热敏电阻测温电路的设计说明

合集下载

热电阻的测温电路

热电阻的测温电路

Pt100热电阻的测温电路[摘要] 热电阻测温是基于金属导体的电阻值随温度的增加而增加这一特性来进行温度测量的。

热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。

热电阻传感器主要是利用电阻值随温度变化而变化这一特性来测量温度及与温度有关的参数。

在温度检测精度要求比较高的场合,这种传感器比较适用。

目前较为广泛的热电阻材料为铂、铜、镍等,它们具有电阻温度系数大、线性好、性能稳定、使用温度范围宽、加工容易等特点。

用于测量-200℃~+500℃范围内的温度。

温度测量系统应用广泛,涉及到各行各业的各个方面,在各种不同的领域中都占有重要的位置。

从降低开放成本扩大适用范围、系统运行的稳定性、可靠性出发,设计一种以Pt100铂热电阻为温度信号采集元件的传感器温度测量系统。

才测量系统不但可以测量室内的温度,还可以测量液体等的温度,在实际应用中,该系统运行稳定、可靠,电路设计简单实用。

[关键字] 传感器 Pt100热电阻温度测量目录1 前言 (4)1.1 传感器概况 (4)1.2 设计目的 (7)2 设计要求 (8)2.1 设计内容 (8)2.2 设计要求 (9)3 原器件清单 (10)4 Pt100热电阻的测温电路 (11)4.1 总体电路图 (11)4.2 工作原理 (11)5 Pt100热电阻测温电路的原理及实现 (12)5.1 测温电路的工作原理 (12)5.2 测温电路的实现 (14)5.3 测量结果及结果分析 (15)6 制作过程及注意事项 (16)6.1 制作过程 (16)6.2 注意事项 (17)7 总结 (18)8 致谢 (19)参考文献 (20)1 前言1.1传感器概况传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。

国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。

热敏电阻温度计的设计实验

热敏电阻温度计的设计实验

热敏电阻温度计的设计实验简介热敏电阻温度计是一种测量温度的传感器,它利用材料的电阻随温度变化的特性来实现温度的测量。

本文将详细介绍热敏电阻温度计的设计实验方法和步骤。

实验目的通过设计热敏电阻温度计的实验,掌握以下知识和技能: 1. 了解热敏电阻的基本原理和特点; 2. 掌握热敏电阻的测量方法和电路连接; 3. 学会使用热敏电阻测量温度。

实验器材和材料下面是进行热敏电阻温度计设计实验所需的器材和材料: 1. 热敏电阻 2. 连接线3. 变阻器 4. 示波器 5. 温度源 6. 温度计(参考)实验步骤步骤一:热敏电阻的特性测试1.连接热敏电阻和示波器:将热敏电阻的两端分别连接到示波器的输入端口。

