二元一次方程组基础中等难度测试题

合集下载

中考数学总复习《二元一次方程组》专项测试卷(附答案)

中考数学总复习《二元一次方程组》专项测试卷(附答案)

中考数学总复习《二元一次方程组》专项测试卷(附答案)一、单选题(共12题;共24分)1.方程组 {y =2x 3x +y =15,的解是( ) A .{x =3y =6,B .{x =4y =3, C .{x =4y =8,D .{x =2y =3,2.以下是方程3x +2y =12的一个解的是( )A .{x =−1y =2B .{x =2y =−1C .{x =2y =3D .{x =3y =23.如图,在某张桌子上放相同的木块, R =32 , S =96 ,则桌子的高度是( )A .63B .58C .60D .644.已知{x =1,y =−2是关于x ,y 的二元一次方程ax +y =1的一个解,那么a 的值为( ) A .3B .1C .-1D .-35.已知关于x 、y 的方程组 {x +y =1−ax −y =3a +5 ,满足 x ≥12y ,则下列结论:①a ≥−2 ;②a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组{x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( ) A .1个B .2个C .3个D .4个6.一个长方形的长减少3cm ,宽增加2cm ,就成为一个正方形,并且长方形的面积与正方形的面积相等.如果设这个长方形的长为xcm ,宽为ycm ,那么所列方程组正确的是( )A .{x +3=y −2(x +3)(y −2)=xyB .{x −3=y +2(x −3)(y +2)=xyC .{3−x =y +2(3−x)(y +2)=xyD .{x −2=y +3(x −2)(y +3)=xy7.若 |b +2|+(a −3)2=0 ,则 b a 的值为( )A .﹣bB .−18C .﹣8D .88.已知关于 x,y 的二元一次方程组 {3x +y =−4m +2x −y =6 的解满足 x +y <3 ,则m 的取值范围是( ) A .m >−52B .m <−52C .m >52D .m <529.已知关于x ,y 的二元一次方程ax +b =y ,当x 取不同值时,对应y 的值分别如下表所示:x … -1 0 1 2 3 … y…321-1…A .x <0B .x >0C .x <2D .x >210.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2(见下页).图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{3x +2y =19x +4y =23,类似地,图2所示的算筹图我们可以表述为A .{2x +y =114x +3y =27B .{2x =y =114x +3y =22C .{3x +2y =19x +4y =23D .{2x +y =64x +3y =2711.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( ) A .54B .45C .27D .7212.用代入消元法解方程组 {3x −y =2,①y =1−2x ,② 时,把②代入①,得( )A .3x-1-2x= 2B .3x-(1-2x )= 2C .3x+(1-2x )=2D .3(1-2x )-y=2二、填空题(共6题;共6分)13.若 (a −1)2+|b −2|=5 ,则以a 、b 为边长的等腰三角形的周长为 14.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形的长与宽之比为5:3,则AD :AB=15.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品(必须保证买两种),共花35元.毽子单价3元,跳绳单价5元,关于购买毽子和跳绳两种体育用品的数量购买的方案共有种.16.如果√x−2+(2y+1)2=0,那么xy=17.方程x2-y2=31的正整数解为。

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)

