微波功率器件进展
高功率微波及源器件

进,其行为特性有很大的改善;另一方面,涌现出了许多像
相对论速调管(relativistic klystron)、虚阴极振荡器(vircator) 等一大批依赖强电流的高压运行器件,同时也随之出现了一 些专门以相对论效应为基础的器件,如我们所熟悉的回旋管 (grotron)、切仑可夫器件(Cherenkov)、自由电子激光(Free Electron Laser,简称FEL)等
快速实现无线宽带接入功能、建设局域微波通讯网提供多种网 络服务
覆盖范围广、通信距离远 HPM通信:
传送话音、数据、视频和图象等各种信号,且具有很强的通用 性
高效传输、高信息量、高保密性
雷达
高功率可以提高雷达的作用距离, 高重复速率可以改善雷达的分辨率高 可以预言,高功率微波必将把雷达代入一个更高的技术水平和崭新的发展领域。 合成孔径雷达:是一种在距离向采用脉冲压缩,方位向采用合成孔径 原理的高分辨雷达。基本原理:相当于一个二维脉冲压缩滤波器
峰值功率超过100MW 频率范围在0.3-300GHz之间 波长跨越厘米波和毫米波的脉冲电磁辐射
高功率微波源分
高平均功率源(宽带源)
高峰值功率源(窄带源)
性能指标:品质因子Pavf2(Pav为平均功率,f为频率)
在热核聚变、等离子体加热、先进的高能粒子
加速器和对撞机、高效通信和RF武器等需求的
强大驱动力下,微波器件的品质因子Pavf2以每 十年增长一个数量级的速度增长,从实际需求 看,当今和未来HPM技术正向着高功率、高效 率、宽频带的目标发展
MILO的基本结构
相互作用区域中的电子除了沿轴向运动外,还有从阴极到阳极的一个横
向漂移运动
2 vz c( E B) / B c Er 0 / B 0 Er / B 0 vz 0 vz
X波段GaN基微波功率放大器的设计

X波段GaN基微波功率放大器的设计魏涛【摘要】An X-band GaN power amplifier is developed. Bias networks, matching networks and stability networks are discussed, and power synthesis of six GaN HEMTs is conducted. By biasing the amplifier at VGS=-3.2 V, VDS=6 V and IDS=200 mA, the developed power amplifier has 20.380 dB maximum linear gain and has exhibited 35.268 dBm(about 3.36 W) power out at 8 GHz.%给出了一种X波段GaN基功率放大器的设计方法。
研究了相关的偏置电路、匹配网络以及稳定性网络,实现了6个GaN HEMT 器件的功率合成。
该方法在偏置VGS=3.2V,VDS=6V,IDS=200mA,频率为8GHz时,可以仿真得到的放大器增益为20.380dB,饱和输出功率可以达到35.268dBm(约为3.36W)。
【期刊名称】《物联网技术》【年(卷),期】2012(002)005【总页数】3页(P61-63)【关键词】GaN;HEMT;功率合成;X波段;功率放大器【作者】魏涛【作者单位】电子科技大学电子薄膜与集成器件国家重点实验室,四川成都610054【正文语种】中文【中图分类】TN7210 引言随着无线通讯技术发展的突飞猛进,作为其重要部件的功率放大器的需求也日益增多,频率更高和功率更大的器件已成为目前各国研究的主要热点之一。
GaN材料是第三代宽禁带半导体材料的典型代表,其禁带宽度大、耐高压、耐高温、抗辐射,非常适合制备高频、高压、高温、大功率、抗辐射的新一代微波功率器件和电路。
功率器件国内外现状、水平和发展趋势

