八年级上册数学整式的乘除与因式分解精选练习题
第14章 整式乘除与因式分解 单元同步检测试题 2022—2023学年人教版数学八年级上册

第十四章《整式的乘法与因式分解》单元检测题题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.下列运算正确的是()A.x2+x2=x4B. (a-b)2=a2-b2C.(-a2)3=-a6D.3a2·2a3=6a62.下列因式分解正确的是()A. x2﹣4=(x+4)(x﹣4) B. x2+2x+1=x(x+2)+1C. 3mx﹣6my=3m(x-6y) D. 2x+4=2(x+2)3.下列因式分解错误的是()A. 2a﹣2b=2(a-b) B. x2﹣9=(x+3)(x﹣3)C. a2+4a-4=(a+2)2 D. -x2-x+2=-(x-1)(x+2)4.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.15.下列计算中,正确的个数有()①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2.A.1个B.2个 C.3个 D.4个6.下列各式中能用平方差公式是()A.(x+y)(y+x)B.(x+y)(y-x)C.(x+y)(-y-x)D.(-x+y)(y-x)7. 如果单项式-2x a-2b y2a+b与x3y8b是同类项,那么这两个单项式的积是()A.-2x6y16 B.-2x6y32 C.-2x3y8 D.-4x6y168. 化简(-2)2n+1+2(-2)2n的结果是()A.0 B.-22n+1 C.22n+1 D.22n9. 因式分解x2-ax+b,甲看错了a的值,分解的结果是(x+6)(x-1),乙看错了b的值,分解的结果为(x-2)(x+1),那么x2+ax+b分解因式正确的结果为()A.(x-2)(x+3) B.(x+2)(x-3)C.(x-2)(x-3) D.(x+2)(x+3)10. 如图,设k =甲阴影部分的面积乙阴影部分的面积(a >b >0),则有( )A .k >2B .1<k <2C .12<k <1D .0<k <12二、填空题(每题3分,共24分)11.计算:223()32x y --=__________.12.计算:(-a 2)3+(-a 3)2-a 2·a 4+2a 9÷a 3=__________. 13.当x __________时,(x -4)0=1.14.若多项式x 2+ax +b 分解因式的结果为(x +1)(x -2),则a +b 的值为_______. 15.若|a -2|+b 2-2b +1=0,则a =__________,b =__________. 16.已知3a =5,9b =10,则3a +2b 的值为________. 17.已知A =2x +y ,B =2x -y ,计算A 2-B 2=________. 18.如下图(1),边长为a 的大正方形中一个边长为b 的 小正方形,小明将图(1)的阴影部分拼成了一个矩形, 如图(2)。
初二数学《整式的乘除与因式分解》习题(含答案)

整式的乘除与因式分解一、选择题1.下列计算中,运算正确的有几个( )(1) a 5+a 5=a 10 (2) (a+b)3=a 3+b 3 (3) (-a+b)(-a-b)=a 2-b 2 (4) (a-b)3= -(b-a)3A 、0个B 、1个C 、2个D 、3个2.计算(-2a 3)5÷(-2a 5)3的结果是( )A 、— 2B 、 2C 、4D 、—4 3.若,则的值为 ( )A .B .5C .D .24.若x 2+mx+1是完全平方式,则m=( )。
A 、2B 、-2C 、±2D 、±45.如图,在长为a 的正方形中挖掉一个边长为b 的小正方形(a>b )把余下的部分剪拼成一个矩形,通过计算两个图形(阴影部分)的面积,验证了一个等式, 则这个等式是( )A .a 2-b 2=(a+b)(a-b)B .(a+b)2=a 2+2ab+b 2C .(a-b)2=a 2-2ab+b 2D .(a+2b)(a-b)=a 2+ab-2b 26. 已知()=+2b a 7, ()=-2b a 3,则与的值分别是 ( )A. 4,1B. 2,32C.5,1D. 10, 32二、填空题1.若2,3=-=+ab b a ,则=+22b a ,()=-2b a2.已知a -1a =3,则a 2+21a的值等于 ·3.如果x 2-kx +9y 2是一个完全平方式,则常数k =________________; 4.若⎩⎨⎧-=-=+31b a b a ,则a 2-b 2= ;5.已知2m=x ,43m=y ,用含有字母x 的代数式表示y ,则y =________________;6、如果一个单项式与的积为-34 a 2bc,则这个单项式为________________;7、(-2a 2b 3)3(3ab+2a 2)=________________;8、()()()()=++++12121212242n________________;9、如图,要给这个长、宽、高分别为x 、y 、z 的箱子打包, 其打包方式如下图所示,则打包带的长至少要____________ (单位:mm )。
人教版八年级数学上册第十四章《整式乘法与因式分解》测试带答案解析

人教版八年级数学上册第十四章《整式乘法与因式分解》测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.计算3325a a 的结果是( ) A .610aB .910aC .37aD .67a2.下列运算正确的是( ) A .22a a a ⋅=B .824a a a ÷=C .()2242a b a b =D .()325a a =3.下列计算正确的是( ) A .623a a a ÷=B .()326a a =C .248a a a ⋅=D .532a a a -=4.下列计算结果正确的是( ) A .()336a a =B .632a a a ÷=C .()248ab ab =D .()2222a b a ab b +=++5.下列计算正确的是( ) A .25611a a a += B .()235326b b b -⋅= C .623623b a a ÷=D .()()22339b a a b a b +-=-6.已知实数m ,n 满足222+=+m n mn ,则2(23)(2)(2)-++-m n m n m n 的最大值为( ) A .24B .443C .163D .4-7.已知()()2221x x x +--=,则2243x x -+的值为( ) A .13B .8C .-3D .58.若2022202020222022202320222021-=⨯⨯n ,则n 的值是( ) A .2023B .2022C .2021D .20209.如图是一个运算程序的示意图,若开始输入的x 值为81,我们看到第一次输出的结果为27.第二次输出的结果为9,…,第2022次输出的结果为( )A .1B .3C .9D .2710.下列等式从左到右的变形,其中属于因式分解的是( ) A .2221(1)--=-x x x B .22221(1)x y xy xy ++=+ C .2(3)(3)9x x x +-=-D .32822(41)a a a a -=-11.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是121-=;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是( ) A .1个B .2个C .3个D .4个12.在数学中为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”,如记1nk k =∑=1+2+3+…+(n ﹣1)+n ,()3n k x k =+∑=(x +3)+(x +4)+…+(x +n );已知()3nk x x k =⎡+⎤⎣⎦∑=9x 2+mx ,则m 的值是( ) A .45B .63C .54D .不确定二、填空题13.分解因式:216x y xy -=______.14.因式分解:322242m m n mn -+=________. 15.因式分解:32312x xy -=_________.16.已知2223,15a b b c a b c -=-=++=,则ab bc ca ++的值等于________.三、解答题 17.分解因式: (1)22a ab a ++; (2)()()222m n m n +-+18.化简:()()()482x y x y xy xy xy +---÷.19.先化简,再求值:(1)(1)(2)x x x x +-++,其中12x =. 20.先化简,再求值:22()()(2)34x y x y x y y y ⎡⎤+----÷⎣⎦,其中20201x y ==-,.21.已知有理数a ,b ,c 满足()222434|41|02aa cbc b +-+--+--=∣∣,试求313242n n n a b c +++-的值.22.先化简,再求值()()()22x y x y xy xy x +-+-÷,其中11,2x y ==. 23.已知x +1x =3,求下列各式的值:(1)(x ﹣1x)2;(2)x 4+41x . 24.阅读材料:若2222440m mn n n -+-+=,求m ,n 的值.解:∵2222440m mn n n -+-+=,∴()()2222440m mn n n n -++-+=,∴22()(2)0m n n -+-=,∴2()0m n -=,2(2)0n -=,∴2n =,2m =. 