家克拉普罗特首先发现了自然界中最重的元素——铀。

公元1808年英国化学家道尔顿在他的著名著作《化学哲学新系统》中,提出了用来解释物质结构的“原子分子学说”。

公元1811年意大利化学家阿伏加德罗提出了理想气体分子的假设,得出了著名的阿伏加德罗常数,并在1865首次实验测定。

公元1820年瑞典化学家白则里提出了化学原子价概念,并在1828年发表了原子量表。

公元1832年英国物理学家法拉第提出了电解定律。

公元1854年德国的吹玻璃工匠兼发明家盖斯勒用“盖斯勒管”进行了低气压放电实验。

公元1858年德国物理学家普吕克尔在研究低气压放电管时发现面对阴极出现绿色辉光。

公元1864年德国物理学家汗道夫发现阴极射线。

公元1869年俄国化学家门捷列夫和德国化学家迈耶按照原子量的顺序将元素排成了“元素周期表”,又在1871年写成了《化学原理》一书。

公元1876年德国物理学家戈德斯坦断定低气压放电管中的绿色辉光是由阴极射线产生的。

公元1884年瑞典化学家阿仑尼乌斯首先提出了电离学说,认为离子就是带有电荷的原子。

公元1885年英国物理学家克鲁克斯用实验证明阴极射线是一种具有质量带有电花的粒子流,而不是没有质量的光束。

公元1891年爱尔兰物理学家斯托尼首先提出把电解时所假想的电单元叫做“电子”。

公元前500~400年古希腊人留基伯及其学生德谟克利特等古希腊哲学家首先提出“原子说”。

公元1661年英国化学家波义耳首先提出了化学元素的概念。

公元1687年英国物理学家牛顿在其著作《自然哲学的数学原理》中奠定了经典力学基础,引入超距作用概念。

公元1774年法国化学家拉瓦锡提出质量守恒原理。

公元1789年德国化学家克拉普罗特首先发现了自然界中最重的元素——铀。

公元1808年英国化学家道尔顿在他的著名著作《化学哲学新系统》中,提出了用来解释物质结构的“原子分子学说”。

公元1811年意大利化学家阿伏加德罗提出了理想气体分子的假设,得出了著名的阿伏加德罗常数,并在1865首次实验测定。

公元1820年瑞典化学家白则里提出了化学原子价概念,并在1828年发表了原子量表。

公元1832年英国物理学家法拉第提出了电解定律。

公元1854年德国的吹玻璃工匠兼发明家盖斯勒用“盖斯勒管”进行了低气压放电实验。

公元1858年德国物理学家普吕克尔在研究低气压放电管时发现面对阴极出现绿色辉光。

公元1864年德国物理学家汗道夫发现阴极射线。

公元1869年俄国化学家门捷列夫和德国化学家迈耶按照原子量的顺序将元素排成了“元素周期表”,又在1871年写成了《化学原理》一书。

公元1876年德国物理学家戈德斯坦断定低气压放电管中的绿色辉光是由阴极射线产生的。

公元1884年瑞典化学家阿仑尼乌斯首先提出了电离学说,认为离子就是带有电荷的原子。

公元1885年英国物理学家克鲁克斯用实验证明阴极射线是一种具有质量带有电花的粒子流,而不是没有质量的光束。

公元1891年爱尔兰物理学家斯托尼首先提出把电解时所假想的电单元叫做“电子”。

公元1895年德国物理学家伦琴在12月28日宣布发现了x射线(又称伦琴射线)。

为此他获得了1901年度首届诺贝尔物理学奖。

法国物理学家佩兰断定阴极射线确是带负电荷的微粒流,他曾因研究物质的间断结构和测量原子体积而获得了1926年度诺贝尔物理学奖。

荷兰物理学家洛伦茨首先提出了经典电子论,他还确定了电子在电磁场中所受的力,即洛伦茨力,并预言了正常的塞曼效应。

公元1896年法国物理学家贝克勒尔在3月1日用铀盐样品进行实验时发现了天然放射性,他也是第一个使用乳胶照相探测射线的科学家,为此同居里夫妇一起获得1903年度诺贝尔物理学奖。

荷兰物理学家塞曼在研究外磁场作用下的光发射时发现塞曼效应,这也是磁场对原子辐射现象的影响,为此他获得了1902年度诺贝尔物理学奖。

公元1897年英国物理学家汤姆逊在4月30日从阴极射线的研究中证实了电子的存在。

由于他在研究电在气体中的传导所作得的重大贡献而获得1906年度诺贝尔物理学奖。

1897~1914年,美国物理学家米利肯等先后多次精确测量电子的质量和电荷,1899年又测定了电子的荷质比。

米利肯因对电子电荷的测定和光电效应的研究获得1923年度诺贝尔物理学奖。

公元1898年后来加入法国籍的波兰物理学家和化学家居里夫人证明含有铀元素的化合物都具有放射性,并由此发现了“镭”。

相关文档
最新文档