功率器件国内外现状、水平和发展趋势下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!功率器件国内外现状、水平和发展趋势1. 引言功率器件作为现代电子技术中的关键组成部分,其在电力电子、通信、汽车电子等领域的应用日益广泛。
固态微波功率器件直流参数测量技术简析

固态微波功率器件直流参数测量技术简析摘要:微波功率器件是指工作在微波频段、具有一定Q值的固态电子器件。
其中,固态微波功率器件(SMPTE)是指由具有一定Q值的半导体材料制成,以二次电子为能量来源的微波电子器件。
从其工作原理上看,SMPTE器件具有典型的电子管特性,即当电流达到某一点时,其电压、电流、功率等物理量都会发生急剧变化,最终表现为产生高电压、高电流。
固态微波功率器件直流参数测量技术是检验其工作特性的重要手段,其测量结果直接影响SMPTE器件的性能指标及测试方法的选择。
因此,本文主要介绍固态微波功率器件直流参数的测量技术。
关键词:固态微波功率器件;直流参数测量;技术目前,固态微波功率器件在雷达、通信、电子对抗等领域的应用越来越广泛。
在固态微波功率器件的设计、应用和调试过程中,对其直流参数的测量至关重要。
直流参数的测量能够为器件的质量控制、可靠性评估以及优化设计提供重要依据。
1.测量原理分析直流参数的测量一般采用微波测试技术,主要有时域方法和频域方法两种。
时域方法是通过在微波激励下测量功率器件的瞬态响应,获得动态参数,如峰值功率、电压上升时间等。
频域方法是利用微波器件的二次谐波产生器(SCBD)产生稳定的随机谐波信号,通过测量SCBD信号的上升沿时间来获得其直流特性。
频域方法中常用的频率计测量技术有功率计(PIN、TDS)、自动频率控制系统(AFC)和网络分析仪(SAM)。
如图1:其中,功率计测量技术是通过在微波激励下测量功率器件的电压、电流等物理量来获得其直流特性,但由于微波器件具有非线性和大幅度谐波失真等特性,因此对其测量结果的准确性会产生影响。
自动频率控制系统(AFC)则通过对功率器件在不同频率点上的输出功率进行控制,从而降低噪声、改善非线性失真,实现高精度的直流参数测量。
网络分析仪是一种基于网络分析理论的仪器,其通过对微波功率器件的输出信号进行分析,提取出直流参数。
图12.测试环境分析直流参数测试系统的技术指标包括:输入功率、输出功率、最大输出电压、工作频率等。
宽禁带半导体SiC功率器件发展现状及展望

Power
and Challenge
ZHANG Bo,DENG Xiao-chuan,ZHANG You—rlln,LI Zhao-ji (State key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and
第2期 2009年4月
中国露;料譬研宪隍学板
Journal of CAEIT
V01.4 NO.2 Apr.2009
宽禁带半导体SiC功率器件发展现状及展望
张波,邓小川,张有润,李肇基
(电子科技大学电子薄膜与集成器件国家重点实验室,成都610054)
摘要:碳化硅(SiC)是第三代半导体材料的典型代表,也是目前晶体生长技术和器件制造水平最
美国DARPA高功率电子器件应用计划—— HPE的目标有四个(如图1所示),即,大尺寸高质 量SiC导电衬底和轻掺杂的厚外延材料生长技术; 10~20 kV的SiC功率器件(PiN、MOSFET和IGBT 等)制造技术;大功率SiC器件的测试、可靠性和封
万方数据
装技术;集成SiC功率器件模块的2.7 MVA固态功 率变电站(SSPS,solid state power substatio子和光电子领域J均研究热点。
2 SiC功率半导体器件发展现状
2。1 SiC功率整流器 功率整流器是功率半导体器件的重要分支,主
要包括肖特基势垒二极管(SBD,schottky barrier di— ode),PiN二极管和结势垒肖特基二扳管(JBS,junc— tion barrier sehottky diode)。
