基于热敏电阻的测温控制系统设计
(完整版)基于热敏电阻的数字温度计

基于热敏电阻的数字温度计专业班级:机械1108组内成员:罗良李登宇李海先指导老师:**日期: 2014年6月12日1概述随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。
随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。
目前温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1)利用物体热胀冷缩原理制成的温度计2)利用热电效应技术制成的温度检测元件3)利用热阻效应技术制成的温度计4)利用热辐射原理制成的高温计5)利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。
温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。
将输出的微弱电压信号放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。
2设计方案2.1设计目的利用51单片机及热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路及面向对象编程等课程的知识设计。
要求的功能是能通过串口将采集的数据在显示窗口显示,采集的温度达一定的精度2.2设计要求使用热敏电阻类的温度传感器件利用其温感效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来。
3系统的设计及实现3.1系统模块3.1.1 AT89C51AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。
该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。
热敏电阻温度计的设计 实验报告

热敏电阻温度计的设计实验报告大连理工大学大学物理实验报告专业材料物理班级 0705 院(系) 材料学院成绩姓名童凌炜学号200767025 实验台号实验时间 2008 年 11 月 25 日,第14周,星期二第 5-6 节教师签字实验名称热敏电阻温度计的设计教师评语实验目的与要求:(1) 掌握电阻温度计测量温度的基本原理和方法。
(2) 设计和组装一个热敏电阻温度计。
主要仪器设备:稳压电源,自制电桥盒(如右下图所示),直流单臂电桥箱和热敏电阻感温原件等。
实验原理和内容:热敏电阻温度计的工作原理由于热敏电阻的阻值具有随温度变化而变化的性质,我们可以将热敏电阻作为一个感温原件,以阻值的变化来体现环境温度的变化。
但是阻值的变化量以直接测量的方式获得可能存在较大的误差,因此要将其转化为一个对外部条件变化更加敏感的物理量; 本实验中选择的是电流,通过电桥可以将电阻阻值的变化转化为电流(电压)的变化。
R2、R3为可调节电阻, Rt为电桥的结构如右图所示, R1、热敏电阻。
当四个电阻值选择适当时,可以使电桥达到平衡,即AB之间(微安表头)没有电流流过,微安表指零; 当Rt发生变化时,电桥不平衡, AB间有电流流过,可以通过微安表读出电流大小,从而进一步表征温度的变化。
- 1 -当电桥不平衡时,可以描绘成如右侧的电路图。
根据基尔霍夫定律和R1=R2的条件,能够求得微安表在非平衡状态下的电流表达式:R2tU,(1)cdR,R3t I,gRR3tR,R,221gR,R3t式中, Ucd为加载在电桥两端的电压, Rg为微安表头的内阻值。
可以见到,为使Ig为相关于Rt的单值函数, R1、R2、R3和Ucd必须为定值,而其定制的大小则决定于以下两个因素:1) 热敏电阻的电阻-温度特性。
2) 所设计的温度计的测温上限t1和测温下限t2。
步骤与操作方法:1. 温度计的设计(1) 测出所选择的热敏电阻Rt-t曲线(或由实验室给出)。
热敏电阻温度计的设计

热敏电阻温度计的设计热敏电阻温度计的设计一、引言温度是测量各种物理和化学过程的关键参数。
热敏电阻温度计由于其出色的精度、快速响应和稳定性,在温度测量领域具有广泛的应用。
本文将详细介绍热敏电阻温度计的设计原理、结构、以及在实际应用中的注意事项。
二、设计原理热敏电阻温度计基于热电效应原理。
在导体中,自由电子因温度变化而产生热运动,产生电流。
这种现象被称为热电效应。
热敏电阻温度计利用这种效应来测量温度。
1.热电阻材料热敏电阻材料应具有高电阻率、良好的温度系数、稳定的物理和化学性质、以及可接受的响应时间。