初中数学二元一次方程组经典练习题(含答案)解下列二元一次方程组:1. {x +y = 2 3x +7y =10;2.{x +3y = 810x −y =18;3.{3x +2y =1364x −3y =1;4.{ x+52+y−43=2x+20.3−y+70.4= −10 ;5.{ 4x −3y =−1 x 5=y 7 ;6. {3(x +2)=2(y +3)4(x −2)=3(y −3);7.{ x 5+y 7=10 x 3−y 4=3;8.{x 2+y 3=42x +7y =50 ;9.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ;10.{0.2x +0.5y =9x+22+y+105=15 ;11.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3;12.{x+2y 2 +x−2y 3 = 113(x +2y )−4(x −2y )=30 ;参考答案1. {x +y = 23x +7y =10 ;解: {x +y = 2−−−−−−①3x +7y =10−−−−②①×3,得3x+3y=6-------③②-③,得4y=4,即y=1将y=1代入①,解得x=1故原方程组的解是: {x =1y =12.{x +3y = 810x −y =18; 解:{x +3y = 8−−−−−−−①10x −y =18−−−−−−②②×3,得 30x-3y=54----③①+③,得31x=62,即x=2将x=2代入①,得2+3y=8,y=2故原方程组的解是: {x =2y =23.{3x +2y =1364x −3y =1; 解:{3x +2y =136−−−−−−①4x −3y =1−−−−−−② ①×3,得9x+6y= 132------③ ②×2,得8x-6y=2-----④③+④,得17x= 172 ,x= 12 将x= 12代入②,2-3y=1,y= 13 故原方程组的解是: {x = 12y = 134.{ x+52+y−43=2 x+20.3−y+70.4= −10; 解:{ x+52+y−43=2 −−−−−−−① x+20.3−y+70.4= −10−−−−−−②①等号两边同时乘以6,得3(x+5)+2(y-4)=123x+15+2y-8=12整理,得3x+2y=5----------③②等号两边同时乘以0.3×0.4,得0.4(x+2)-0.3(y+7)=-1.2两边同时乘以10,得4(x+2)-3(y+7)=-124x+8-3y-21=-12整理,得4x-3y=1--------④③×3,得9x+6y=15------⑤④×2,得8x-6y=2-------⑥⑤+⑥,得17x=17,即x=1将x=1代入③,得3+2y=5,y=1故原方程组的解是: {x =1y =15.{ 4x −3y =−1 x 5=y 7 ; 解:{ 4x −3y =−1 −−−−−−−−−−−① x 5=y 7−−−−−−−−−−−−−−−② ②变化为x= 57 y--------------③ 将③代入①,得4×57y -3y=-1 20−217 y =-1,整理得y=7将y=7代入③,得x= 57 ×7,x=5 故原方程组的解是: {x =5y =76. {3(x +2)=2(y +3)4(x −2)=3(y −3); 解:{3(x +2)=2(y +3)4(x −2)=3(y −3)方程组去括号,得{3x +6=2y +64x −8=3y −9整理得{3x −2y =0−−−−①4x −3y +1=0−−②①×3,得9x-6y=0--------③②×2, 得8x-6y+2=0------④③-④,得x-2=0,即x=2将x=2代入①,得6-2y=0,y=3故原方程组的解是: {x =2y =37.{ x 5+y 7=10 x 3−y 4=3; 解:{ x 5+y 7=10 x 3−y 4=3 方程组去分母,得{ 7x +5y =350−−−−−−①4x −3y =36−−−−−−−②①×3,得21x+15y=1050---③②×5,得20x-15y=180----④③+④,得41x=1230,即x=30将x=30代入①,得210+5y=350,y=28故原方程组的解是: {x =30y =288.{x 2+y 3=4 2x +7y =50; 解:{x 2+y 3=4 2x +7y =50方程组去分母,得{3x +2y =24−−−−−−−① 2x +7y =50−−−−−−−②①×2,得6x+4y=48-----③②×3,得6x+21y=150---④④-③,得17y=102,即y=6将y=6代入① ,得3x+12=24,x=4故原方程组的解是: {x =4y =69.{12(x +3)+13(y −4)=52(x −3)+5(y +4)=70 ; 解:{12(x +3)+13(y −4)=5−−−−① 2(x −3)+5(y +4)=70−−−②①去分母,得3(x+3)+2(y-4)=30去括号,得3x+9+2y-8=30整理,得3x+2y-29=0-----------③②去括号,得2x-6+5y+20=70整理,得2x+5y-56=0-----------④③×2,得6x+4y-58=0------------⑤④×3,得6x+15y-168=0----------⑥⑥-⑤,得11y-110=0,即y=10将y=10代入③,得3x+20-29=0,x=3故原方程组的解是:{x=3 y=1010.{0.2x+0.5y=9x+2 2+y+105=15 ;解:{0.2x+0.5y=9−−−−−①x+22+y+105=15−−−−−−②①等号两边同时乘以10,得2x+5y=90------------------③②去分母,得5(x+2)+2(y+10)=150去括号,整理得5x+2y=120---④③×5,得10x+25y=450------⑤④×2,得10x+4y=240-------⑥⑤-⑥,得21y=210,即y=10将y=10代入③,得2x+50=90,x=20故原方程组的解是:{x=20 y=1011.{4(x −1) +3(y +1) =320%(x +1)+80%(y −1)=−3; 解:{4(x −1) +3(y +1) =3−−−−−−−−−①20%(x +1)+80%(y −1)=−3−−−−−−② ①去括号,得4x-4+3y+3=3,整理得4x+3y=4-----③ ②去百分号,得0.2(x+1)+0.8(y-1)=-3等号两边同时乘以10,得2(x+1)+8(y-1)=-30 去括号,得2x+2+8y-8=-30,整理得x+4y=-12----④ ④×4,得4x+16y=-48------------------------⑤ ⑤-③,得13y=-52,即y=-4将y=-4代入④,得x-16=-12,x=4故原方程组的解是: {x =4y =−412.{x+2y 2 +x−2y 3 = 11 3(x +2y )−4(x −2y )=30; 解:{x+2y 2 +x−2y 3 = 11 −−−−−−−−−−−−−−① 3(x +2y )−4(x −2y )=30−−−−−−② ①×6,得3(x+2y )+2(x-2y )=66----------------③③-②,得6(x-2y )=36,即x-2y= 6 -------④①×12,得6(x+2y )+4(x-2y )=132---------------⑤⑤+②,得9(x+2y)=162,即x+2y=18---⑥④+⑥,得2x=24,即x=12④-⑥,得-4y=-12,即y=3故原方程组的解是:{x=12 y=3。

第八章二元一次方程组测试题(二)

第八章二元一次方程组测试题(二)