21世纪初,美国国防先进研究计划局(DAR— PA)启动的宽禁带半导体技术计划(WBGSTI,wide bandgap semiconductor technology initiative),成为加 速和改善SiC、GaN等宽禁带材料和器件特性的重 要“催化剂”,并极大地推动了宽禁带半导体技术的 发展。它同时在全球范围内引发了激烈的竞争,欧 洲ESCAPEE和日本NEDO也迅速开展了宽禁带半 导体技术的研究。
氮化镓微波功率 器件

氮化镓微波功率器件
氮化镓微波功率器件是一种利用氮化镓半导体材料制造的微波功率放大器或开关等器件。
这些器件在高频率范围内(通常在数GHz 到几十GHz之间)工作,并能够提供高功率输出。
以下是氮化镓微波功率器件的一些详细信息:
材料特性:氮化镓半导体具有优异的电子传输特性,包括高电子迁移率和高饱和漂移速度。
这些特性使得氮化镓在高频率和高功率应用中表现出色。
器件类型:氮化镓微波功率器件包括功率放大器、开关、混频器等。
其中功率放大器是最常见的应用,用于增强微波信号的功率。
而开关则用于控制微波信号的传输路径。
工作频率范围:氮化镓微波功率器件通常在数GHz到几十GHz 的频率范围内工作,适用于各种高频通信和雷达应用。
功率密度:由于氮化镓具有优异的热传导性能和耐高温性,因此氮化镓微波功率器件能够提供较高的功率密度,同时保持较低的工作温度。
功耗和效率:与传统的硅基微波功率器件相比,氮化镓微波功率器件通常具有更低的功耗和更高的效率,这使得它们在一些需要高性能和低能耗的应用中更具优势。
总的来说,氮化镓微波功率器件具有优异的性能特性,广泛应用于通信、雷达、卫星通信和军事等领域,为高频微波系统的性能提升提供了强大支持。
1。
宽禁带半导体高频及微波功率器件与电路

宽禁带半导体高频及微波功率器件与电路
宽禁带半导体是指能够在高频及微波频段工作的半导体材料。
与传统的窄禁带半导体不同,宽禁带半导体具有宽大于1.7电子伏的禁带宽度,使其能够在高频和微波频段实现高功率输出。
宽禁带半导体高频及微波功率器件是利用宽禁带半导体材料制作而成的器件,主要用于高频和微波功率放大、开关和调制等应用。
常见的宽禁带半导体材料包括碳化硅(SiC)和氮化镓(GaN)。
宽禁带半导体高频及微波功率器件具有以下特点:
1. 高功率输出能力:宽禁带半导体材料具有高电子饱和迁移速度和热导率,能够承受高功率输入并实现高功率输出。
2. 高频响应能力:宽禁带半导体材料的电子迁移速度快,具有较高的载流子迁移率,能够在高频和微波频段实现快速响应。
3. 低损耗特性:宽禁带半导体材料的材料损耗较低,能够减少能量转化为热的损失。
4. 宽工作温度范围:宽禁带半导体材料具有较高的热稳定性和耐高温性能,能够在较高的工作温度下正常工作。
宽禁带半导体高频及微波功率电路是利用宽禁带半导体器件构成的电路,用于实现高频和微波功率放大、发生和调制等功能。
常见的宽禁带半导体高频及微波功率电路包括功率放大器、MOSFET开关电路和射频调制电路等。
宽禁带半导体高频及微波功率器件与电路的应用领域包括通信、雷达、卫星通信、无线电、无线传感器网络等。
它们具有高功率输出、高可靠性和高效能的特点,能够满足高频和微波应用对功率和性能的要求。
功率半导体的发展进程

功率半导体的发展进程
随着科技的进步,功率半导体的发展取得了巨大的进步,它是构成我
们当今世界的重要组成部分。
功率半导体的出现为世界带来了许多便利,
改善了许多电气工程方面的技术,下面将详细介绍功率半导体的发展历程。
第一步是在1956年,发明了功率半导体器件。
这些器件是将大量的
能量转换成高压和高电流,并用于控制和稳定电路。
在此基础上,研究者
们开发了更小型的功率半导体器件,并且能满足更多的要求。
1966年,研究者们开发出了第一款半导体控制调制器,它能够有效
控制电机的转速,有效地增加了电机的功率效率。