常用的热敏电阻材料包括铜、镍、钴等。
2.测温原理热敏电阻的阻值随温度变化而变化。
通过测量电阻值的变化,可以确定温度的变化。
为了获得准确的温度读数,需要将电阻的变化转化为电压或电流的变化,再通过一定的算法进行计算。
三、设计结构热敏电阻温度计主要包括以下几个部分:1.热敏电阻热敏电阻是温度计的核心部件,负责感应温度的变化。
2.测量电路测量电路用于测量热敏电阻的电阻值,并将电阻值的变化转换为电压或电流的变化。
常用的测量电路包括惠斯通电桥和恒流源电路。
3.数据处理单元数据处理单元接收来自测量电路的信号,通过一定的算法处理数据,得出温度读数。
4.显示单元显示单元用于显示测得的温度读数。
四、实际应用及注意事项1.安装位置热敏电阻应安装在被测物体表面或内部,以减小误差。
对于移动或旋转的物体,应选择合适的安装位置,以避免因运动产生的误差。
2.绝缘要求为避免误差,热敏电阻与测量电路之间应具有良好的绝缘。
绝缘材料的选择应考虑被测物体的环境条件,如湿度、压力等。
3.校准为了确保准确的温度读数,热敏电阻温度计应定期进行校准。
校准过程中,应使用已知标准温度的参考物体对温度计进行校准。
4.稳定性检测长时间使用后,热敏电阻可能会出现老化现象,导致温度读数的不准确。
因此,应定期对热敏电阻进行稳定性检测,以保证测得的温度读数的准确性。
5.环境因素环境因素如湿度、压力、光照等可能影响热敏电阻的温度读数。
基于Pt100_热电阻的简易温度测量系统毕业设计论文1 精品

基于PT100热电阻的简易温度测量仪摘要:本文首先简要介绍了铂电阻PT100的特性以及测温的方法,在此基础上阐述了基于PT100的温度测量系统设计。
在本设计中,是以铂电阻PT100作为温度传感器,采用恒流测温的方法,通过单片机进行控制,用放大器、A/D转换器进行温度信号的采集。
通过对电路的设计,减小了测量电路及PT100自身的误差,使温控精度在0℃~100℃范围内达到±0.1℃。
本文采用STC89C52RC单片机,TLC2543 A/D转换器,AD620放大器,铂电阻PT100及液晶系统,编写了相应的软件程序,使其实现温度及温度曲线的实时显示。
该系统的特点是:使用简便;测量精确、稳定、可靠;测量范围大;使用对象广。
关键词:PT100 单片机温度测量 AD620 TL431AbstractThis article briefly describes the characteristics of PT100 platinum resistance and temperature measurement method, on the basis it describes the design of temperature measurement system based on PT100. In this design, it is use a PT100 platinum resistance as temperature sensor, in order to acquisition the temperature signal, it use of constant-current temperature measurement method and use single-chip control, Amplifier, A / D converter. It can still improve the perform used two-wire temperature circuit and reduce the measurement eror. The temperature precision is reached ±0.1℃ between 0℃~100℃.The system contains SCM(STC89C52), analog to digital convert department (TLC2543), AD620 amplifier, PT100 platinum, LCD12864, write the corresponding software program to achieve real-time temperature display. The system is simple , accurate , stable and wide range. Keywords:PT100 MCU Temperature Measures AD620 TL431目录前言 (4)第一章方案设计与论证 (6)1.1 传感器的选择 (6)1.2 方案论证 (7)1.3 系统的工作原理 (8)1.4 系统框图 (9)第二章硬件设计 (9)2.1 PT100传感器特性和测温原理 (9)2.2 硬件框图以及简要原理概述 (11)2.3 恒流源模块测温模块设计方案 (11)2.4 信号放大模块 (12)2.5 A/D转换模块 (15)2.6 单片机控制电路 (18)2.7 显示模块 (19)第三章软件设计 (19)3.1系统总流程的设计 (19)3.2 主函数的设计 (20)3.3 温度转换流程图的设计 (21)3.4 显示流程图 (21)3.5 按键流程的设计 (22)第四章数据处理与性能分析 (23)4.1采集的数据及数据处理 (23)4.2 性能测试分析 (23)第五章结论与心得 (24)1 结论 (24)2 心得 (24)附录1 原理图 (25)附录2 元器件清单 (26)附录3 程序清单 (27)前言随着科技的发展和“信息时代”的到来,作为获取信息的手段——传感器技术得到了显著的进步,其应用领域越来越广泛,对其要求越来越高,需求越来越迫切。
用热敏电阻改装温度计的设计方案 广东第二师范学院

数据处理
原始数据:(用Excel进行数据记录和整理)
化作春风守护你
数据处理
数据处理
本设计使用软件Matlab 绘制R-T曲线,运用 最小二乘法进行曲线拟合。 最小二乘法(又称最小平方法)是一种数 学优化技术。 它通过最小化误差的平方和寻找数据的最 佳函数匹配。 利用最小二乘法可以简便地求得未知的数 据,并使得这些求得的数据与实际数据之 间误差的平方和为最小 。
确定校正曲线
相对误差分析
现以两次实验数据验证本设计的精确度。
相对误差1= |(T标-T实)|/ T标= (4342.7)/43= 0.698% 相对误差2=|(T标-T实)|/ T标= (69.3-69)/69= 0.435%
改进空间
1使用刻度更加准确的水银温度计,水银温度计达 到0.1℃的定标值,更加准确。 2 采用DS18B20数字温度传感器作为检测单元, 测温范围 -55℃~+125℃,固有测温误差精确到 0.5℃。 3 采用可编程器件,如CPLD,FPGA或者微处理 器芯片,如STC89C51单片机作为中央处理器, LCD或LED作为可视化数据输出单元,可同步、 直观地显示出当前液体温度值。
测温原理简介
热敏电阻原理 热敏电阻具有负的电阻温度系数的元件,电阻值 随温度的升高而下降,这是因为热敏电阻有半导 体制成,在这些半导体内部,自由电子数目随温 度的升高增加的很快,导电能力很快增强,虽然 原子振动也会加剧并阻碍电子的运动。但这样作 用对导电性能的影响远小于电子被释放而改变导 电性能的作用,所以温度上升会使电阻下降。 这样我们就可以测量电桥平衡时通过桥路的电流 大小来表征温度的高低。
设计目标
用热敏电阻改装的温度计, 准确测量0℃~ 100℃液体的 实时温度。
基于STM32的热敏电阻分压式测温系统设计

1 引言
随着医疗行业的发展,越来越多的制冷制热设 备运用于医疗行业。医用超低温冰箱对冷柜的环 温、冷凝器探头温度、换热器探头温度及柜温探头 温度的要求都很高。测温电路是这些设备的基本 组成部分,其精度和分辨率不但决定一个产品的温 控水平,而且是实现智能温控的一个必要前提。基 于 NTC 热敏电阻的分压式测温系统设计,其软硬件 简单、成本低、测温精度高的热敏电阻测温模块设 计,经实际测量实验,这种设计方案在整个测温范
摘 要 NTC 热敏电阻是一种负温度系数的温度传感器,并在测温系统中广泛应用。该系统以 STM32F103ZET6 微控 制器为核心,通过热敏电阻分压来测量系统的温度,具有精度高、分辨率高、体积小、响应速度快、成本低、功耗低等特点,数 据处理基于对热敏电阻测温曲线的分段线性化、分段线性插值处理,提高了测量精度。所设计的测温模块对-50℃~100℃ 范围内的温度进行了实测,效果良好。
∗ 收稿日期:2017 年 10 月 6 日,修回日期:2017 年 11 月 25 日 作者简介:董晓宇,女,硕士研究生,研究方向:电子与通信。孟海彦,男,硕士研究生,研究方向:电子信息、测控技 术。孔令布,男,硕士研究生,研究方向:电子信息、传感器。
2018 年第 4 期
计算机与数字工程
847
由图 3 曲线可清楚的看出热敏电阻阻值随温 度的变化为负温度系数。
图 2 跳线帽跨接电路图
2.2 影响热敏电阻阻值测量精度的主要因素
热敏电阻阻值获取的精度是影响模块测温精
热敏电阻温度计的设计

4
R R 编辑ppt
4
t2
8
原理提示
1、利用负温度系数热敏电阻的温度特性
RT(K)
B
RT AeT
A、B是与材料 有关的常数
t(0C )
测出阻值RT的变化就能推测出温度T的变化