第八章二元一次方程组测试题(二)一、选择题(本大题共10小题,每小题3分,共30分)1.【导学号68490301】下列方程组中,不是二元一次方程组的是()A.21,346x yx z=+⎧⎨-=⎩B.1,4x yx y-=⎧⎨+=⎩C.5,5x yx+=⎧⎨=⎩D.2,2223x yyy x⎧+=⎪⎪⎨⎪=⎪⎩2.【导学号68490943】关于二元一次方程5a-11b=23的解,下列说法正确的是()A.有且只有一组解B.有无数组解C.无解D.有且只有两组解3.【导学号68490300】解方程组2344,1569x yx y+=⎧⎨-=⎩①②时,你认为最简单的方法是()A.用代入法先消去x或y B.用①×15-②×23,先消去xC.用①×6-②×4,先消去y D.用①×3+②×2,先消去y4.【导学号68490722】下列各组中,不是二元一次方程x+2y=5的解的是()A.1,2xy=⎧⎨=⎩B.2,1.5xy=⎧⎨=⎩C.6,1xy=⎧⎨=-⎩D.9,2xy=⎧⎨=-⎩5.【导学号68490317】已知a,b满足方程组512,34,a ba b+=⎧⎨-=⎩则a+b的值为()A.-4 B.4 C.-2 D.26.【导学号68490487】为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5 m长的彩绳截成2 m或1 m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法()A.4 B.3 C.2 D.17.【导学号68490298】我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问:有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,则可列方程组为()A.100,33100x yx y+=⎧⎨+=⎩B.100,3100x yx y+=⎧⎨+=⎩C.100,131003x yx y+=⎧⎪⎨+=⎪⎩D.100,3100x yx y+=⎧⎨+=⎩8.【导学号68490296】已知(x-y+3)2,则x+y的值为()A.0 B.-1 C.1 D.59. 【导学号68490308】若方程组431,(1)3x yax a y+=⎧⎨--=⎩的解x与y互为相反数,则a的值等于()A.1 B.2 C.3 D.410.【导学号68490292】为了鼓励市民节约用电,某市对居民用电实行阶梯收费(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.图1是张磊家2016年9月和10月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度()A.0.5元,0.6元B.0.4元,0.5元C.0.3元,0.4元D.0.6元,0.7元图1二、填空题(本大题共8小题,每小题4分,共32分)11.【导学号68490315】已知方程3x-ay=8,若3,1xy=⎧⎨=⎩是它的一组解,则a的值为__________.12. 【导学号68490726】已知方程x-2y=6,用含x的式子表示y,y=__________;用含y的式子表示x,x=__________.13.【导学号92700702】已知x m-1+2y m+n+1=0是关于x,y的二元一次方程,那么m-n= .14.【导学号92700688】以方程组22,1y xy x=+⎧⎨=-+⎩的解为坐标的点P(x,y)在第象限.15.【导学号68490312】若方程组7,353,x yx y+=⎧⎨-=-⎩则3(x+y)-(3x-5y)的值是__________.16.【导学号68490639】已知2,1xy=⎧⎨=⎩是二元一次方程组7,1ax byax by+=⎧⎨-=⎩的解,则a-b=__________.17.【导学号68490314】如图2,在长为14 m,宽为10 m的长方形展厅中划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为__________m.18. 【导学号68490293】定义新运算“※”,规定x※y=ax2+by,其中a,b 图2 为常数,若1※2=5,2※1=6,则2※3= __________.三、解答题(本大题共5小题,共58分)19. 【导学号68490295】(每小题6分,共12分)解方程组:(1)237,x3y8.x y+=⎧⎨-=⎩①②(2)3(1)5, 5(y-1)3(5).x yx-=+⎧⎨=+⎩20. 【导学号68490303】(10分)已知关于x,y的二元一次方程x-y=3a和x+3y=4-a.(1)如果5,1xy=⎧⎨=-⎩是方程x-y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解.21. 【导学号68490316】(10分)如图3-①,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长方形,如图3-②.这个拼成的长方形的长为30,宽为20,求图②中Ⅱ部分的面积.①②图322.【导学号92700693】(12分)观察下列方程组,解答问题:(1)解下列方程组(直接写出方程组的解):①2,21x yx y-=⎧⎨+=⎩的解为;②26,322x yx y-=⎧⎨+=⎩的解为;③312,433x yx y-=⎧⎨+=⎩的解为.(2)在以上三个方程组的解中,你发现x与y有什么数量关系.(不必说理)(3)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(2)中的结论.23.【导学号68490699】(14分)小林在某商店购买商品A、B共三次,只有一次购买时,商品A、B 同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如下表:购买商品A的数量(个)购买商品B的数量(个)购买总费用(元)第一次购物 6 5 1140第二次购物 3 7 1110第三次购物9 8 1062 (1)小林以折扣价购买商品A、B是第次购物;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,则商店是打几折出售这两种商品的?附加题(15分,不计入总分)【导学号68490484】阅读理解:解方程组327,2114x yx y⎧+=⎪⎪⎨⎪-=⎪⎩时,如果设1x=m,1y=n,则原方程组可变形为关于m,n的方程组327,214,m nm n+=⎧⎨-=⎩解这个方程组得5,4.mn=⎧⎨=-⎩由15x=,14y=-,求得原方程组的解为1,51.4xy⎧=⎪⎪⎨⎪=-⎪⎩利用上述方法解方程组:5211,3213.x yx y⎧+=⎪⎪⎨⎪-=⎪⎩(辽宁陈琴)第八章二元一次方程组测试题(二)参考答案一、1.A 2.B 3.D 4. C 5. B 6. B 7. C 8.C 9. B10. A 提示:设第一阶梯电价每度x元,第二阶梯电价每度y元.根据题意,得20020112, 20065139,x yx y+=⎧⎨+=⎩解得0.5,0.6.xy=⎧⎨=⎩二、11.1 12.12x-3 6+2y 13. 4 14. 二15. 24 16. -117. 16 提示:设小长方形的长为x m,宽为y m. 由图可得214,210.x yx y+=⎧⎨+=⎩将两个方程相加,化简得x+y=8,所以每个小长方形的周长为8×2=16(m).18. 10 提示:根据题意,得25,4 6.a ba b+=⎧⎨+=⎩解得1,2.ab=⎧⎨=⎩所以2※3=1×22+2×3=4+6=10.三、19. 解:(1)①+②,得3x=15,解得x=5. 把x=5代入①,得10+3y=7,解得y=-1.所以原方程组的解为5,1. xy=⎧⎨=-⎩(2)原方程组化简,得38,5y-3x20. x y-=⎧⎨=⎩①②①+②,得4y=28,解得y=7.把y=7代入①,得3x-7=8,解得x=5.所以原方程组的解为5,7. xy=⎧⎨=⎩20. 解:(1)将5,1xy=⎧⎨=-⎩代入方程x-y=3a中,得5+1=3a,解得a=2.(2)当a=1时,将两方程联立得:3,3 3. x yx y-=⎧⎨+=⎩①②由①得x=3+y,代入②得3+y+3y=3,解得y=0. 将y=0代入①中,得x=3.所以两方程的公共解为3,0. xy=⎧⎨=⎩21. 解:根据题意,得30,20.a ba b+=⎧⎨-=⎩解得25,5.ab=⎧⎨=⎩故图②中Ⅱ部分的面积是:b·(a-b)=5×20=100.22. 解:(1)①1,1xy=⎧⎨=-⎩②2,2xy=⎧⎨=-⎩③3,3xy=⎧⎨=-⎩(2)在以上三个方程组的解中,x与y的数量关系为:x+y=0.(3)第④个方程组为420, 54 4.x yx y-=⎧⎨+=⎩①②①+②,得6x=24,解得x=4.把x=4代入①,解得y=-4.所以x+y=4-4=0.23. 解:(1)三(2)设商品A的标价为x元,商品B的标价为y元.根据题意,得651140,371110.x yx y+=⎧⎨+=⎩解得90,120.xy=⎧⎨=⎩答:商品A的标价为90元,商品B的标价为120元.(3)设商店是打a 折出售这两种商品. 由题意,得(9×90+8×120)×10a=1062.解得a=6. 答:商店是打6折出售这两种商品的. 附加题 解:设11,m n x y ==,原方程组可化为5211,3213.m n m n +=⎧⎨-=⎩解得3,2.m n =⎧⎨=-⎩所以原方程组的解为1,31.2x y ⎧=⎪⎪⎨⎪=-⎪⎩。