根据你的观察,探究下面的问题:(1)已知22228160x y xy y +-++=,则x =________,y =________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +--+=,求ABC 的周长.25.如图,长为40,宽为x 的大长方形被分割为9小块,除阴影A ,B 两块外,其余7块是形状、大小完全相同的小长方形,其较短一边长为y .(1)分别用含x,y的代数式表示阴影A,B两块的周长,并计算阴影A,B两块的周长和.(2)分别用含x,y的代数式表示阴影A,B两块的面积,并计算阴影A,B的面积差.(3)当y取何值时,阴影A与阴影B的面积差不会随着x的变化而变化,并求出这个值.参考答案:1.A【分析】直接利用单项式乘以单项式运算法则计算得出答案. 【详解】解:6332510a a a =⋅, 故选:A .【点睛】此题主要考查了单项式乘以单项式,正确掌握相关运算法则是解题关键. 2.C【分析】根据同底数幂乘除法、积的乘方和幂的乘方法则进行计算,即可作出判断. 【详解】A :23a a a ⨯=,故A 错误,不符题意; B :826a a a ÷=,故B 错误,不符题意; C :()2242a b a b =,故C 正确,符合题意; D :()326a a =,故B 错误,不符题意; 故选:C.【点睛】此题考查了同底数幂乘除法、积的乘方和幂的乘方运算,熟练掌握运算法则是解本题的关键. 3.B【分析】根据同底数幂的除法法则对A 进行判断;根据幂的乘方法则对B 进行判断;根据同底数幂的乘法法则对C 进行判断;根据合并同类项对D 进行判断. 【详解】A. 624a a a ÷=,所以此项不正确; B. ()326a a =,所以此项正确;C. 246a a a ⋅=,所以此项不正确;D. 53a a -,不能合并,,所以此项不正确; 故选B .【点睛】本题考查了同底数幂的除法:am ÷an =am -n (m 、n 为正整数,m >n ).也考查了同底数幂的乘法、幂的乘方与积的乘方以及合并同类项. 4.D【分析】分别利用幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式分别求出即可.【详解】A .()339a a =,故此选项计算错误,不符合题意;B .633a a a ÷=,故此选项计算错误,不符合题意;C .()2428ab a b =,故此选项计算错误,不符合题意;D .()2222a b a ab b +=++,故此选项计算正确,符合题意; 故选:D .【点睛】本题考查幂的乘方法则,同底数幂的除法,积的乘方法则,完全平方公式,熟练掌握相关计算法则是解答本题的关键.幂的乘方,底数不变,指数相乘;同底数幂相除,底数不变,指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;222()2a b a ab b +=++与222()2a b a ab b -=-+都叫做完全平方公式,为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式. 5.D【分析】根据合并同类项法则、同底数幂的乘除法、平方差公式计算即可求解. 【详解】A. 5611a a a +=,计算错误,本选项不符合题意;B. ()235326b b b -⋅=-,计算错误,本选项不符合题意;C. 6622362b b a a÷=,计算错误,本选项不符合题意;B. ()()22339b a a b a b +-=-,计算正确,本选项符合题意;故选:D .【点睛】本题考查整式的混合运算,解题的关键是熟练掌握合并同类项法则、同底数幂的乘除法、平方差公式计算法则. 6.B【分析】先将所求式子化简为107mn -,然后根据()22220m n m n mn +++=≥及222+=+m n mn 求出23mn ≥-,进而可得答案.【详解】解:2(23)(2)(2)-++-m n m n m n 222241294m mn n m n =-++- 225125m mn n =-+()5212mn mn =+- 107mn =-;∵()22220m n m n mn +++=≥,222+=+m n mn , ∴220mn mn ++≥, ∴32mn ≥-, ∴23mn ≥-,∴441073mn -≤, ∴2(23)(2)(2)-++-m n m n m n 的最大值为443, 故选:B .【点睛】本题考查了完全平方公式、平方差公式的应用,不等式的性质,正确对所求式子化简并求出mn 的取值范围是解题的关键. 7.A【分析】先化简已知的式子,再整体代入求值即可. 【详解】∵()()2221x x x +--= ∴225x x -=∴222432(2)313x x x x -+=-+= 故选:A .【点睛】本题考查平方差公式、代数式求值,利用整体思想是解题的关键. 8.D【分析】原式先提取公因式,再运用平方差公式进行计算即可. 【详解】解:2022202020222022- =202022022(20221)- =20202022(20221)(20221)+- =2020202220232021⨯⨯∵2022202020222022202320222021-=⨯⨯n ∴2020202220232021202320222021n ⨯⨯=⨯⨯ ∴202020222022n = ∴2020n =. 故选:D .【点睛】本题主要考查了整式的运算,熟练掌握平方差公式是解答本题的关键. 9.A【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【详解】解:第1次,181273⨯=,第2次,12793⨯=,第3次,1933⨯=,第4次,1313⨯=,第5次,123+=,第6次,1313⨯=,⋯,依此类推,从第3次开始以3,1循环,(20222)21010-÷=,∴第2022次输出的结果为1.故选:A .【点睛】本题考查了求代数式的值,能根据求出的结果得出规律是解此题的关键. 10.B【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案. 【详解】解:2221(1)x x x -+=-,故A 不符合题意; 22221(1)x y xy xy ++=+,故B 符合题意;2(3)(3)9x x x +-=-是整式乘法,故C 不符合题意;32822(41)2(21)(21)a a a a a a a -=-=+-,故D 不符合题意;故选:B【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式,注意因式分解与整式乘法的区别. 11.D【分析】根据输入数据与输出结果的规则进行计算,判断①②③;只有三个数字时,当最后输入最大数时得到的结果取最大值,当最先输入最大数时得到的结果取最小值,由此通过计算判断④.【详解】解:根据题意,依次输入1,2,3,4时,1211-=-=, 1322-=-=,2422-=-=,故①正确;按照1,3,4,2的顺序输入时,1322-=-=, 2422-=-=,220-=,为最小值,故③正确; 按照1,3,2,4的顺序输入时,1322-=-=,220-=,0444-=-=,为最大值,故②正确;若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k , k 的最大值为10, 设b 为较大数字,当1a =时,2110a b b --=-=, 解得11b =,故此时任意输入后得到的最小数是:11128--=,设b 为较大数字,当2b a >>时,2210a b a b --=--=, 则210a b --=-,即8b a -= 故此时任意输入后得到的最小数是:2826b a --=-=,综上可知,k 的最小值是6,故④正确; 故选D .【点睛】此题考查绝对值有关的问题,解题的关键是要有试验观察和分情况讨论的能力. 12.B【分析】根据条件和新定义列出方程,化简即可得出答案.【详解】解:根据题意得:x (x +3)+x (x +4)+…+x (x +n )=x (9x +m ), ∴x (x +3+x +4+…+x +n )=x (9x +m ), ∴x [(n ﹣3+1)x +(31)(3)2n n -++]=x (9x +m ),∴n ﹣2=9,m =(31)(3)2n n -++,∴n =11,m =63. 故选:B .【点睛】本题考查了新定义,根据条件和新定义列出方程是解题的关键. 13.(16)xy x -【分析】利用提公因式法进行分解即可. 【详解】解:216(16)x y xy xy x -=-, 故答案为:(16)xy x -.【点睛】本题考查了因式分解-提公因式法,解题的关键是熟练掌握因式分解-提公因式法. 14.()22m m n -【分析】首先提取公因式2m ,再利用完全平方公式即可分解因式. 【详解】解:322242m m n mn -+()2222m m mn n =-+ ()22m m n =-故答案为:()22m m n -【点睛】本题考查了提公因式法和公式法分解因式,熟练掌握和运用分解因式的方法是解决本题的关键.15.()()322x x y x y +-【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解.【详解】解:原式=()()()2234322x x y x x y x y -=+-.故答案为:()()322x x y x y +-.【点睛】本题考查了因式分解,正确的计算是解题的关键.16.225- 【分析】利用完全平方公式求出(a −b ),(b −c ),(a −c )的平方和,然后代入数据计算即可求解.