2.设置示波器的垂直和水平方向的刻度,使得能够清晰地观察到热敏电阻的电阻变化。

3.通过改变温度源的温度,观察示波器上显示的电阻变化情况。

4.记录不同温度下的热敏电阻的电阻值,并绘制温度和电阻之间的关系曲线。

步骤二:热敏电阻的电路连接1.根据热敏电阻的数据手册,确定热敏电阻的额定电阻值和温度系数。

2.选择合适的电阻和电路连接方式,以便实现温度测量的精度和稳定性。

3.进行电路连接,并使用万用表测量电路的电阻值,确保电路连接正确无误。

步骤三:热敏电阻温度计的标定1.使用温度计准确测量一个已知温度,例如室温。

2.将已知温度下热敏电阻的电阻值测量结果和温度计的测量结果进行比较,得到电阻值和温度的对应关系。

3.根据已知温度和热敏电阻的电阻值,得到热敏电阻的标定曲线。

步骤四:热敏电阻温度计的实际温度测量1.使用标定曲线,根据热敏电阻的电阻值计算出实际温度。

2.将热敏电阻的电阻值连接到电路中,通过电路输出的电压或电流来测量实际温度。

结论通过实验设计和实施,我们成功地制作了一个热敏电阻温度计,并了解了热敏电阻的基本原理和特点。

我们还学会了热敏电阻的测量方法和电路连接,并掌握了使用热敏电阻进行温度测量的技能。

这些知识和技能将在实际应用中发挥重要作用,为温度测量和控制提供了有力支持。

NTC热敏电阻的温度测量技术及线性电路

NTC热敏电阻的温度测量技术及线性电路
NTC 负温度系数热敏电阻传感器是温度下降时 它的电阻值会升高。在所有被动式温 度传感器中, 热敏电阻的灵敏度 ( 即温度每变化 1 时电阻的变 化 ) 最高, 但热敏电阻的电阻 /温度曲线是非线性的。
表 1. 1中数据是对 V ishay - D ale热敏电阻系列 测得的 NTC 热敏电阻器性能参数。
3 利用电阻器对热敏电阻传感器进行运算放大器, 加上负反馈构成的
线性电路, 其闭环增益和传输特性以及它的输入、输
出阻抗基本上取决于外部的反馈元件, 因此, 使用运
算放大器进行线性信号的处理是非常方便的。实际
中常用运算放大器构成反相放大电路和同相放大电
路作为测量温度的接口电路, 如图 2为热敏电阻传
[ 参考文献 ] [ 1] 张存礼, 周乐 挺. 传感器 原理 与应 用 [ M ]. 北京: 北 京师
范大学出版社, 2005: 129- 130. [ 2] Stuart Ba l.l . 常用温度测量技术及其接口电路 [ DB /O L ].
http: / /h.i ba idu. com / ourway /b log / item /dc015266538cf 326aa184cfd. htm l /2008- 08- 10. [ 3] (日 ) 松 井 邦 彦 著. 梁 瑞 林 译. 传感 器 应 用 技 巧 141 例 [ M ]. 北京 : 科学出版社, 2006: 57- 76. [ 4]王化祥, 张淑 英. 传感器 原理 及应 用 [ M ]. 天津: 天 津大 学出版社, 2002: 150- 159. [ 5]周航慈, 李跃忠. 模拟比较器的应用 (四 ) [ DB /O L] . http: / /h.i ba idu. com / szcgq /blog / item /e6c6a0a f17ca2ccf7dd92a 6.f htm l /2008- 08- 10.

热敏电阻温度计的设计

热敏电阻温度计的设计

热敏电阻温度计的设计热敏电阻温度计的设计一、引言温度是测量各种物理和化学过程的关键参数。

热敏电阻温度计由于其出色的精度、快速响应和稳定性,在温度测量领域具有广泛的应用。

本文将详细介绍热敏电阻温度计的设计原理、结构、以及在实际应用中的注意事项。

二、设计原理热敏电阻温度计基于热电效应原理。

在导体中,自由电子因温度变化而产生热运动,产生电流。

这种现象被称为热电效应。

热敏电阻温度计利用这种效应来测量温度。

1.热电阻材料热敏电阻材料应具有高电阻率、良好的温度系数、稳定的物理和化学性质、以及可接受的响应时间。

常用的热敏电阻材料包括铜、镍、钴等。

2.测温原理热敏电阻的阻值随温度变化而变化。

通过测量电阻值的变化,可以确定温度的变化。

为了获得准确的温度读数,需要将电阻的变化转化为电压或电流的变化,再通过一定的算法进行计算。

三、设计结构热敏电阻温度计主要包括以下几个部分:1.热敏电阻热敏电阻是温度计的核心部件,负责感应温度的变化。

2.测量电路测量电路用于测量热敏电阻的电阻值,并将电阻值的变化转换为电压或电流的变化。

常用的测量电路包括惠斯通电桥和恒流源电路。

3.数据处理单元数据处理单元接收来自测量电路的信号,通过一定的算法处理数据,得出温度读数。

4.显示单元显示单元用于显示测得的温度读数。

四、实际应用及注意事项1.安装位置热敏电阻应安装在被测物体表面或内部,以减小误差。

对于移动或旋转的物体,应选择合适的安装位置,以避免因运动产生的误差。

2.绝缘要求为避免误差,热敏电阻与测量电路之间应具有良好的绝缘。

绝缘材料的选择应考虑被测物体的环境条件,如湿度、压力等。

3.校准为了确保准确的温度读数,热敏电阻温度计应定期进行校准。

校准过程中,应使用已知标准温度的参考物体对温度计进行校准。

4.稳定性检测长时间使用后,热敏电阻可能会出现老化现象,导致温度读数的不准确。

因此,应定期对热敏电阻进行稳定性检测,以保证测得的温度读数的准确性。

5.环境因素环境因素如湿度、压力、光照等可能影响热敏电阻的温度读数。

热敏电阻测温电路设计方案汇总

热敏电阻测温电路设计方案汇总

热敏电阻测温电路设计⽅案汇总 1、原理电路 本测温控温电路由温度检测、显⽰、设定及控制等部分组成,见图2.2.1。

图中D1~D4为单电源四运放器LM324的四个单独的运算放⼤器。

RT1~RTn为PTC感温探头,其⽤量取决于被测对象的容积。

RP1⽤于对微安表调零,RP2⽤于调节D2的输出使微安表指满度。

S为转换开关。

图2.2.1测温控温电路 由RT检测到的温度信息,输⼊D1的反馈回路。

该信息既作为D2的输⼊信号,经D2放⼤后通过微安表显⽰被测温度;⼜作为⽐较器D4的同相输⼊信号,与D3输出的设定基准信号,构成D4的差模输⼊电压。

当被控对象的实际温度低于由RP3预设的温度时,RT的阻值较⼩,此时D4同相输⼊电压的绝对值⼩于反相输⼊电压的绝对值,于是D4输出为⾼电位,从⽽使晶体管V 饱和导通,继电器K得电吸合常开触点JK,负载RL由市电供电,对被控物进⾏加热。