第五章二元一次方程组测试题.docx

第五章二元一次方程组测试题.docx

第五章二元一次方程组5.1认识二元一次方程组基础导练1、在方程(T)5x-3y 4,②7x-∣y = 5, @4.0' + x-6y 0, (Sβχ-(y-2) -1,⑤x2+3,τ = 2,⑥5x」= 9,⑦四-XZl = IO中,是二元一次方程的有 __________ 、F 3 22、已知方程2√"γ产=3是关于*,y的二元一次方程,则/Ii=,n =、3、在(1) (2)仁:,(3) {:/中,是方程2x + y = 5 的解;是方程3κ-2y = 4的解:姥方程组广一广5的I3.v-2y≡4解、4、若[;:]是方程3χ+.=5的一个解,则a=、5、若A.1是方程组的解,则Qa= 、6、关于x、y的二元一次方程4x+3y=2()的所有非负整数解是、7、若一个二元一次方程的一个解为I"?则这个方程可以LV=T是、(只要求写出一个)8、把方程5Λ-37=6变形,用X表示y应为,用j,表示*应为、9、下列方程组属于二元一次方程组的是()10、若方程a*-3y=4x+5处二元一次方程,则a的取值范围处()A、aNo B > «≠ 3 C¼ a≠4D¼ a≠5IK以下各组中,是方程组F = 3'的解的是()A、尸:B、尸:C、D、12、小丽只带了2元和5元两种人民币,买了一件物品只付了27元,则付款的方法有()A、一种B、两种C、三种【)、四种能力提升13、已知2x÷5y-3=0,则代数式9—4χ-IOy=、14、若∣α-3∣与+ 互为相反数,则α + 3⅛ 、15、现有1角、5角、1元硬币各10枚,从中取出15枚,共值7元、1 角、5角、1元硬币分别取____________ 枚,枚,枚、16、若是方程5*+9y=0的解,且吁0,则()A、见〃同号B、见〃异号C、儡〃可能同号也可能异号D、无法确定17、方程x+2p=7在自然数范围内的解有()A、一个Bs二个C、三个D、四个18、某校初二(3)班40名同学为“希望工程”捐款,共捐款IOO元,捐款情况如下表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2 元的有X名,捐款3元的有y名同学,根据题意,可得方程组()A j∙r + 2∙v = 27 B !*+「= 27 C 卜+ y = 27 D y + )∙ = 27■ ' [2x + 3y = 66 、∣2.r + 3y=IOO 八∣3κ + 22 = 66'13.T + 2y = IOO 19、已知方程S+3)ΛM Js-2)/"+竺=6是关于*, y的二元一次方程,求a, b, c的值、20.甲、乙两人共同解方程组]:::;::,;由于甲同学看错了方程①中X =-4的&得到方程组的解为 3 ,乙看错Γ方程②中的仇得到方程组的解),=—为{::9、请计算代数式叫产•的值、参考答案1、5Λ-3y=4, 7x-→∙=53x-(y-2)=l, —-2Ξ!=∣O2、m=-1, n=23、⑴ ⑶;⑵ ⑶:⑶4、15、-76、{;::;7、*-y=3(答案不唯一〉8、,-短刀9 9、B 10、Iy = O 3 5 5C 11、A 12、C 13.3 14、—3 15.5,7,3 16、B 17、D 18、A 19、a=3, b≈~2, C=O 20、-1、。

二元一次方程组培优竞赛测试题(2)

二元一次方程组培优竞赛测试题(2)

二元一次方程组测试题姓名: 得分:一、选择题(每小题3分,共30分):1、若二元一次方程组⎩⎨⎧=---=-043,1y nx y mx 的解中,y =0,则m ∶n 等于( ).(A)3∶4(B)-3∶4(C)-1∶4(D)-1∶122、已知x =3t +1,y =2t -1,用含x 的式子表示y ,其结果是( ).(A)31-=x y (B)21+=y x (C)352-=x y(D)312--=x y3、方程1132=+++--y x y x 的整数解的个数是( ). A .1个 B .2个 C .3个 D .4个4、方程组0ax by mx ny +=⎧⎨+=⎩有不等于零的解的条件是( )(A ) 0a ≠ (B )0b ≠ (C )am =bn (D )an =bm5、已知方程组 ||10||12x x y y x y ++=⎧⎨+-=⎩,则x+y 的值为()(A )185 (B )195 (C )4 (D )2156、已知:一等腰三角形的两边长x y 、满足方程组23328x y x y -=⎧⎨+=⎩,,则此等腰三角形的周长为( )A.5B.4C.3D.5或47、小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有10颗珠子”.小刚却说:“只要把你的31给我,我就有10颗”,如果设小刚的弹珠数为x 颗,小龙的弹珠数为y 颗,则列出的方程组是( )A .⎩⎨⎧=+=+303202y x y xB .⎩⎨⎧=+=+103102y x y xC .⎩⎨⎧=+=+103202y x y xD .⎩⎨⎧=+=+303102y x y x8、如果⎩⎨⎧=-=21y x 是方程组⎩⎨⎧=-=+10cy bx by ax 的解,那么,下列各式中成立的是…( )(A )a +4c =2 (B )4a +c =2 (C )a +4c +2=0 (D )4a +c +2=09、若方程组⎪⎩⎪⎨⎧=+=+52243y bax y x 与⎪⎩⎪⎨⎧=-=-5243y x by x a 有相同的解,则a 、b 的值为( ) (A )2,3 (B )3,2 (C )2,-1 (D )-1,210、若2a +5b +4z =0,3a +b -7z =0,则a +b -c 的值是( )(A )0 (B )1 (C )2 (D )-1 选择题答题卡二、填空题(每小题3分,共15分)11、已知(k -2)x|k |-1-2y =1,则k ______ 时,它是二元一次方程;k =______ 时,它是一元一次方程.12、已知m 为正整数,二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,即x 、y 均为整数,则2m =______.13、如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是1,则六边形 的周长是_________.14、某种商品价格为每件33元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品. 若无需找零钱,则他的付款方式有____ 种(指付出2元和5元钱的张数);付款方式付出的张数最少的是 ____ 张。