【详解】解:∵35a b b c -=-=, ∴65a c -=()()()2225425a b b c a c -+-+-= ∴()()222542225a b c ab bc ac ++-++=, ∵2221a b c ++=,∴()27125ab bc ac -++=, ∴225ab bc ca ++=-, 故答案为:225- 【点睛】本题考查了完全平方公式,解题的关键是分别把35a b -=,35b c -=,相加凑出,65a c -=三个式子两边平方后相加,化简求解. 17.(1)()2.a a b ++(2)()32.m m n +【分析】(1)提取公因式a 即可;(2)按照平方差公式进行因式分解即可.【详解】(1)解:22a ab a ++()2.a a b =++(2)()()222m n m n +-+()()22m n m n m n m n =++++--()32.m m n =+【点睛】本题考查的是多项式的因式分解,掌握“提公因式法与公式法分解因式”是解本题的关键.18.222x y -+【分析】根据整式的混合运算法则计算即可.【详解】解:原式()()2222224222x y xy xy x y x y =---÷=---=-+【点睛】本题考查整式的混合运算,熟练掌握该知识点是解题关键.19.12x + ;2 【分析】先利用平方差公式,单项式与多项式乘法化简,然后代入12x =即可求解. 【详解】(1)(1)(2)x x x x +-++2212x x x =-++ 12x =+ 当12x =时, 原式12x =+11222=+⨯=. 【点睛】本题考查了整式的化简求值,正确地把代数式化简是解题的关键.20.2,2022x y -【分析】根据平方差公式,完全平方公式,先计算括号内的,然后根据多项式除以单项式进行计算,最后将20201x y ==-,代入即可求解.【详解】解:原式=()222224434x y x xy y y y --+--÷()2484xy y y =-÷2x y =-.当20201x y ==-,时,原式=2020-2×(-1)=2022.【点睛】本题考查了整式的化简求值,掌握平方差公式,完全平方公式,多项式除以单项式是解题的关键.21.34-【分析】根据非负数的性质求出a ,b ,c 的值,然后代入计算即可. 【详解】解:由题得:22043404102a cbc a b ⎧⎪+-=⎪--=⎨⎪⎪--=⎩, 解得:4141a b c =⎧⎪⎪=⎨⎪=-⎪⎩, 所以313242n n n a b c +++-()3242311414n n n +++⎛⎫=⨯-- ⎪⎝⎭31114144n +⎛⎫=⨯⨯- ⎪⎝⎭34=-. 【点睛】本题考查了非负数的性质,解三元一次方程,积的乘方法则的逆用等知识,利用代入法或加减法把解三元一次方程组的问题转化为解二元一次方程组的问题是解题的关键.22.x 2-2y ,0【分析】首先运用平方差公式计算,再运用单项式乘以多项式计算,最后合并同类项,即可化简,然后把x 、y 值代入计算即可.【详解】解:()()()22x y x y xy xy x +-+-÷=x 2-y 2+y 2-2y=x 2-2y当x =1,y =12时,原式=12-2×12=0.【点睛】本题考查整式化简求值,熟练掌握整式混合运算法则是解题的关键.23.(1)5(2)47【分析】(1)由21()x x +=22112x x x x +⋅⋅+、21()x x -=22112x x x x -⋅⋅+,进而得到21()x x+﹣4x •1x即可解答; (2)由21()x x -=2212x x -+可得221x x +=7,又2221()x x +=4412x x ++,进而得到441x x+=2221()x x +﹣2即可解答. (1)解:∵21()x x +=22112x x x x +⋅⋅+∴21()x x -=22112x x x x -⋅⋅+=2211124x x x x x x+⋅+-⋅=21()x x +﹣4x •1x=32﹣4=5. (2)解:∵21()x x -=2212x x -+,∴221x x +=21()x x -+2=5+2=7,∵2221()x x +=4412x x++,∴441x x +=2221()x x +﹣2=49﹣2=47. 【点睛】本题主要考查通过对完全平方公式的变形求值.熟练掌握完全平方公式并能灵活运用是解答本题的关键.24.(1)-4,-4;(2)ABC 的周长为9.【分析】(1)利用完全平方公式配方,再根据非负数的性质即可得出x 和y 的值;(2)利用完全平方公式配方,再根据非负数的性质即可得出a 和b 的值,从而得出c 的取值范围,根据c 为整数即可得出c 的值,从而求得三角形的周长.【详解】解:(1)由22228160x y xy y +-++=得222)((2816)0x xy y y y -+++=+,22()(4)0x y y -++=,∴0x y -=,40y +=,∴4x y ==-,故答案为:-4,-4;(2)由22248180a b a b +--+=得:222428160a a b b -++-+=,222(1)(4)0a b -+-=,∴a -1=0,b -4=0,∴a =1,b =4,∴3<c <5,∵△ABC 的三边长a 、b 、c 都是正整数,∴c =4,∴ABC 的周长为9.【点睛】本题主要考查了配方法的应用及偶次方的非负性,同时考查了三角形的三边关系,本题难度中等.25.(1)阴影A 的周长为:21480x y -+,∴阴影B 的周长为:21680x y +-,则其周长和为:42x y +;(2)阴影A 的面积为:240120412x y xy y --+,阴影B 的面积为:2416016xy y y -+,阴影A ,B 的面积差为:2404084x y xy y +-- ; (3)当y =5时,阴影A 与阴影B 的面积差不会随着x 的变化而变化,这个值是100.【分析】(1)由图可知阴影A 的长为(404y -),宽为(3x y -),阴影B 的长为4y ,宽为()404x y --⎡⎤⎣⎦,从而可求解;(2)结合(1),利用长方形的面积公式进行求解即可;(3)根据题意,使含x 的项提公因式x ,再令另一个因式的系数为0,从而可求解.(1)解:(1)由题意得:阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的周长为:()()()240432404321480y x y y x y x y -+-=-+-=-+⎡⎤⎣⎦∵阴影B 的长为4y ,宽为()404404x y x y --=-+⎡⎤⎣⎦,∴阴影B 的周长为:()()240424042168044y y x y x y x y +-+=+-+=+-⎡⎤⎣⎦,∴其周长和为:()()214802168042x y x y x y -+++-=+;(2)∵阴影A 的长为(404y -),宽为(3x y -),∴阴影A 的面积为:()()2404340120412y x y x y xy y --=--+. ∵阴影B 的长为4y ,宽为404x y -+,∴阴影B 的面积为:()24404416016y x y xy y y -+=-+, ∴阴影A ,B 的面积差为:()()22240120412416016404084x y xy y xy y y x y xy y --+--+=+--.(3)∵阴影A 与阴影B 的面积差不会随着x 的变化而变化,阴影A ,B 的面积差()22404084408404x y xy y y x y y =+--=-+-.∴当4080y -=,即5y =时,阴影A 与阴影B 的面积差不会随着x 的变化而变化.此时:阴影A ,B 的面积差()2408540545100x =-⨯+⨯-⨯=.【点睛】本题主要考查列代数式,代数式求值,与某个字母无关型问题,解答的关键是根据图表示出两个长方形的长与宽.。
八年级上册数学整式的乘除与因式分解精选练习题

八年级上册数学整式的乘除与因式分解精选练习题整式的乘除与因式分解1.$x^2\cdot(-x)^3\cdot(-x)^2=x^2\cdot(-x)^6=-x^8$2.$2m(2x+3y)$3.$a^{-20}\cdot a^{-6}=a^{-26}$4.$\frac{7}{3}\pi$5.$1066.6999$6.①完全平方,②不是完全平方7.$4a+2b$8.$20$9.$956$10.$3a^{-1}m^{-3}+b^{-1}$11.$x=\frac{5}{2}。
y=\frac{3}{2},$ 完全平方为①和④12.$m=6$13.$a=1.b=2$14.$3x+y$15.$n^2-n$16.$x=3$17.(1) $-27x^7y^8$ (2) $\frac{-4x}{a^3y}$ (3) $2x^2y^2$ (4) $-2x^2-4x-1$18.(1) $3x(1-4x^2)$ (3) $(x-y)^2-1$19.(1) $x=-2$ or $x=\frac{11}{5}$ (2) $x\frac{2}{3}$1.长方形纸片的长为15㎝,长宽上各剪去宽为3㎝的两个长条后,剩下的面积是原面积的5/9.求原面积。
2.已知x-y=1,xy=2,求x³y-2x²y²+xy³。
3.已知x²+x-1=0,求x³+2x²+3的值。
4.已知a+b=2,ab=2,求a³b+a²b²+ab³的值。
5.给出三个多项式:x+x-1,x²+3x+1,x²-x,请选择其中两个进行加减运算,并把结果因式分解。
6.已知a²+b²+2a-4b+5=0,求2a²+4b-3的值。
7.若(x²+px+q)(x²-2x-3)展开后不含x²、x³项,求p、q的值。
八年级上册数学整式的乘除与因式分解精选练习题及答案