编辑ppt
9
原理提示
2、利用非平衡电桥原理
R1=R2,Rt=R3 ——电桥平衡 Rt变化,电桥平衡被破坏,
G有电流通过,指针发生偏转,
(3)测量: S扳向”测”, 温度计处于测量 状态, 读出微安表和温度值
编辑ppt
15
实验任务
1 由图组电路, 设计电路参数Ucd, R1(R2), R3和R4
2 把R1(R2), R3和R4调到设计值, 安装一台热敏电阻 温度计
3 用一支水银温度计(标准), 对这台温度计进行校 验,求出测量误差 (选做)
(1) Ucd的确定: 1.1~1.4V
(2) R 3 值的确定: R3 Rt1 (3) R1(R2) 的确定:
R 1( (R R tt1 1 R R tt2 2 ) )U Ig cm d 2 (R gR t1 R tR 1t 1 R R t2 t2 R t2R g)
(4)R 的确定: R4R4Rt2
(4)R 的确定: R4R4Rt2
4
R R 4 编辑ptp2t
12
原理提示
5、制作定标曲线
t /0 C
ti
I gi
Ig / A
编辑ppt
13
原理提示
热敏电阻温度计配线图
编辑ppt
14
原理提示
6、测温操作程序
(1)通电: 为防止微安表及热敏电阻过载, 通电前电位器R最小
热敏电阻测温电路设计方案汇总

热敏电阻测温电路设计⽅案汇总 1、原理电路 本测温控温电路由温度检测、显⽰、设定及控制等部分组成,见图2.2.1。
图中D1~D4为单电源四运放器LM324的四个单独的运算放⼤器。
RT1~RTn为PTC感温探头,其⽤量取决于被测对象的容积。
RP1⽤于对微安表调零,RP2⽤于调节D2的输出使微安表指满度。
S为转换开关。
图2.2.1测温控温电路 由RT检测到的温度信息,输⼊D1的反馈回路。
该信息既作为D2的输⼊信号,经D2放⼤后通过微安表显⽰被测温度;⼜作为⽐较器D4的同相输⼊信号,与D3输出的设定基准信号,构成D4的差模输⼊电压。
当被控对象的实际温度低于由RP3预设的温度时,RT的阻值较⼩,此时D4同相输⼊电压的绝对值⼩于反相输⼊电压的绝对值,于是D4输出为⾼电位,从⽽使晶体管V 饱和导通,继电器K得电吸合常开触点JK,负载RL由市电供电,对被控物进⾏加热。
当被控对象的实际温度升到预设值时,D4同相输⼊电压的绝对值⼤于反相输⼊电压的绝对值,D4的输出为低电位,从⽽导致V截⽌,K失电释放触点JK⾄常开,市电停⽌向RL供电,被控物进⼊恒温阶段。
如此反复运⾏,达到预设的控温⽬的。
2、主要元器件选择 本测温控温电路选⽤PTC热敏电阻为感温元件,该元件在0℃时的电阻值为264Ω,制作成温度传感器探测头,按图2.2.2线化处理后封装于护套内。
图2.2.2线化电路 线化后的PTC热敏电阻感温探头具有良好的线性,其平均灵敏度达16Ω/℃左右。
如果采⽤数模转换⽹络、与⾮门电路及数码显⽰器,替代本电路的微安表显⽰器,很容易实现远距离多点集中的遥测。
继电器的选型取决于负载功率。
为便于调节,RP1~RP4选⽤线性带锁紧机构的微调电位器。
3、安装与调试 调试⼯作主要是调整指⽰器的零点和满度指⽰。
先将S接通R0,调节RP1使微安表指零,于此同时,调节RP4使其阻值与RP1相同,以保持D1与D4的对称性。
然后将S接通R1,调节RP2使微安表指满度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告课程名称:传感器课程设计系别:机电工程系专业班级:自动化1101班学号:***********名:***课程题目:基于热敏电阻的测温控制系统设计完成日期:2013年11月20日指导老师:2013年11月20日附件:目录第一部分:明确实验的主要目的和要求………………………第二部分:系统设计…………………………………………….2.1学习板电路的设计………………………………………2.2电路总体设计与参数选择………………………………2.2.1设计原理………………………………………………2.2.2硬件电路的设计………………………………………2.2.3旗舰店使用和连接…………………………………….2.3模数转换电路的设计……………………………………2.4 硬件电路的设计………………………………………….2.4.1热敏电阻的选用………………………………………2.4.2 AT89C52单片机的选用及资源安排……………第三部分:系统软件设计………………………………………第四部分:系统调试与仪器使用………………………………4.1 系统调试的一起选用及其使用………………………4.2 系统调试故障的检测和分析…………………………4.3 结果分析………………………………………………第五部分:测试数据与结果分析………………………………第六部分:参考文献…………………………………………第七部分:附录………………………………………………….热敏电阻温度采集系统设计该系统采用了AT89C52单片机、NTC热敏电阻、共阴极数码管显示、电容、排阻、晶振、电阻等元器件。