二元一次方程组基础中等难度测试题

二元一次方程组基础中等难度测试题

二元一次方程组基础题F 列方程中,属于二元一次方程的是( xA. 3x 6 2xB. xy 3C. y2、下列方程组中,是二元一次方程组的是(3、下列方程组中,是 元一次方程组的是(A.3x2 y10x 8yxy 4 B.x 2y 6x y 2C. 1 o3yxD. x 2y 47x 9y 5y 1 x 时,代入正确的是(x 2y 4A .x 2x4B.x 2 2x 4c .x 2 2x 4D .x 2 x 4xy 5 A.3 x 3z 7x 2y xy B.4x 5y 2xC.y xD.1 x24、二兀一次方程组 2y 2x 10,的解是(x 4, A. y 3;xB.y 3,6;x 2, C. y 4;x D.4,2.5、二兀一次方程组 y 3的解是(y 1xA.yx 1 B. y 2x 2 C. y 1xD.6、在方程3y 2x 中,用含x 的式子表示y ,则( A. y 2x 6 B. y 2x 6 3 6 2xC. y丁D . y2x 6 37、方程组2x y 3x 2y 5 8消去y 后得到的方程是(A. 3x 4x 10B. 3x 4x 5 8C.3x 2 5 2xD.3x 4x 10 82x8、用代入法解方程组9、用加减法解二元一次方程组2X 3y 3①,以下正确的是( 3x 5y 1 ②A.①X 3+ ②X 2B.①X 5+ ②X 3C.①X 2-②X 3D.①X 5-②X 3张和y 张,则下、面的方程组正确的是()x — 11-8x y 10xy 8 A. 2B. xyC.D.8x 2y 8x2y 10x yx 2y 1011、下列方程①2x - 1 ;②x3 3;2 2③x y4 ;32 y④5(xy)7(x y); ⑤ 2x 23;⑥x1 4 .其中是二一元 •次方程的是y12、若 x 2y 3,则 5 x 2y ____________13、已知方程 2x 3y 4,用含x 的代数式表示 y ,贝U y ____________________ ,用含y 的代数式表示 x ,则x .14、某次足球比赛的记分规则如下: 胜一场得3分,平一场得1分,负一场是0分.某队踢了 14场,其中负5场, 共得19分。