整式的乘除与因式分解精选练习题(一)一、填空题(每题2分,共32分)1.-x2·(-x)3·(-x)2=__________.2.分解因式:4mx+6my=_________.3.___ ____.4._________;4101×0.2599=__________.5.用科学记数法表示-0.0000308=___________.6.①a2-4a+4,②a2+a+,③4a2-a+,•④4a2+4a+1,•以上各式中属于完全平方式的有______(填序号).7.(4a2-b2)÷(b-2a)=________.8.若x+y=8,x2y2=4,则x2+y2=_________.9.计算:832+83×34+172=________.10..11.已知.12.代数式4x2+3mx+9是完全平方式,则m=___________.13.若,则,.14.已知正方形的面积是(x>0,y>0),利用分解因式,写出表示该正方形的边长的代数式.15.观察下列算式:32—12=8,52—32=16,72—52=24,92—72=32,…,请将你发现的规律用式子表示出来:____________________________.16.已知,那么_______.二、解答题(共68分)17.(12分)计算:(1)(-3xy2)3·(x3y)2;(2)4a2x2·(-a4x3y3)÷(-a5xy2);(3);(4).18.(12分)因式分解:(1);(2);(3);(4).19.(4分)解方程:.20.(4分)长方形纸片的长是15㎝,长宽上各剪去两个宽为3㎝的长条,剩下的面积是原面积的.求原面积.21.(4分)已知x2+x-1=0,求x3+2x2+3的值.22.(4分)已知,求的值.3.(4分)给出三个多项式:,,4.(4分)已知,求的值.6.(4分)已知,试判断此三角形的形状.答案一、填空题1.x7 2.3.4.5.6.①②④7.8.12 9.10000 10.11.2 12.13.14. 15. 16.65二、解答题17.(1)-x9y8;(2)ax4y;(3);(4)18.(1);(2);(3);(4)19.3 20.180cm21.4 22.4 23.略24.7 25. 26.等边三角形。
八年级上册数学整式的乘法及因式分解好题附答案

八年级上册数学整式的乘法及因式分解好题附答案评卷人得分一.选择题(共7小题)1.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形2.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)3.设a、b、c是三角形的三边长,且a2+b2+c2=ab+bc+ca,关于此三角形的形状有以下判断:①是等腰三角形;②是等边三角形;③是锐角三角形;④是斜三角形.其中正确的说法的个数是()A.4个 B.3个 C.2个 D.1个4.下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣45.已知多项式2x2+bx+c分解因式为2(x﹣3)(x+1),则b、c的值为()A.b=3,c=﹣1 B.b=﹣6,c=2 C.b=﹣6,c=﹣4 D.b=﹣4,c=﹣66.计算(﹣2)100+(﹣2)99的结果是()A.2 B.﹣2 C.﹣299D.2997.已知a=2002x+2003,b=2002x+2004,c=2002x+2005,则多项式a2+b2+c2﹣ab ﹣bc﹣ca的值为()A.0 B.1 C.2 D.3评卷人得分二.填空题(共8小题)8.多项式x2+mx+5因式分解得(x+5)(x+n),则m=,n=.9.因式分解:x2﹣y2+6y﹣9=.10.已知:x2﹣x﹣1=0,则﹣x3+2x2+2002的值为.11.若a+b=3,ab=2,则a2b+ab2=.12.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.13.下列从左到右的变形中,是因式分解的有①24x2y=4x•6xy ②(x+5)(x﹣5)=x2﹣25 ③x2+2x﹣3=(x+3)(x﹣1)④9x2﹣6x+1=3x(3x﹣2)+1 ⑤x2+1=x(x+)⑥3x n+2+27x n=3x n (x2+9)14.已知实数a,b满足+b2+2b+1=0,则a2+﹣|b|=.15.当k=时,二次三项式x2﹣kx+12分解因式的结果是(x﹣4)(x﹣3).评卷人得分三.解答题(共21小题)16.因式分解:(1)a3﹣4ab2;(2)2a3﹣8a2+8a.17.分解因式(1)x3﹣6x2+9x;(2)a2(x﹣y)+4(y﹣x).18.因式分解:(1)2x2﹣4x+2;(2)(a2+b2)2﹣4a2b2.19.若a2+a=0,求2a2+2a+2015的值.20.已知(19x﹣31)(13x﹣17)﹣(17﹣13x)(11x﹣23)可因式分解成(ax+b)(30x+c),其中a、b、c均为整数,求a+b+c的值.21.已知a﹣b=3,b﹣c=﹣1,求a2+b2+c2﹣ab﹣bc﹣ca的值.22.已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.23.已知a2+ab=3,ab+b2=1,试求a2+2ab+b2,a2﹣b2的值.24.分解因式:(1)2x(a﹣b)﹣(b﹣a)(2)(x2+y2)2﹣4x2y2.25.在实数范围内分解因式:x2﹣5.26.利用因式分解计算:.27.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值;(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.28.计算:(x+2y+z)(x+2y﹣z)29.若a2﹣2a+1=0.求代数式的值.30.已知下列等式:(1)22﹣12=3;(2)32﹣22=5;(3)42﹣32=7,…(1)请仔细观察,写出第4个式子;(2)请你找出规律,并写出第n个式子;(3)利用(2)中发现的规律计算:1+3+5+7+…+2005+2007.31.已知a+=,求下列各式的值:(1)(a+)2;(2)(a﹣)2;(3)a﹣.32.阅读材料后解决问题:小明遇到下面一个问题:计算(2+1)(22+1)(24+1)(28+1).经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2+1)(2﹣1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1请你根据小明解决问题的方法,试着解决以下的问题:(1)(2+1)(22+1)(24+1)(28+1)(216+1)=.(2)(3+1)(32+1)(34+1)(38+1)(316+1)=.(3)化简:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).33.已知a=2002,b=2003,c=2004,求a2+b2+c2﹣ab﹣ac﹣bc的值.34.①若x2+kx+4是完全平方式,则k=;②若x2﹣18xy+m是完全平方式,则m=;③若x2﹣14x+m2是完全平方式,则m=;④若9x2+6xy+m是完全平方式,则m=.35.若a2+b2+4a﹣6b+13=0,试求a b的值.36.已知a+b=5,ab=7,求下列代数式的值:(1)(2)a2﹣ab+b2.八年级上册数学整式的乘法及因式分解好题附答案参考答案与试题解析一.选择题(共7小题)1.已知a,b,c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,判断△ABC的形状()A.等腰三角形B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形【解答】解:由a2c2﹣b2c2=a4﹣b4,得a4+b2c2﹣a2c2﹣b4=(a4﹣b4)+(b2c2﹣a2c2)=(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=(a2﹣b2)(a2+b2﹣c2)=(a+b)(a﹣b)(a2+b2﹣c2)=0,∵a+b>0,∴a﹣b=0或a2+b2﹣c2=0,即a=b或a2+b2=c2,则△ABC为等腰三角形或直角三角形.故选:D.2.把代数式ax2﹣4ax+4a分解因式,下列结果中正确的是()A.a(x﹣2)2B.a(x+2)2C.a(x﹣4)2D.a(x+2)(x﹣2)【解答】解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.故选:A.3.设a、b、c是三角形的三边长,且a2+b2+c2=ab+bc+ca,关于此三角形的形状有以下判断:①是等腰三角形;②是等边三角形;③是锐角三角形;④是斜三角形.其中正确的说法的个数是()A.4个 B.3个 C.2个 D.1个【解答】解:由已知条件a2+b2+c2=ab+bc+ca化简得,则2a2+2b2+2c2=2ab+2bc+2ca,即(a﹣b)2+(b﹣c)2+(a﹣c)2=0∴a=b=c,此三角形为等边三角形,同时也是等腰三角形,锐角三角形,斜三角形故选A.4.下列等式由左边至右边的变形中,属于因式分解的是()A.x2+5x﹣1=x(x+5)﹣1 B.x2﹣4+3x=(x+2)(x﹣2)+3xC.x2﹣9=(x+3)(x﹣3)D.(x+2)(x﹣2)=x2﹣4【解答】解:A、右边不是积的形式,故A错误;B、右边不是积的形式,故B错误;C、x2﹣9=(x+3)(x﹣3),故C正确.D、是整式的乘法,不是因式分解.故选:C.5.已知多项式2x2+bx+c分解因式为2(x﹣3)(x+1),则b、c的值为()A.b=3,c=﹣1 B.b=﹣6,c=2 C.b=﹣6,c=﹣4 D.b=﹣4,c=﹣6【解答】解:由多项式2x2+bx+c分解因式为2(x﹣3)(x+1),得2x2+bx+c=2(x﹣3)(x+1)=2x2﹣4x﹣6.b=﹣4,c=﹣6,故选:D.6.