摘要:本系统由TL431精密基准电压,NTC热敏电阻(MF-55)的温度采集,A/D 和D/A转换,单片机AT89C52为核心的最小控制系统,LCD1602的显示电路等构成。
温度值的线性转换通过软件的插值方法实现。
该系统能够测量范围为2—24℃,测量精度±1℃,并且能够记录24小时内每间隔30分钟温度值,并能够回调选定时刻的温度值,能计算并实时显示24小时内的平均温度、温度最大值、最小值、最大温差,且有越限报警功能。
由于采用两个水泥电阻作为控温元件,更有效的增加了温度控制功能。
关键词: NTC TL431 温度线性转换第一部分系统主要功能本系统中采用NTC热敏电阻的测温工作原理,测量的温度范围为2—24℃摄氏度,可以通过数码管直观地显示出当前温度值。
经过TL431精密稳压源输5V电压给一个桥式电阻电路,由于NTC热敏电阻的特性,所以随着温度的变化,电阻值减少了,后面在接一个三运放电路将电压放大到所需要的电压值。
输出的电压值经过8位A/D转换器ADC0804转换后,将数字信号经由单片机AT89C52进行处理,然后将这些值送由LCD1602进行显示。
第二部分系统设计2.1 学习板电路学习板系统总体设计电路图学习板系统总体设计图学习板上独立按键和矩阵按键的电路图LED 数码显示器DA 转换器 蜂鸣器 温度传感器 EEPROM计算机USB 通信接口电源键盘AD 转换器 LCD 显示器 LED 流水灯 MCUP2P3P1P0AT89C52单片机电路图AT89C52是51系列单片机的一个型号,它是ATMEL公司生产的。
AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash 只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,功能强大的AT89C52单片机可为您提供许多较复杂系统控制应用场合。
AT89C52有40个引脚,32个外部双向输入/输出(I/O)端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,但不可以在线编程(S系列的才支持在线编程)。
其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发成本。
兼容MCS51指令系统·8k可反复擦写(>1000次)Flash ROM ·32个双向I/O口·256x8bit内部RAM ·3个16位可编程定时/计数器中断·时钟频率0-24MHz ·2个串行中断·可编程UART串行通道·2个外部中断源·共6个中断源·2个读写中断口线·3级加密位·低功耗空闲和掉电模式·软件设置睡眠和唤醒功能AT89C52P为40 脚双列直插封装的8 位通用微处理器,采用工业标准的C51内核,在内部功能及管脚排布上与通用的8xc52 相同,其主要用于会聚调整时的功能控制。
功能包括对会聚主IC 内部寄存器、数据RAM及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号IR的接收解码及与主板CPU通信等。
主要管脚有:XTAL1(19 脚)和XTAL2(18 脚)为振荡器输入输出端口,外接12MHz 晶振。
RST/Vpd(9 脚)为复位输入端口,外接电阻电容组成的复位电路。
VCC(40 脚)和VSS(20 脚)为供电端口,分别接+5V电源的正负端。
P0~P3 为可编程通用I/O 脚,其功能用途由软件定义,在本设计中,P0 端口(32~39 脚)被定义为N1 功能控制端口,分别与N1的相应功能管脚相连接,13 脚定义为IR输入端,10 脚和11脚定义为I2C总线控制端口,分别连接N1的SDAS(18脚)和SCLS (19脚)端口,12 脚、27 脚及28 脚定义为握手信号功能端口,连接主板CPU 的相应功能端,用于当前制式的检测及会聚调整状态进入的控制功能。
2.2 电路总体设计与参数选择2.2.1设计原理图1如图1所示,当外界温度变化时,热敏电阻的阻值随着发生变化,热敏电阻上分得的电压发生变化,通过单片机的IO口和集成AD可以获得热敏电阻的电压值为V,通过计算得出热敏电阻的阻值变化规律R=V*R1/(5-V)。
由于热敏电阻的阻值与温度有表1的对应关系,将各对应值用数组形式写入程序,通过查表便可以得到此时外界的温度值。