此外,研究者还发展出
了第一款POWERMOSFET,它可以更好地控制、稳定和变换电路。
1975年,研究者们发明了第一款硅控制调制器,它具有更高的控制
精度,能够调整电机的特性,大大增强了电机的功率效率和可靠性。
此外,研究者们又发明了热漂移抑制器,它可以有效抑制半导体器件的热效应,
从而有效提高半导体器件的可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波功率器件进展
由Ge、Si、Ⅲ-V化合物半导体等材料制成的,工作在微波波段的二极管、晶体管称为微波器件。
微波即波长介于1m~1mm之间的电磁波,相应频率在300MHz~300GHz之间。
微波半导体器件在微波系统中能发挥各方面性能,归纳起来为微波功率产生及放大、控制、接收3个方面。
对微波功率器件要求有尽可能大的输出功率和输出效率及功率增益。
进入20世纪90年代后,由于MOCVD(金属有机化学气相淀积)和MBE(分子束外延)技术的发展,以及化合物材料和异质结工艺的日趋成熟,使三端微波器件取得令人瞩目的成就,使得HBT(异质结双极型晶体管)、MESFET(肖特基势垒场效应晶体管)以及HEMT(高电子迁移率晶体管)结构的各种器件性能逐年提高。
与此同时,在此基础上构成的MMIC(单片集成电路)已实用化,并进人商品化阶段,使用频率基本覆盖整个微波波段,不仅能获得大功率高效率而且,噪声系数小。
随着微波半导体器件工作频率的进一步提高,功率容量的增大,噪声的降低以及效率和可靠性的提高,特别是集成化的实现,将使微波电子系统发生新的变化。
下面从微波异质结双极晶体管(HBT),微波功率(MESFET),高电子迁移率晶体管(HEMT)来举例。
1 HBT功率微波器件的特性及设计要点
微波双极型晶体管包括异质结微波双极型晶体管和Si 微波双极型晶体管。
Si器件自20世纪60年代进入微波领域后,经过几十年的发展,性能已接近理论极限,并且其理论和制造已非常成熟,这可为后继的第二代、第三代器件借鉴。
HBT主要由化合物半导体或合金半导体构成,需要两种禁带宽度不同的材料分别作为发射区和基区,宽带隙材料作发射区,窄带隙材料作基区。
当为DHBT(双异质结双极型晶体管)时,集电区与基区材料带隙也不相同。
为更加有效地利用异质结晶体管的特性,其结构也不再是普通的平面结构,而是采用双平面结构。
2 MESFET功率微波器件的特性
在上个世纪70年代后期,GaAs单晶及外延技术获得突破,GaAs肖特基势垒栅场效应晶体管(MESFET)得以成功制成。
GaAs材料的电子迁移率比Si的高7倍,且漂移速度快,所以GaAs比Si具有更好的高频特性,并具有电路损耗小、噪声低、频带宽、动态范围大、功率大、附加效率高等特点,而且GaAs是直接带隙,禁带宽度大,因而器件的抗电磁辐射能力强,工作温度范围宽,更适合在恶劣的环境下工作。
由于GaAs器件具有以上优点,GaAs MESFET已几乎占领了微波应用的各个领域。
20世纪90年代中后期对于SiC材料的研究表明,它的性能指标比GaAs器件还要高一个数量级。
SiC具有下列优异的物理特点:高的禁带宽度(4H-SiC,3.2eV),高的饱和电子漂
移速率(2×107cm/s),高的击穿强度(4×106V/cm),低的介电常数和高的热导率(4.9W/cm·k)。
上述这些优异的物理特性,决定了SiC在高温、高频率、高功率的应用场合是极为理想的半导体材料。
在同样的耐压和电流条件下,SiC器件的漂移区电阻要比Si低200倍。
其功率密度是Si和GaAs的3~4倍,热导性能是Si的3倍,是GaAs的10倍。
用SiC材料制造的MESFET的射频(RF)功率密度达到4.6W/mm,功率效率(PAE)达到65.7%,击穿电压超过100V,SiC的型体非常多,在半导体应用时4H-SiC和6H-SiC由于单晶生长工艺的成熟以及较好的重复性而应用较广,目前已商品化,尺寸也由25mm增大到50mm,75mm的晶元也有样品展出,产品目前主要来自于美国的Cree公司。