计算(﹣2)100+(﹣2)99的结果是()A.2 B.﹣2 C.﹣299D.299【解答】解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299,故选:D.7.已知a=2002x+2003,b=2002x+2004,c=2002x+2005,则多项式a2+b2+c2﹣ab ﹣bc﹣ca的值为()A.0 B.1 C.2 D.3【解答】解:∵a=2002x+2003,b=2002x+2004,c=2002x+2005,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)],=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=×(1+1+4),=3.故选D.二.填空题(共8小题)8.多项式x2+mx+5因式分解得(x+5)(x+n),则m=6,n=1.【解答】解:∵(x+5)(x+n)=x2+(n+5)x+5n,∴x2+mx+5=x2+(n+5)x+5n∴,∴,故答案为:6,1.9.因式分解:x2﹣y2+6y﹣9=(x﹣y+3)(x+y﹣3).【解答】解:x2﹣y2+6y﹣9,=x2﹣(y2﹣6y+9),=x2﹣(y﹣3)2,=(x﹣y+3)(x+y﹣3).10.已知:x2﹣x﹣1=0,则﹣x3+2x2+2002的值为2003.【解答】解:∵x2﹣x﹣1=0,∴x2﹣x=1,﹣x3+2x2+2002,=﹣x3+x2+x2+2002,=﹣x(x2﹣x)+x2+2002,=﹣x+x2+2002,=1+2002,=2003.故答案为:2003.11.若a+b=3,ab=2,则a2b+ab2=6.【解答】解:a2b+ab2=ab(a+b)=2×3=6.故答案为:6.12.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为﹣2或8.【解答】解:∵x2+2(3﹣m)x+25可以用完全平方式来分解因式,∴2(3﹣m)=±10解得:m=﹣2或8.故答案为:﹣2或8.13.下列从左到右的变形中,是因式分解的有③⑥①24x2y=4x•6xy ②(x+5)(x﹣5)=x2﹣25 ③x2+2x﹣3=(x+3)(x﹣1)④9x2﹣6x+1=3x(3x﹣2)+1 ⑤x2+1=x(x+)⑥3x n+2+27x n=3x n (x2+9)【解答】解:③x2+2x﹣3=(x+3)(x﹣1),⑥3x n+2+27x n=3x n(x2+9)是因式分解,故答案为:③⑥.14.已知实数a,b满足+b2+2b+1=0,则a2+﹣|b|=22.【解答】解:∵+b2+2b+1=+(b+1)2=0,∴a2﹣5a+1=0,b+1=0,即a+=5,b=﹣1,∴a2+=(a+)2﹣2=25﹣2=23,则a2+﹣|b|=23﹣1=22.故答案为:2215.当k=7时,二次三项式x2﹣kx+12分解因式的结果是(x﹣4)(x﹣3).【解答】解:∵(x﹣4)(x﹣3)=x2﹣7x+12,∴﹣k=﹣7,k=7.故应填7.三.解答题(共21小题)16.因式分解:(1)a3﹣4ab2;(2)2a3﹣8a2+8a.【解答】解:(1)a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b);(2)2a3﹣8a2+8a=2a(a2﹣4a+4)=2a(a﹣2)2.17.分解因式(1)x3﹣6x2+9x;(2)a2(x﹣y)+4(y﹣x).【解答】解:(1)原式=x(x2﹣6x+9)=x(x﹣3)2;(2)原式=a2(x﹣y)﹣4(x﹣y)=(x﹣y)(a2﹣4)=(x﹣y)(a+2)(a﹣2).18.因式分解:(1)2x2﹣4x+2;(2)(a2+b2)2﹣4a2b2.【解答】解:(1)原式=2(x2﹣2x+1)=2(x﹣1)2,(2)原式=(a2+b2+2ab)(a2+b2﹣2ab)=(a+b)2(a﹣b)2.19.若a2+a=0,求2a2+2a+2015的值.【解答】解:∵a2+a=0,∴原式=2(a2+a)+2015=2015.20.已知(19x﹣31)(13x﹣17)﹣(17﹣13x)(11x﹣23)可因式分解成(ax+b)(30x+c),其中a、b、c均为整数,求a+b+c的值.【解答】解:(19x﹣31)(13x﹣17)﹣(17﹣13x)(11x﹣23)=(19x﹣31)(13x﹣17)+(13x﹣17)(11x﹣23)=(13x﹣17)(30x﹣54)∴a=13,b=﹣17,c=﹣54,∴a+b+c=﹣58.21.已知a﹣b=3,b﹣c=﹣1,求a2+b2+c2﹣ab﹣bc﹣ca的值.【解答】解:原式=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]∵a﹣b=3,b﹣c=﹣1,∴a﹣c=2∴原式=×[32+22+(﹣1)2]=7.22.已知x2+y2﹣4x+6y+13=0,求x2﹣6xy+9y2的值.【解答】解:∵x2+y2﹣4x+6y+13=(x﹣2)2+(y+3)2=0,∴x﹣2=0,y+3=0,即x=2,y=﹣3,则原式=(x﹣3y)2=112=121.23.已知a2+ab=3,ab+b2=1,试求a2+2ab+b2,a2﹣b2的值.【解答】解:∵a2+ab=3,ab+b2=1∴a2+2ab+b2=a2+ab+ab+b2=3+1=4;a2﹣b2=a2+ab﹣(ab+b2)=3﹣1=2.24.分解因式:(1)2x(a﹣b)﹣(b﹣a)(2)(x2+y2)2﹣4x2y2.【解答】解:(1)2x(a﹣b)﹣(b﹣a)=2x(a﹣b)+(a﹣b)=(a﹣b)(2x+1);(2)(x2+y2)2﹣4x2y2=(x2+y2﹣2xy)(x2+y2+2xy)=(x﹣y)2(x+y)2.25.在实数范围内分解因式:x2﹣5.【解答】解:x2﹣5=(x﹣)(x+).26.利用因式分解计算:.【解答】解:原式=(1﹣)(1+)(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=×××××…×××=×=27.阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴(m﹣n)2+(n﹣4)2=0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.根据你的观察,探究下面的问题:(1)已知x2﹣2xy+2y2+6y+9=0,求xy的值;(2)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2﹣10a﹣12b+61=0,求△ABC的最大边c的值;(3)已知a﹣b=8,ab+c2﹣16c+80=0,求a+b+c的值.【解答】解:(1)∵x2﹣2xy+2y2+6y+9=0,∴(x2﹣2xy+y2)+(y2+6y+9)=0,∴(x﹣y)2+(y+3)2=0,∴x﹣y=0,y+3=0,∴x=﹣3,y=﹣3,∴xy=(﹣3)×(﹣3)=9,即xy的值是9.(2)∵a2+b2﹣10a﹣12b+61=0,∴(a2﹣10a+25)+(b2﹣12b+36)=0,∴(a﹣5)2+(b﹣6)2=0,∴a﹣5=0,b﹣6=0,∴a=5,b=6,∵6﹣5<c<6+5,c≥6,∴6≤c<11,∴△ABC的最大边c的值可能是6、7、8、9、10.(3)∵a﹣b=8,ab+c2﹣16c+80=0,∴a(a﹣8)+16+(c﹣8)2=0,∴(a﹣4)2+(c﹣8)2=0,∴a﹣4=0,c﹣8=0,∴a=4,c=8,b=a﹣8=4﹣8=﹣4,∴a+b+c=4﹣4+8=8,即a+b+c的值是8.28.计算:(x+2y+z)(x+2y﹣z)【解答】解:原式=[(x+2y)+z][(x+2y)﹣z]=(x+2y)2﹣z2=x2+4xy+4y2﹣z2 29.若a2﹣2a+1=0.求代数式的值.【解答】解:由a2﹣2a+1=0得(a﹣1)2=0,∴a=1;把a=1代入=1+1=2.故答案为:2.30.已知下列等式:(1)22﹣12=3;(2)32﹣22=5;(3)42﹣32=7,…(1)请仔细观察,写出第4个式子;(2)请你找出规律,并写出第n个式子;(3)利用(2)中发现的规律计算:1+3+5+7+…+2005+2007.【解答】解:(1)依题意,得第4个算式为:52﹣42=9;(2)根据几个等式的规律可知,第n个式子为:(n+1)2﹣n2=2n+1;(3)由(2)的规律可知,1+3+5+7+…+2005+2007=1+(22﹣12)+(32﹣22)+(42﹣32)+…+(10042﹣10032)=10042.31.已知a+=,求下列各式的值:(1)(a+)2;(2)(a﹣)2;(3)a﹣.【解答】解:(1)把a+=代入得:(a+)2=()2=10;(2)∵(a+)2=a2++2=10,∴a2+=8,∴(a﹣)2=a2+﹣2•a•=8﹣2=6;(3)a﹣=±=±.32.阅读材料后解决问题:小明遇到下面一个问题:计算(2+1)(22+1)(24+1)(28+1).经过观察,小明发现如果将原式进行适当的变形后可以出现特殊的结构,进而可以应用平方差公式解决问题,具体解法如下:(2+1)(22+1)(24+1)(28+1)=(2+1)(2﹣1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1请你根据小明解决问题的方法,试着解决以下的问题:(1)(2+1)(22+1)(24+1)(28+1)(216+1)=232﹣1.(2)(3+1)(32+1)(34+1)(38+1)(316+1)=.(3)化简:(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).