中考数学常考考点专题之二元一次方程组测试题

中考数学常考考点专题之二元一次方程组测试题

中考数学常考考点专题之二元一次方程组测试题一.选择题(共10小题)1.某社区为了打造“书香社区”,丰富小区居民的业余文化生活,计划出资500元全部用于采购A ,B ,C 三种图书,A 种每本30元,B 种每本25元,C 种每本20元,其中A 种图书至少买5本,最多买6本(三种图书都要买),此次采购的方案有( )A .5种B .6种C .7种D .8种2.《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x 两,燕每只y 两,则可列出方程组为( )A .{5x +6y =165x +y =6y +xB .{5x +6y =164x +y =5y +xC .{6x +5y =166x +y =5y +xD .{6x +5y =165x +y =4y +x 3.我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x 间、房客y 人,下列方程组中正确的是( )A .{7x −7=y 9(x +1)=yB .{7x +7=y 9(x +1)=yC .{7x −7=y 9(x −1)=yD .{7x +7=y 9(x −1)=y 4.为了迎接体育中考,体育委员到体育用品商店购买排球和实心球,若购买2个排球和3个实心球共需95元,若购买5个排球和7个实心球共需230元,若设每个排球x 元,每个实心球y 元,则根据题意列二元一次方程组得( )A .{3x +2y =955x +7y =230B .{2x +3y =955x +7y =230C .{3x +2y =957x +5y =230D .{2x +3y =957x +5y =2305.有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音h ú,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?设大桶可以盛酒x 斛,小桶可以盛酒y 斛,则可列方程组为( )A .{5x +y =3,x +5y =2B .{5x +y =3,x +y =2C .{x +5y =3,5x +y =2D .{5x +5y =3,x +5y =26.《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前.其中一道题,原文是:“今三人共车,两车空;二人共车,九人步.问人与车各几何?”意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行.问人与车各多少?设有x 人,y 辆车,可列方程组为( )A .{x =3(y +2)x =2y −18B .{x =3(y −2)x =2y −18C .{x =3(y +2)x =2y +9D .{x =3(y −2)x =2y +9 7.我国古代数学著作《九章算术》记载了一道“牛马问题”:“今有二马、一牛价过一万,如半马之价.一马、二牛价不满一万,如半牛之价.问牛、马价各几何.”其大意为:现有两匹马加一头牛的价钱超过一万,超过的部分正好是半匹马的价钱;一匹马加上二头牛的价钱则不到一万,不足部分正好是半头牛的价钱,求一匹马、一头牛各多少钱?设一匹马价钱为x 元,一头牛价钱为y 元,则符合题意的方程组是( )A .{2x +y −10000=x 2x +2y −10000=y 2B .{2x +y −10000=x 210000−(x +2y)=y 2C .{2x +y +10000=x 2x +2y −10000=y 2D .{2x +y +10000=x 210000−(x +2y)=y 2 8.已知{x =1y =2是二元一次方程3x ﹣ay =1的一个解,则a 的值为( ) A .﹣1 B .1 C .﹣2 D .29.若关于x ,y 的方程组{2x −y =5k +64x +7y =k的解满足x +y =2023,则k 的值为( ) A .2020 B .2021 C .2022 D .202310.方程组{x =4y x +2y =−12的解是( ) A .{x =−4,y =−1 B .{x =−8,y =−2 C .{x =4,y =−8 D .{x =−4,y =1二.填空题(共10小题)11.幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格,将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等.如图所示是一个未完成的幻方,则x ﹣y = .x ﹣2y﹣2y 6 012.我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花100钱买了100只鸡.若公鸡有8只,设母鸡有x 只,小鸡有y 只,可列方程组为 .13.关于x ,y 的二元一次方程组{mx +y =n x −ny =2m 的解是{x =0y =2,则m +n 的值为 . 14.(2023•吉安县校级模拟)有这样一道数学名题,其题意:一群老者去赶集,半路买了一堆梨,一人一个多一个,一人两个少两个,请问几个老者几个梨?设有老者x 人,梨y 个,则可列二元一次方程组: .15.《九章算术》方程章节中有这样一个题目:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”意思是不知道甲乙二人各有多少钱,如果把乙的钱的一半给甲,则甲50钱;如果把甲钱的23给乙,则乙也有50钱.则原来甲有的钱数是 .16.在正方形网格中,格线与格线的交点称为“格点”,各顶点都在格点上的多边形称为“格点多边形”.设小正方形的边长均为1,则“格点多边形”的面积S 可用公式S =a +12b −1计算,其中a 是多边形内部的“格点”数,b 是多边形边界上的“格点”数,这个公式称为“皮克定理”.如图所示的6×6的正方形网格:∵a =16,b =12,∴图中格点多边形的面积是21.已知一个格点多边形的面积为14,且边界上的点数b 是内部点数a 的3倍,则a +b = .17.关于x ,y 的方程组{2x +y =4x +2y =m的解满足x +y =1,则m 的值为 . 18.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为 .19.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马二匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为 .20.甲、乙两种车辆运土,已知5辆甲车和4辆乙车一次可运土140立方米,3辆甲车和2辆乙车一次可运土76立方米,若每辆甲车每次运土x 立方米,每辆乙车每次运土y 立方米,则可列方程组 .三.解答题(共5小题)21.某公司要生产960件新产品,准备让A 、B 两厂生产,已知先由A 厂生产30天,剩下的B 厂生产20天可完成,共需支付工程款81000元;若先由B 厂生产30天,剩下的A 厂可用15天完成,共需支付工程款81000元.(1)求A 、B 两厂单独完成各需多少天;(2)若公司可以由一个厂完成,也可由两厂合作完成,但为保证质量,加工期间公司需派一名技术员到现场指导(若两厂同时生产也只需派一名),每天需支付这名技术员工资及午餐费120元,从经费考试应怎样安排生产,公司花费最少的金额是多少?22.为纪念爱国诗人屈原,人们有了端午节吃粽子的习俗.某顾客端午节前在超市购买豆沙粽10个,肉粽12个,共付款136元,已知肉粽单价是豆沙粽的2倍.豆沙粽数量 肉粽数量 付款金额 小欢妈妈20 30 270 小乐妈妈30 20 230(1)求豆沙粽和肉粽的单价;(2)超市为了促销,购买粽子达20个及以上时实行优惠,下表列出了小欢妈妈、小乐妈妈的购买数量(单位:个)和付款金额(单位:元);①根据上表,求豆沙粽和肉粽优惠后的单价;②为进一步提升粽子的销量,超市将两种粽子打包成A ,B 两种包装销售,每包都是40个粽子(包装成本忽略不计),每包的销售价格按其中每个粽子优惠后的单价合计.A ,B两种包装中分别有m个豆沙粽,m个肉粽,A包装中的豆沙粽数量不超过肉粽的一半.端午节当天统计发现,A,B两种包装的销量分别为(80﹣4m)包,(4m+8)包,A,B两种包装的销售总额为17280元.求m的值.23.制作一张方桌要用1个桌面和4条桌腿,若1m3木材可制作20个桌面或400条桌腿,现有12m3木材,要使生产出来的桌面和桌腿恰好都配成方桌,求应安排多少木材用来制作桌面.24.一方有难,八方支援.郑州暴雨牵动数万人的心,众多企业也伸出援助之手.某公司购买了一批救灾物资并安排两种货车运往郑州.调查得知,2辆小货车与3辆大货车一次可以满载运输1800件;3辆小货车与4辆大货车一次可以满载运输2500件.(1)求1辆大货车和1辆小货车一次可以分别满载运输多少件物资?(2)现有3100件物资需要再次运往郑州,准备同时租用这两种货车,每辆均全部装满货物,有几种租车方案?请写出所有租车方案.25.列方程(组)解应用题如图,巴桑家客厅的电视背景墙是由10块形状大小相同的长方形墙砖砌成.(1)求一块长方形墙砖的长和宽;(2)求电视背景墙的面积.。