表1 2.2.2 硬件电路图2 2.2.3器件选用及连接7 电容C2 30pF8 晶振X1 12MHZ9 排阻RP1 10K X 810 数码管8段共阴11 单片机STC12C5A60S2表2系统所用的元器件及说明如表2所示。
引脚连接安排为:P1.1引脚接热敏电阻,RST引脚接复位电路,X1、X2连接用来起振,P2.7-P2.4 引脚接数码管的1、2、3、4,P0.0-P0.7引脚接数码管的a b c d e f g h和10K的排阻。
2.3 模数转换电路前向通道中,当温度值转换为电压后,还需要将电压值进行A/D转换,转换后的值才能送到单片机进行处理。
后向通道中进行温度显示前应该先经过D/A转换2.4硬件选用2.4.1热敏电阻的选用热敏电阻器的热敏电阻有电阻值随温度升高而升高的正温度系数(简称PTC)热敏电阻和电阻值随温度升高而降低的负温度系数(简称NTC)热敏电阻。
NTC热敏电阻器,是一种以过渡金属氧化物为主要原材料,采用电子陶瓷工艺制成的热敏半导体陶瓷组件。
这种组件的电阻值随温度升高而降低,利用这一特性可制成测温、温度补偿和控温组件,又可以制成功率型组件,抑制电路的浪涌电流。
电阻温度特性可以近似地用下式来表示: R= R*EXP[B*(1/T-1/T)] 式中:RT、RN 分别表示NTC在温度T(K)和额定额定温度TN(K)下的电阻值,单位Ω,T、TN为温度,单位K(TN (k)=273.15+TN(℃))。
B,称作B值,NTC热敏电阻特定的材料常数(Beta)。
由于B值同样是随温度而变化的,因此NTC热敏电阻的实际特性,只能粗略地用指数关系来描述,所以这种方法只能以一定的精度来描述额定温度或电阻值附近的有限的范围。
电阻-温度关系: NTC热敏电阻器CWF2-502F3950各温度点的电阻值,即电阻-温度关系表。
NTC热敏电阻器CWF2-502F3950的测温范围为[-55℃,125℃],其电阻值的变化范围为[250062Ω,242.64Ω]。
如表1所示,列举了2-42摄氏度的电阻-温度关系。
2.4.2 AT89C52单片机的选用及单片机资源安排2.4.3 AT89C52概述本次课程设计核心元件是单片机AT89C52,下面对AT89C52做简单的概述。
2.4.4基本构造AT89C52单片机中包含中央处理器(CPU)、程序存储器(Flash)、数据存储区(SRAM)、定时/计数器、UART串口、串口2、I/O接口、高速A/D转换、SPI接口、PCA、看门狗及片内R/C振动器和外部晶振等模块。
AT89C52系列单片机几乎包含了数据采集和控制中所需的所有单元模块,可称得上一个片内系统。
单片机AT89C52的基本构造如图3所示:图32.4.5性能特点60KB的Flash片内程序存储器、256字节的内部随机存取数据存储器(RAM)、1024字节的外部存储器、1K字节的数据Flash存储(EEPROM)、ISP(在系统可编程)/IAP(在应用可编程)、看门狗、内部集成MAX810专用复位电路、外部掉电检测电路、时钟源:外部精度晶体/时钟,内部R/C振荡器、4个16位定时器、3个时钟输出口、7个外部中断I/O口、PWM(2路)/PCA(可编程计数器阵列,2路)、A/D 转换,10位精度ADC,共8路.2.4.6 AT89C52单片机资源利用本次课程设计,主要应用了AT89C52单片机中中央处理器(CPU)、高速A/D 转换、外部晶振等模块。
第三部分C语言程序流程图及代码主函数流程图:AD中断流程图:系统C程序代码:Config.h代码:#ifndef _CONFIG_H_#define _CONFIG_H_#include <STC.h>#define FOSC 12000000L#define ADC_POWER 0x80#define ADC_FLAG 0x10#define ADC_START 0x08#define ADC_SPEEDLL 0x00#define ADC_SPEEDL 0x20#define ADC_SPEEDH 0x40#define ADC_SPEEDHH 0x60#define ADC_POSITION 1 //AD通道位置0-7#define NUX_DATA P0 //数码管段选#define NUX_SEG P2 //数码管位选void Delay_ms(unsigned int ms); //延时函数void InitADC(); //初始化AD功能#endifMain.c代码:#include "config.h"unsigned int code