【解答】解:(1)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)(216+1)=232﹣1;故答案为:232﹣1(2)原式=(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)=;故答案为:;(3)(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16).当m≠n时,原式=(m﹣n)(m+n)(m2+n2)(m4+n4)(m8+n8)(m16+n16)=;当m=n时,原式=2m•2m2…2m16=32m31.33.已知a=2002,b=2003,c=2004,求a2+b2+c2﹣ab﹣ac﹣bc的值.【解答】解:∵2(a2+b2+c2﹣ab﹣ac﹣bc),=a2+b2﹣2ab+a2+c2﹣2ac+b2+c2﹣2bc,=(a﹣b)2+(a﹣c)2+(b﹣c)2,=(2002﹣2003)2+(2002﹣2004)2+(2003﹣2004)2=1+4+1,=6,∴a2+b2+c2﹣ab﹣ac﹣bc=3.34.①若x2+kx+4是完全平方式,则k=±4;②若x2﹣18xy+m是完全平方式,则m=81y2;③若x2﹣14x+m2是完全平方式,则m=±7;④若9x2+6xy+m是完全平方式,则m=y2.【解答】解:①中间一项为加上或减去x和2的积的2倍,故k=±4;②中间项为两数乘积的2倍,即:18xy=2•x•9y,而首项为x的平方,所以尾项为(9y)2,故m=81y2;③∵x2﹣14x+m=x2﹣2•x•7+m2,∴m2=72,∴m=±7;④∵9x2+6xy+m=(3x)2+2•3x•y+m,∴m=y2.故答案为±4;81y2;±7;y2.35.若a2+b2+4a﹣6b+13=0,试求a b的值.【解答】解:∵a2+b2+4a﹣6b+13=(a2+4a+4)+(b2﹣6b+9)=(a+2)2+(b﹣3)2=0,∵(a+2)2≥0,(b﹣3)2≥0,∴a+2=0,b﹣3=0,∴a=﹣2,b=3,∴a b=(﹣2)3=﹣8.36.已知a+b=5,ab=7,求下列代数式的值:(1)(2)a2﹣ab+b2.【解答】解:(1)=[(a+b)2﹣2ab]=(a+b)2﹣ab.原式=;(2)a2﹣ab+b2=(a+b)2﹣3ab;原式=4.。
人教版 八年级上册数学整式的乘除与因式分解精选分类练习题及答案

分类练习题及答案【练习1】 已知yx yx 11,200080,200025+==则等于 . 【练习2】 满足3002003)1(>-x 的x 的最小正整数为 .【练习3】 化简)2(2)2(2234++-n n n 得 . 【练习4】 计算220032003])5[()04.0(-⨯得 .【练习5】 4)(z y x ++的乘积展开式中数字系数的和是 .【练习6】若多项式7432+-x x 能表示成c x b x a ++++)1()1(2的形式;求a ;b ;c . 【练习7】若=-+=-+=+-c b a c b a c b a 13125,3234,732则( )A.30 B.-30 C.15 D.-15【练习8】 若=-+-=-+=++z y x z y x z y x 则,473,6452 .【练习9】 如果代数式2,635-=-++x cx bx ax 当时的值是7;那么当2=x 时;该代数式的值是 .【练习10】 多项式12+-x x 的最小值是 .分类练习题及答案【练习1】下列各式得公因式是a得是()A.ax+ay+5 B.3ma-6ma2 C.4a2+10ab D.a2-2a+ma【练习2】-6xyz+3xy2-9x2y的公因式是()A.-3x B.3xz C.3yz D.-3xy【练习3】把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是()A.8(7a-8b)(a-b) B.2(7a-8b)2 C.8(7a-8b)(b-a)D.-2(7a-8b)【练习4】把(x-y)2-(y-x)分解因式为()A.(x-y)(x-y-1) B.(y-x)(x-y-1)C.(y-x)(y-x-1) D.(y-x)(y-x+1)【练习5】下列各个分解因式中正确的是()A.10ab2c+6ac2+2ac=2ac(5b2+3c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)【练习6】观察下列各式①2a+b和a+b;②5m(a-b)和-a+b;③3(a+b)和-a -b;④x2-y2和x2和y2。
八年级数学上册整式乘除与因式分解练习题

八年级数学上册整式乘除与因式分解练习题(含答案解析)学校:___________姓名:___________班级:___________一、单选题1.下列计算中,正确的是( )A .()22345a b a b =B .()2224436x y x y =C .()33xy xy -=-D .()23264m n m n -= 2.下列运算中,正确的是( )A .3515x x x ⋅=B .235x y xy +=C .22(2)4x x -=-D .()2242235610x x y x x y ⋅-=- 3.下列计算正确的是( )A .333.2a a a =B .()532a a =C .532a a a ÷=D .22(2)4a a -=-4.下列运算结果正确的是( )A .23a a a +=B .55a a a ÷=C .236a a a ⋅=D .437()a a = 5.若33a b -=,则(2)(2)a b a b +--的值为( )A .13-B .13C .3D .3-6.下列因式分解错误的是( )A .2116(14)(14)a a a -=+-B .()321x x x x -=-C .222()()-=+-a b c a bc a bcD .224220.010.10.1933⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭m n n m m n 7.若a +5=2b ,则代数式a 2﹣4ab +4b 2﹣5的值是( )A .0B .﹣10C .20D .﹣308.如图所示的运算程序中,若开始输入x 的值是7,第1次输出的结果是12,第2次输出的结果是6,依次继续下去…,第2021次输出的结果是( )A .3B .4C .7D .89.如图,一正方形的边长增加3cm ,它的面积就增加299cm ,这个正方形的边长为( )A .16cmB .15cmC .14cmD .13cm 二、填空题10.下列多项式中,能运用公式法因式分解的有____.①-a 2+b 2;①4x 2+4x +1;①-x 2-y 2;①-x 2+8x -16;①x 4-1;①m 2+4m -4.11.已知a ,b 是方程x 2+x -3=0的两个实数根,则a 2+b 2+2015的值是___.12.(am )n =_____(m 、n 都是正整数)幂的乘方,底数___,指数____.13.若2249x mxy y -+是一个完全平方式,则m =______14.若10m n +=,5mn =,则22m n +的值为_______.15.已知代数式22(21)4a t ab b +-+是一个完全平方式,则实数t 的值为____________.16.若a 是方程210x x --=的一个根,则322020a a -++的值为__17.按一定规律排列的数据依次为12,45,710,1017……按此规律排列,则第30个数是 _____. 三、解答题18.计算:+((2022202222.19.已知:多项式x 2+4x +5可以写成(x ﹣1)2+a (x ﹣1)+b 的形式.(1)求a ,b 的值;(2)△ABC 的两边BC ,AC 的长分别是a ,b ,求第三边AB 上的中线CD 的取值范围.20.已经11x y ==(1)222x xy y -+;(2)22x y -21.某同学做一道题,已知两个多项式A 、B ,求2A B -的值.他误将“2A B -”看成“2A B +”,经过正确计算得到的结果是2146x x +-.已知2251=-+-A x x .(1)请你帮助这位同学求出正确的结果;(2)若x 是最大的负整数,求2A B -的值.222与2的大小;224-=,1619<45<<,2240-=>,22>.请根据上述方法解答以下问题:(1;(2)比较23-的大小,并说明理由.23.请阅读下列材料:问题:已知2x =,求代数式247--x x 的值.小敏的做法是:根据2x =得2(2)5x -=,2445x x ∴-+=,得:241x x -=.把24x x -作为整体代入:得247176--=-=-x x .即:把已知条件适当变形,再整体代入解决问题.请你用上述方法解决下面问题:(1)已知2x =,求代数式2410+-x x 的值;(2)已知x =321x x -+的值. 24.求下列各式的值:(1)若a ,b 互为相反数,求(2)(2)a x y b y x ---的值;(2)已知43210x x x x ++++=,求23420041+++++⋅⋅⋅+x x x x x 的值.25.分解因式:(1)2()4a b ab -+;(2)(4)(1)3p p p -++;(3)22344xy x y y --;(4)2233ax ay -.26.阅读材料:选取二次三项式2ax bx c ++(0a ≠)中两项,配成完全平方式的过程叫配方,配方的基本形式是完全平方公式的逆写,即()2222a ab b a b ±+=±.例如:()224222x x x -+=--请根据阅读材料解决下列问题:(1)比照上面的例子,将二次三项式249x x -+配成完全平方式;(2)将4224x x y y ++分解因式; (3)已知a 、b 、c 是ABC ∆的三边长,且满足()222220a b c b a c ++-+=,试判断此三角形的形状.