(完整版)二元一次方程组练习题含答案

(完整版)二元一次方程组练习题含答案

二元一次方程组专题训练1.⎩⎨⎧=-=+33651643y x y x 2. ⎩⎨⎧=+=-6251023x y x y ⎩⎨⎧=-=+19542023b a b a 1、 2、 3、 ⎩⎨⎧=-=+1572532y x y x4、⎩⎨⎧=+-=18435276t s t s 5、 ⎩⎨⎧=-=+574973p q q p 6、⎩⎨⎧=-=+42634y x y x7、⎩⎨⎧-=-=+22223n m n m 8、⎩⎨⎧=--=-495336y x y x 9、10、⎩⎨⎧=-=-yx y x 23532 11、⎩⎨⎧=-=+124532n m n m12、⎩⎨⎧=+=+10232556y x y x13、⎩⎨⎧=+=+2.54.22.35.12y x y x 14、⎪⎩⎪⎨⎧=-+-=+6)(3)1(26132y x x y x15、⎪⎩⎪⎨⎧=+--=-+-04235130423512y x y x 16、⎪⎩⎪⎨⎧=--=+-4323122y x y x yx17、⎪⎩⎪⎨⎧-=-++=-+52251230223x y x y x二元一次方程组练习题一、选择题:1.下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x+4y=6 D .4x=2.下列方程组中,是二元一次方程组的是( )A .228423119...23754624x y x y a b xBCD x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解4.方程y=1-x 与3x+2y=5的公共解是( )A .3333...2422x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x -2│+(3y+2)2=0,则的值是( )A .-1B .-2C .-3D .326.方程组43235x y kx y -=⎧⎨+=⎩的解与x 与y 的值相等,则k 等于( )7.下列各式,属于二元一次方程的个数有( )①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .48.某年级学生共有246人,其中男生人数y 比女生人数x 的2倍少2人,•则下面所列的方程组中符合题意的有( ) A .246246216246 (22222222)x y x y x y x y B C D y x x y y x y x +=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩ 二、填空题9.已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=________. 10.在二元一次方程-12x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.11.若x 3m -3-2y n -1=5是二元一次方程,则m=_____,n=______.12.已知2,3x y =-⎧⎨=⎩是方程x -ky=1的解,那么k=_______.13.已知│x -1│+(2y+1)2=0,且2x -ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________. 15.以57x y =⎧⎨=⎩为解的一个二元一次方程是_________. 16.已知2316x mx y y x ny =-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y -2ax=a+2(关于x ,y 的方程)•有相同的解,求a 的值.18.如果(a -2)x+(b+1)y=13是关于x ,y 的二元一次方程,则a ,b 满足什么条件?19.二元一次方程组437(1)3x y kx k y +=⎧⎨+-=⎩的解x ,y 的值相等,求k .20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?21.已知方程12x+3y=5,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为41xy=⎧⎨=⎩.22.根据题意列出方程组:(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,•问明明两种邮票各买了多少枚?(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;•若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?23.方程组2528x yx y+=⎧⎨-=⎩的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组2528x yx y+=⎧⎨-=⎩的解?24.(开放题)是否存在整数m ,使关于x 的方程2x+9=2-(m -2)x 在整数范围内有解,你能找到几个m 的值?你能求出相应的x 的解吗?《二元一次方程组》单元测试题一、选择题(每题3分,共30分) 1.下列方程组中,是二元一次方程组的是( ). (A ) 2311089x y x y ⎧+=⎨-=-⎩ (B )426xy x y =⎧⎨+=⎩ (C )21734x y y x-=⎧⎪⎨-=-⎪⎩(D )24795x y x y +=⎧⎨-=⎩ 2.二元一次方程组⎩⎨⎧==+xy y x 2,102的解是( ) (A )⎩⎨⎧==;3,4y x (B )⎩⎨⎧==;6,3y x (C )⎩⎨⎧==;4,2y x (D )⎩⎨⎧==.2,4y x 3.根据图1所示的计算程序计算y 的值,若输入2=x , 则输出的y 值是( )(A )0 (B )2- (C )2 (D )44.如果2315a b 与114x x y a b ++-是同类项,则x ,y 的值是( )(A )⎩⎨⎧==31y x (B )⎩⎨⎧==22y x (C )⎩⎨⎧==21y x (D )⎩⎨⎧==32y x 5.已知12x y =⎧⎨=⎩ 是方程组错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组基础题1、下列方程中,属于二元一次方程的是( )A. x x 263=+B. 3=xyC. x x y 22=-D. 11=+xy 2、下列方程组中,是二元一次方程组的是( )A.⎪⎩⎪⎨⎧=-=+7353z x y xB.⎩⎨⎧=-=--25412y x xy y xC.⎩⎨⎧==+12y y xD.⎪⎪⎩⎪⎪⎨⎧-==+3132xy x 3、下列方程组中,是二元一次方程组的是( ).A. 2311089x y x y ⎧+=⎨-=-⎩B.426xy x y =⎧⎨+=⎩C.21734x y y x-=⎧⎪⎨-=-⎪⎩ D.24795x y x y +=⎧⎨-=⎩ 4、二元一次方程组⎩⎨⎧==+xy y x 2,102的解是( ) A.⎩⎨⎧==;3,4y x B.⎩⎨⎧==;6,3y x C.⎩⎨⎧==;4,2y x D.⎩⎨⎧==.2,4y x 5、二元一次方程组⎩⎨⎧=-=+13y x y x 的解是( ) A. ⎩⎨⎧==21y x B. ⎩⎨⎧-==21y x C. ⎩⎨⎧==12y x D. ⎩⎨⎧-=-=21y x 6、在方程x y 263=+中,用含x 的式子表示y ,则( )A. 62-=x yB. 632-=x y C. 326x y -= D. 362-=x y 7、方程组⎩⎨⎧=-=-82352y x y x 消去y 后得到的方程是( ) A.01043=--x x B.8543=+-x x C.()82523=--x x D.81043=+-x x8、用代入法解方程组124y x x y =-⎧⎨-=⎩时,代入正确的是( ) A.24x x --= B.224x x --= C.224x x -+= D.24x x -+=9、用加减法解二元一次方程组⎩⎨⎧=-=+②153①332y x y x ,以下正确的是( )A. ①×3+②×2B. ①×5+②×3C. ①×2-②×3D. ①×5-②×310、刘刚同学买了两种不同的贺卡共8张,单价分别是1元和2元,共用去10元。

设刘刚买的两种贺卡分别为x 张和y 张,则下面的方程组正确的是( ) A. ⎪⎩⎪⎨⎧=+=+8102y x y x B. ⎪⎩⎪⎨⎧=+=+102821y x y x C. ⎩⎨⎧=+=+8210y x y x D. ⎩⎨⎧=+=+1028y x y x 11、下列方程: ①213y x -=; ②332x y +=; ③224x y -=; ④5()7()x y x y +=+;⑤223x =;⑥14x y+=.其中是二元一次方程的是 . 12、若23x y -=-,则52____x y -+=. 13、已知方程432=-y x ,用含x 的代数式表示y ,则___________=y ,用含y 的代数式表示x ,则.________________=x14、某次足球比赛的记分规则如下:胜一场得3分,平一场得1分,负一场是0分.某队踢了14场,其中负5场,共得19分。