Ttable[42][2]={2,257, 3,246, 4,236, 5,225, 6,216, 7,207 8,198 9,190 10,182 11,174 12,167 13,160 14,154 15,148 16,142 17,136 18,131 19,126 20,121 21,116 22,112 23,107 24,103 25,100 26,96 27,92 28,89 29,8630,82 31,80 32,77 33,74 34,71 35,69 36,66 37,64 38,62 39,60 40,58 41,56 42,54 43,52 }; // 此数组保存热敏电阻的温度值(从2-43摄氏度),超出无效unsigned char code TableDATA[13]={0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D,0x7D, 0x07, 0x7F, 0x6F/*0-9*/, 0x00/*无*/, 0x02, 0x39,}//数码管数字0-9unsigned char code TableSEG [ 4] = {0xEF,0xDF,0xBF,0x7F};//数码管位置0-3unsigned char show[4];//定义温度全局/********************************************** 函数名称: void Delay_ms(unsigned int ms)** 功能描述: 延时函数** 输入: unsigned int ms 延时时间** 输出: 无** 全局变量: 无** 调用模块: 无**********************************************/void Delay_ms(unsigned int ms){for(;ms>0;ms--);}/******************************************************* 函数名称: void adc_isr() interrupt 5** 功能描述: AD中断,获取AD数据** 输入: 无** 输出: show** 全局变量: show** 调用模块: Delay_ms********************************************************/void Adc_isr() interrupt 5{unsigned char i;unsigned int m;m = ADC_RES;//计算此时热敏电阻阻值m = (100*m)/(255-m);//计算此时的温度值for(i=41;i<42;i--){if(m >= Ttable[i][1] && m < Ttable[i-1][1]){show[0] = (Ttable[i][0]+1)/10;show[1] = (Ttable[i][0]+1)%10;show[2] = 11;show[3] = 12;break;}}ADC_CONTR = ADC_POWER|ADC_SPEEDLL|ADC_START|ADC_POSITION; //重新使能AD转换}/******************************************************** 函数名称: void InitADC()** 功能描述: 初始化AD功能** 输入: 无** 输出: 无** 全局变量: 无** 调用模块: Delay_ms*********************************************************/void InitADC(){P1ASF = 0xff;ADC_RES = 0;ADC_CONTR = ADC_POWER|ADC_SPEEDLL|ADC_START|1; //使能P11为AD输入IE = 0xa0;Delay_ms(20);}main(){unsigned char i,j;InitADC();while(1){for(j=255;j>0;j--){for(i=0;i<4;i++)//数码管扫描{NUX_SEG = TableSEG[3-i];NUX_DATA = TableDATA[show[i]];Delay_ms(100);NUX_DATA = 0x00;}}}}第四部分系统调试与仪器使用4.1系统调试的仪器选用及其使用4.2 系统调试及调试故障的检测与分析第一步用下载程序的电路板和电脑给单片机下载编写好的程序第二步将下载好的单片机安装在设计的电路板上,给电路板接上5V的电源(接上电源后,数码管没有显示。