参考答案:1.D【分析】根据幂的乘方与积的乘方法则,求出每个式子的值,即可判断,得到答案.【详解】解:A.()22346a b a b =,故此项错误; B. ()2224439x y x y =,故此项错误; C. ()333xy x y -=-,故此项错误;D. ()23264m n m n -=,故此项正确;、 故选:D .【点睛】本题考查了幂的乘方和积的乘方等知识点,能正确求出每个式子的值是解此题的关键.2.D【分析】根据同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则分析选项即可知道答案.【详解】解:A. 根据同底数幂的乘法法则可知:358⋅=x x x ,故选项计算错误,不符合题意;B. 2x 和3y 不是同类项,不能合并,故选项计算错误,不符合题意;C. 根据完全平方公式可得:22(2)44-=+-x x x ,故选项计算错误,不符合题意;D. ()2242235610x x y x x y ⋅-=-,根据单项式乘多项式的法则可知选项计算正确,符合题意;故选:D【点睛】本题考查同底数幂的乘法法则,合并同类项,完全平方公式,单项式乘多项式的法则.3.C【分析】直接利用同底数幂的乘法与除法、幂的乘方以及积的乘方,判断即可得出答案.【详解】解:A 、336·=a a a ,故此选项错误;B 、()236a a =,故此选项错误; C 、532a a a ÷=,故此选项正确;D 、22(2)4a a -=,故此选项错误;故选:C .【点睛】此题主要考查了同底数幂的乘法运算,幂的乘方,积的乘方运算以及同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.4.A【分析】根据合并同类项判断A 选项;根据同底数幂的除法判断B 选项;根据同底数幂的乘法判断C 选项;根据幂的乘方判断D 选项.【详解】解:A 选项,原式3=a ,故该选项符合题意;B 选项,原式4a =,故该选项不符合题意;C 选项,原式5a =,故该选项不符合题意;D 选项,原式12a =,故该选项不符合题意;故选:A .【点睛】本题考查了合并同类项,同底数幂的乘除法,幂的乘方与积的乘方,掌握()m n mn a a =是解题的关键.5.D【分析】先去括号,再合并同类项,然后把a −3b =3代入进行计算即可解答.【详解】解:①33a b -=,①(2)(2)a b a b +--22a b a b =+-+3b a =-()3a b =--3=-故选:D .【点睛】本题考查了整式的加减−化简求值,准确熟练地进行计算是解题的关键.6.B【分析】根据因式分解的步骤,先提公因式,再用公式法分解,即可求得答案.注意分解要彻底.【详解】解:A 、2116(14)(14)a a a -=+-,故本选项正确;B 、()()()32111x x x x x x x -=-=+-,故本选项错误;C 、222()()-=+-a b c a bc a bc ,故本选项正确;D 、224220.010.10.1933⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭m n n m m n ,故本选项正确. 故选:B .【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.7.C【分析】根据完全平方公式和代数式的性质计算,即可得到答案.【详解】①a +5=2b ,①a ﹣2b =﹣5,①a 2﹣4ab +4b 2﹣5=(a ﹣2b )2﹣5=25﹣5=20,故选:C .【点睛】本题考查了代数式、完全平方公式的知识;解题的关键是熟练掌握完全平方公式的性质,从而完成求解.8.B【分析】根据题意可以先求出前几次输出结果,发现规律:从第2次开始,6,3,8,4,2,1,每次6个数循环,进而可得以第2021次输出的结果与第5次输出的结果一样.【详解】解:根据题意可知:开始输入x 的值是7,第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是3,第4次输出的结果是8,第5次输出的结果是4,第6次输出的结果是2,第7次输出的结果是1,第8次输出的结果是6,依次继续下去,…,发现规律:从第2次开始,6,3,8,4,2,1,每次6个数循环,因为(2021-1)÷6=336…4,所以第2021次输出的结果与第5次输出的结果一样是4.故选:B .【点睛】本题考查了规律型:数字的变化类,有理数的混合运算,代数式求值,解决本题的关键是根据数字的变化寻找规律.9.B【分析】根据题意可得()22399x x +-=,然后求解即可.【详解】解:由题意得:()22399x x +-=,解得:15x =,故选B .【点睛】本题主要考查完全平方公式的应用,熟练掌握完全平方公式的应用是解题的关键.10.①①①①【分析】利用完全平方公式及平方差公式的特征判断即可.【详解】(1)可用平方差公式分解为()()b a b a +-;(2)可用完全平方公式分解为()221x +;(3)不能用平方差公式分解;(4)可用完全平方公式分解为()24x --;(5)可用平方差公式分解为()()()2111x x x +-+; (6)不能用完全平方公式分解.能运用公式法因式分解的有: ①①①①【点睛】此题考查了因式分解−运用公式法,熟练掌握完全平方公式及平方差公式是解本题的关键. 11.2022【分析】由根与系数的关系及完全平方公式的变形应用,即可完成计算.【详解】①a ,b 是方程x 2+x -3=0的两个实数根,①a +b =-1,ab =-3,①22222015()22015(1)2(3)20152022a b a b ab ++=+-+=--⨯-+=,故答案为:2022.【点睛】本题考查了一元二次方程根与系数的关系,完全平方公式的变形应用,掌握这两个知识是解题的关键.12. a m n 不变 相乘【解析】略13.12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】①2249x mxy y -+是一个完全平方式,①22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键.14.90【分析】将22m n +变形得到()22m n mn +-,再把10m n +=,5mn =代入进行计算求解.【详解】解:①10m n +=,5mn =,①22m n +()22m n mn =+-21025=-⨯ 10010=-90=.故答案为:90.【点睛】本题主要考查了代数式求值,完全平方公式的应用,灵活运用完全平方公式是解答关键.15.52或32- 【分析】直接利用完全平方公式求解.【详解】解:①代数式22(21)4a t ab b +-+是一个完全平方式,①()()()222222(21)4222a t ab b a b a b a b +-+++±=±±⋅⋅=,①214t -=±, 解得52t =或32t =-, 故答案为:52或32- 【点睛】本题考查了完全平方公式的运用,熟记完全平方公式的特点是解题的关键.16.2019【分析】首先根据a 是方程210x x --=的一个根,可得21a a -=,再把代数式322020a a -++进行恒等变式,化为含有2-a a 的式子,据此即可解答.【详解】解:①a 是方程210x x --=的一个根,①210a a --=,①21a a -=,①322020a a -++()322020a a =--+ ()3222020a a a a a =--+--+()212020a a a a ⎡⎤=--+-+⎣⎦ ()12020a a =-+-+12020=-+=2019故答案为:2019.【点睛】本题考查了代数式求值及恒等变式问题,熟练掌握和运用代数式求值及恒等变式的方法是解决本题的关键.17.88901【分析】由所给的数,发现规律为第n 个数是2321n n -+,当n =30时即可求解. 【详解】解:①12,45,710,1017…, ①第n 个数是2321n n -+, 当n =30时,2321n n -+=23302301⨯-+=88901, 故答案为:88901. 【点睛】本题考查数字的变化规律,能够通过所给的数,探索出数的一般规律是解题的关键.18.(1)6(2)7【分析】(1)先根据乘法分配律和二次根式的乘法运算法则进行计算,再化为最简二次根式,最后合并同类二次根式即可;(2)先根据二次根式的除法运算法则和逆用积的乘方运算进行计算,再利用平方差公式计算乘法,化简后合并同类项即可.(1)解:原式=6(2)解:原式(202222⎡⎤⎣⎦=()2022845--=8-1=7.【点睛】本题考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.19.(1)6a =,10b =(2)2<CD <8【分析】(1)把()()211x a x b -+-+展开,然后根据多项式x 2+4x +5可以写成(x ﹣1)2+a (x ﹣1)+b 的形式,可得2415a a b -=⎧⎨-+=⎩,即可求解; (2)延长CD 至点H ,使CD =DH ,连接AH ,可得①CDB ①①HAD ,从而得到BC =AH =a =6,再根据三角形的三边关系,即可求解.(1)解:①()()211x a x b -+-+221x x ax a b =-++-+ ()221x a x a b =+-+-+,根据题意得:x 2+4x +5=(x ﹣1)2+a (x ﹣1)+b①2415a a b -=⎧⎨-+=⎩,解得:610a b =⎧⎨=⎩; (2)解:如图,延长CD 至点H ,使CD =DH ,连接AH ,①CD 是AB 边上的中线,①BD =AD ,在①CDB 和①HDA 中,①CD =DH ,①CDB =①ADH ,BD =DA ,①①CDB ①①HDA (SAS ),①BC =AH =a =6,在①ACH 中,AC -AH <CH <AC +AH ,①10-6<2CD <10+6,①2<CD <8.