若设胜了x 场,平了y 场,则可列出方程组: .15、写出一个以⎩⎨⎧==75y x 为解的二元一次方程组是 . 16、若4x 2m +n y m -n 与-8xy 5-n 是同类项,则m = ,n = .17、解下列方程组(1) (2)(3) (4)18、一批机器零件共840个,如果甲先做4天,乙加入合做,那么再做8天才能完成;如果乙先做4天,甲加入合做,那么再做9天才能完成,问两人每天各做多少个机器零件?19、一条船顺水行驶36千米和逆水行驶24千米的时间都是3小时,求船在静水中的速度与水流的速度。

二元一次方程组中等题1、已知单项式532y x a b +与2244y a b --⨯的和仍是单项式,则x 、y 的值为( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=-⎩C .015x y =⎧⎪⎨=⎪⎩D .21x y =⎧⎨=⎩ 2、已知12x y =⎧⎨=⎩ 是方程组120.ax y x by +=-⎧⎨-=⎩, 的解,则a +b = ( ). A.2 B.-2 C.4 D.-43、如图2,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是( ) A.9015x y x y +=⎧⎨=-⎩ B.90215x y x y +=⎧⎨=-⎩ C.90152x y x y +=⎧⎨=-⎩ D.290215x x y =⎧⎨=-⎩4、如果二元一次方程组⎩⎨⎧=+=-ay x a y x 3的解是二元一次方程0753=--y x 的一个解,那么a 的值是( ) A.3 B.5 C.7 D.95、若方程组4314(1)6x y kx k y +=⎧⎨+-=⎩的解中x 与y 的值相等,则k 为( ) A.4 B.3 C.2 D.16、已知方程组5354x y ax y +=⎧⎨+=⎩和2551x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为 ( ) A.12a b =⎧⎨=⎩ B.46a b =-⎧⎨=-⎩ C.62a b =-⎧⎨=⎩ D.142a b =⎧⎨=⎩ 7、某哨卡运回一箱苹果,若每个战士分6个,则少6个;若每个战士分5个,则多5个,则该哨卡战士有( )A.11人B. 10人C. 9人D. 8人8、若关于x ,y 的二元一次方程组23-12-2x y k x y +=⎧⎨+=⎩的解满足x +y =1,则k 的取值范围是 . A DB C图2 y °x °9、若2(5212)3260x y x y +-++-=,则y x 42+= .10、如果4x -5y =0,且x ≠0,那么12x 5y 12x+5y-的值是 . 11、如果关于x 、y 的二元一次方程组{{3x ay=16x 72x by 15y 1-=的解是+==,那么关于x 、y 的二元一次方程组{3(x+y)a(x y)=162(x+y)+b(x y)=15---的解是 . 12、学校的篮球数比排球的2倍少3个,篮球数与排球数的比是3:2,则两种球共有_________个.13、(1) 2)-(5-)(472-2⎪⎩⎪⎨⎧=+=++y x y x y x y x (2)⎪⎩⎪⎨⎧=+=+236244n m n m14、已知关于的方程组 和 的解相同,求b a ,的值.15、一个星期天,小明和小文同解一个二元一次方程组{ax+by=16bx+ay=1 ① ②小明把方程①抄错,求得的解为{x=1y=3-,小文把方程②抄错,求得的解为{x=3y=2,求原方程组的解。

16、已知22012()x y +与20132--y x 的值互为相反数,求:(1)x 、y 的值;(2)20122013y x +的值. 17、福建欣欣电子有限公司向工商银行申请了甲、乙两种贷款,共计68万元,每年需付出利息8.42万元.甲种贷款每年的利率是12%,乙种贷款每年的利率是13%,求这两种贷款的数额各是多少?18、甲、乙两人都以不变的速度在环形路上跑步,相向而行,每隔2分钟相遇一次;同向而行,每隔6分钟相遇一次,已知甲比乙跑得快,求甲、乙每分钟各跑几圈?3321123=+=+by ax y x 1332-=+=-by ax y x19、已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?二元一次方程组难题1. 对任意两个正整数x、y,定义一个运算“★”为x★y=(x+2xy+y),若正整数a、b满足a★b=1154,则有序正整数对(a,b)共有___对。

2. 课本中介绍我国古代数学名著《孙子算经》上有这样一道题:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几只如果假设鸡有x只,兔有y只,请你列出关于x,y的二元一次方程组______.3. 三个同学对问题“若方程组{a1x+b1y=c1a2x+b2y=c2的解是{x=3y=4,求方程组{3a1x+2b1y=5c3a2x+2b2y=5c2的解。

”提出各自的想法。

甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”。

参考他们的讨论,你认为这个题目的解应该是___.4. 给出下列程序:若输入的x值为1时,输出值为1;若输入的x值为−1时,输出值为−3;则当输入的x值为12时,输出值为_____.5. 甲,乙两位同学在解方程组{ax+by=1cx+y=−1时,甲正确地解得方程组的解为{x=−1y=1.乙因大意,错误地将方程中系数c写错了,得到的解为{x=2y=−1;若乙没有再发生其他错误,试确定a,b,c的值.6.甲乙两人在同一起点,圆形跑道400米,如果两人一起往同一个方向跑,并且甲先让乙跑了200米之后20秒两人相遇,如果两人向背而跑,那么80秒之后相遇。

求甲、乙速度为多少?7.(12分)某通讯器材商场,计划用60000元从厂家购进若干部新款手机,以满足市场求,已知该厂家生产三种不同型号的手机,出厂价分别为:甲种型号手机每部1800元,乙种型号手机每部600元,丙种型号手机每部1200元。

(1)若商场同时购进某两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买?(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,要求乙种型号手机的购进数量是丙种型号手机数量的2倍,请你求出商场每种型号手机购进的数量。

8. 如图是按照一定规律排列的方程组集合和它的解的集合的对应关系图,若方程组集合中的方程组自左至右依次记作方程组1、方程组2、方程组3、…方程组n.(1)将方程组1的解填入图中;(2)请依据方程组和它的解的变化的规律,将方程组n和它的解直接填入集合图中;(3)若将方程组{x+y=1x−my=100的解是{x=10y=−9,求m的值,并判断该方程组是否符合(2)中的规律?。

相关文档
最新文档