3 HEMT功率微波器件的特性及设计
HEMT被公认为微波/毫米波器件和电路领域中最有竞争力的三端器件,它不仅具有优异的低噪声特性,而且具有出色的功率性能。
1969年IBM公司的L.Esaki和R.Tsu提出了"调制掺杂"概念,认为如将载流子在空间上与其母体的电离杂质分开,并使之局限在一极小的区域内(量子阱)作二维运动,由于量子阱中的载流子避免了与其母体杂质的散射,就能获得很高的迁移率。
1978年,Bell实验室的R.Dingle首次报道了用MBE生长的调制掺杂异质结构,并证实了具有高密度、高迁移率的二维电子气(2DEG)的存在。
1980年日本富士通公司研制出第一只HEMT,因其它具有超高速性能以及吸引人的功率密度而受到世人瞩目。
且其短沟道效应很小,制造步骤少,性能均匀稳定。
目前,由于HEMT器件研究和工艺的日趋成熟,在国外(美国、日本等)已有高性能的产品走向市场。
4 国内现状及与国外差距、未来展望和总结
我国在GaAs MESFET的研制方面起步较早,经过十几年的努力,目前所达到的水平为C波段8W、15GHz 1W、18GHz 1W,并已商业化。
而HBT和HEMT器件及其材料的研制方面起步较早,且由于设备条件差,所以器件性能也较差,大多数的器件只是处于试验阶段。
目前,国家各重点实验室已成功研制出高性能的HBT和HEMT,填补了我国在这方面的空缺,只是还没能够形成产业化。
经过30多年的研制和发展,我国在半导体微波器件领域取得了很大的成绩,但与国外先进水平相比,仍然存在相当大的差距。
对SiC晶元的制备我国尚为空缺,实验的材料均来自于美国的Cree公司,而GaN器件也刚刚起步,其工艺正在探索研究中,主要是由于受
AlGaN/GaN 2DEG材料的来源限制。
器件的研制和生产方面与国外的差距是多方面的,归纳起来包括以下几方面:
(1)投资强度不够。
半导体制造工艺需要的设备大都要求先进的现代化设备,需要投人相当大的资金,由于我国的国力的原因,在投资方面跟不上美、日及西欧等国家。
同时由于我国的基础工业的落后也导致了半导体产业的落后。
(2)材料研究落后。
材料是器件的重要基础,材料的特性直接影响器件的性能参数。
广泛掌握材料特性和对材料质量全面了解是器件成功的关键。
虽然我国进口了先进的MBE、MOCVD设备,但材料生长技术仍有待提高。
(3)工艺设备的落后。
由于半导体设备的投资相当大,而我国的大多数设备都靠从国外进口,主要是Si工艺生产线,而Si材料已不能满足未来对微波功率器件的要求,新材料的制备需要新的生产线及新的工艺。
未来器件的发展会集中在新材料、新工艺、新结构、互连技术等方面,而新材料则是重点。
由于对器件的设计从"掺杂二程"转入"能带工程",因此对半导体材料需要革命性的革新,而这正是目前器件及IC技术突破的瓶颈。
对于微波功率器件,需要找到宽禁带、高热导率、高电子迁移率、高的击穿强度、低介电常数的材料,同时由于异质结的应用,必然会有晶格失配现象,故还需要有最小的晶格失配系数。
由于SiGe与Si工艺的兼容性,我国应首先在SiGe合金的制备及SiGe/Si异质结特性的研制和HBT结构的研制上取得突破,这可利用现成的Si工艺生产线实现产业化,从而实现第一代材料与第二代材料的平稳过渡。
在其他新型材料(SiC、GaN、InP等)的研制和开发方面可采取开发与引进并行的策略逐步推进产业化进程,追赶国外先进水平。
化合物半导体器件中最有代表性、最能完美地显示异质结结构特点的超高速器件是高电子迁移率晶体管(HEMT)和异质结双极晶体管(HBT)。
HEMT不仅可获得超高频、超高速,还具有低的高频噪声。
HEMT是平面结构,而HBT是非平面结构,工艺上比HEMT难度大,但可获得高的输出功率。
对微波功率器件的研究除了要寻找更好的半导体材料和对材料特性进行改进外,还要有十分完备的工艺支持。