【点睛】本题主要考查了全等三角形的判定和性质,整式乘法和二元一次方程组的应用,三角形的三边关系,熟练掌握全等三角形的判定和性质,整式乘法法则,三角形的三边关系是解题的关键.20.(1)12(2)【分析】(1)根据完全平方公式写成2()x y -,把x 、y 的值代入计算即可;(2)根据平方差公式写成(x +y )(x -y ),把x 、y 的值代入计算即可.(1)解:22222()12x xy y x y -+=-==(; (2)解:22)()2x y x y x y -=+-=⨯(. 【点睛】本题主要考查利用乘法公式进行二次根式的化简,熟记乘法公式是解题的关键.21.(1)2-2544A B x x =--+(2)3【分析】(1)根据题意22146B x x A =+--,然后进行计算求出2B ,最后求出2A B - 即可解答; (2)由题意可知1x =-,然后代入(1)的结论进行计算即可解答(1)解:由题意,得()222146251B x x x x =+---+-222146251395=+-+-+=+-x x x x x x ,所以,()222222251395251395544A B x x x x x x x x x x -=-+--+-=-+---+=--+(2)解:由x 是最大的负整数,可知1x =-,①225(1)4-=-⨯--A B (1)45443⨯-+=-++=.【点睛】本题考查了整式的加减,整式加减的实质是去括号合并同类项,准确熟练地运用相关法则进行计算是解题的关键.22.(1)>;(2)3-<2【分析】(134,从而可得答案;(245,从而可得:0<50<2(3)-,从而可得答案.【详解】解:(1)327<3∴4;(2)16<4∴5,0∴<50∴<32+0∴<2(3)-,3-<223-.【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.23.(1)9-;(2)0.【分析】(1)先将原式配方变形后,将x 的值代入计算即可求出值;(2)先求出2x 的值,原式变形后,将各自的值代入计算即可求出值.(1) 解:52x =-,2x ∴+则原式2(44)14x x =++-2(2)14=+-x214=-514=-9=-;(2) 解:52x -=,22x ∴==, 则原式2(2)1x x =-+2)1+1 1514-=+ 11=-+0=.【点睛】本题考查了二次根式的化简求值、求代数式的值,解题的关键是熟练掌握运算法则.24.(1)0;(2)0【分析】(1)先提取公因式分解因式再将0a b +=代入即可得出答案;(2)将原式分组分解为含4321x x x x ++++的式子,再将43210x x x x ++++=代入即可得出答案.【详解】解:(1)a ,b 互为相反数,0a b ∴+=(2)(2)a x y b y x ---∴()()22a x y b x y =-+-()()2x y a b =-+()20x y =-⨯0=;(2)43210x x x x ++++=23420041x x x x x +++++⋅⋅⋅+∴()()()23456789200020012002200320041...x x x x x x x x x x x x x x =+++++++++++++++()()()2345234200023411...1x x x x x x x x x x x x x x =+++++++++++++++00...0=+++0=【点睛】本题考查了提公因式分解因式及分组分解因式,根据式子特点选择合适的分解方法是解题的关键. 25.(1)2()a b +;(2)(2)(2)p p +-;(3)2(2)y x y --;(4)()(3)a x y x y +-【分析】(1)先利用完全平方公式展开,合并同类项,再用完全平方公式分解因式;(2)先用整式乘法法则去括号,再合并同类项,然后利用平方差公式分解因式;(3)先提公因式,再用完全平方公式分解因式;(4)先提公因式,然后利用平方差公式分解因式.【详解】解:(1)原式=()222222+4=+2+=+a ab b ab a ab b a b -+;(2)原式=()()22+443=4=2+2p p p p p p p --+--; (3)原式=()()2224+4+=2y xy x y y x y ----; (4)原式=()()()223=3+a x y a x y x y --. 【点睛】本题考查因式分解,熟练掌握提取公因式、完全平方公式、平方差公式是关键.26.(1)()224925x x x -+=-+;(2)()()2222x y xy x y xy +++-;(3)等边三角形 【分析】(1)选取二次项和一次项根据完全平方公式的形式进行配方即可;(2)首先把4x 和4y 配成完全平方公式,然后利用平方差公式法分解因式即可;(3)首先根据完全平方公式整理()222220a b c b a c ++-+=为()()220a b b c -+-=,即可得出a b c ==,即可判断此三角形的形状.【详解】解:(1)()224925x x x -+=-+(2)4224x x y y ++()()()4224222222222222x x y y x y x y x y x y xy x y xy =++-=+-=+++- (3)①()222220a b c b a c ++-+=,①2222220a b c ba bc ++--=,①()()220a b b c -+-=,①0a b -=,0b c -=,①a b =,b c =,①a b c ==,①此三角形为等边三角形.【点睛】此题考查了完全平方公式的运用和完全平方公式法因式分解,解题的关键是熟练掌握完全平方公式的形式.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整式的乘除与因式分解
一、填空题
1.-x 2·(-x )3·(-x )2=__________.
2.分解因式:4mx +6my =_________.
3.=-∙-3245)()(a a ___ ____.
4.201()3
π+=_________; 5. 4101×0.2599=__________.
6.①a 2-4a +4,②a 2+a +
14,③4a 2-a +14
,•④4a 2+4a +1,•以上各式中属于完全平方式的有____ __(填序号).
7.(4a 2-b 2)÷(b -2a )=________.
8.若x +y =8,x 2y 2=4,则x 2+y 2=_________.
9.计算:832+83×34+172=________.
10.=÷-+++++++1214213124)42012(m m m m m m m m b a b a b a b a + .
11.已知==-=-y x y x y x ,则,21222 . 12.代数式4x 2+3mx +9是完全平方式,则m =___________.
13.若22210a b b -+-+=,则a = ,b = .
14.已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .
15.观察下列算式:32—12=8,52—32=16,72—52=24,92—72=32,…,请将你发现的规律用式子表示出来:____________________________.
16.已知13x x +
=,那么441x x
+=_______. 二、解答题
17.计算:(1)(-3xy 2)3·(
61x 3y )2; (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);
(3)222)(4)(2)x y x y x y --+(; (4)221(2)(2))x x x x x -+-+-(.
18.因式分解:
(1)3123x x -; (2)2222)1(2ax x a -+;
(3)xy y x 2122--+; (4))()3()3)((22a b b a b a b a -+++-.
19.解下列方程或不等式组:
41)8)(12()52)(3(=-+--+x x x x , (x+2)
(x ﹣3)﹣(x ﹣6)(x ﹣1)=0;
(2x ﹣5)2+(3x+1)2>13(x 2﹣10), 2(x ﹣3)(x+5)﹣(2x ﹣1)(x+7)≤4.
20.长方形纸片的长是15㎝,长宽上各剪去两个宽为3㎝的长条,剩下的面积是原面积的5
3.求原面积.
21.若x ﹣y=1,xy=2,求x 3y ﹣2x 2y 2+xy 3.
22.已知x 2+x -1=0,求x 3+2x 2+3的值.
23.已知22==+ab b a ,,求32232
121ab b a b a ++的值.
24.给出三个多项式:
2112x x +-,21312x x ++,212
x x -,请你选择掿其中两个进行加减运算,并把结果因式分解.
25.已知222450a b a b ++-+=,求2243a b +-的值.
26.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.
27.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.
28.已知n m ,是实数,且满足
,02649422=++-+n m n m 那么分式1444
241822-+++m m n n 的值.。