当被控对象的实际温度升到预设值时,D4同相输⼊电压的绝对值⼤于反相输⼊电压的绝对值,D4的输出为低电位,从⽽导致V截⽌,K失电释放触点JK⾄常开,市电停⽌向RL供电,被控物进⼊恒温阶段。

如此反复运⾏,达到预设的控温⽬的。

2、主要元器件选择 本测温控温电路选⽤PTC热敏电阻为感温元件,该元件在0℃时的电阻值为264Ω,制作成温度传感器探测头,按图2.2.2线化处理后封装于护套内。

图2.2.2线化电路 线化后的PTC热敏电阻感温探头具有良好的线性,其平均灵敏度达16Ω/℃左右。

如果采⽤数模转换⽹络、与⾮门电路及数码显⽰器,替代本电路的微安表显⽰器,很容易实现远距离多点集中的遥测。

继电器的选型取决于负载功率。

为便于调节,RP1~RP4选⽤线性带锁紧机构的微调电位器。

3、安装与调试 调试⼯作主要是调整指⽰器的零点和满度指⽰。

先将S接通R0,调节RP1使微安表指零,于此同时,调节RP4使其阻值与RP1相同,以保持D1与D4的对称性。

然后将S接通R1,调节RP2使微安表指满度。

ntc热敏电阻测温电路设计_概述说明以及解释

ntc热敏电阻测温电路设计_概述说明以及解释

ntc热敏电阻测温电路设计概述说明以及解释1. 引言1.1 概述本文讨论的是NTC热敏电阻测温电路设计。

在现代科技发展中,温度测量是非常重要的一项技术。

NTC热敏电阻作为常见的温度传感器之一,具有精确、可靠、成本低廉等特点,广泛应用于各个领域。

1.2 文章结构本文主要分为五大部分。

第一部分是引言,对文章进行概述说明以及目的阐述。

第二部分详细介绍了NTC热敏电阻的基本知识和特性。

第三部分讨论了温度测量原理及方法,并与其他常见温度测量方法进行比较。

第四部分重点探讨了NTC 热敏电阻测温电路设计的要点,包括选择合适的NTC热敏电阻型号与参数设置、温度补偿与校准技巧以及信号处理与转换电路设计要点。

最后一部分是结论和展望,总结了文章的主要内容并对未来发展进行了展望。

1.3 目的本文的目的是提供关于NTC热敏电阻测温电路设计方面的详细说明和解释。

通过对NTC热敏电阻的介绍和温度测量原理的解析,帮助读者了解如何选择合适的NTC热敏电阻、进行温度补偿与校准,并设计出高效可靠的信号处理与转换电路。

同时,本文还展望了NTC热敏电阻测温技术在未来的发展方向。

2. NTC热敏电阻简介2.1 什么是NTC热敏电阻NTC热敏电阻全称为负温度系数热敏电阻( Negative Temperature Coefficient Thermistor),是一种根据温度变化而改变阻值的传感器。

它由金属氧化物制成,具有负温度系数特性,即当温度上升时,其电阻值会下降;反之,当温度下降时,电阻值会增加。

2.2 NTC热敏电阻的特性NTC热敏电阻具有许多独特的特性。

首先,它们响应速度快,能够实时测量环境温度。

其次,NTC热敏电阻的响应范围广泛,可覆盖从低至几摄氏度到高达几百摄氏度的整个温度范围。

此外,NTC热敏电阻精确可靠,在稳态和非稳态情况下都能提供准确的温度测量结果。

2.3 应用领域NTC热敏电阻广泛应用于各个领域中的温度测量与控制。

它们被广泛用于家电、汽车、电子设备等领域,在温度测量、过热保护、温度补偿等方面发挥着重要作用。

热敏电阻温度计的设计与标定

热敏电阻温度计的设计与标定

热敏电阻温度计的设计与标定一、实验内容与实验要求1.电阻温度计包括金属电阻温度计和半导体温度计,本实验要求利用半导体材料制备的热敏电阻设计出能够测量常温的温度计,测温范围“实验室室温-75℃”2.对温度计进行定标,绘制T-I(温度-电流)定标曲线。

3.用标定后的温度计,测量人体手心的温度,并与标准温度计所测量结果进行比较。

二、实验前应考虑并回答的问题1. 金属、半导体电阻随温度变化大致有怎么样的规律?2. 金属或半导体材料制成的热敏电阻随温度变化是线性的吗?3. 传感器为什么要定标?4. 非平衡电桥有什么用途?三、实验室可以提供的主要仪器1. 负温度系数半导体热敏电阻一支[25℃时电阻约5KΩ,B值3950/℃]2. 可调温压电源、微安表、万用表(不能当电压表用)。

3. 电加热水壶、金属水杯。

4. 玻璃温度计一支(0~100℃,准确度1℃)。

5. 电阻箱3个、塑料清洗瓶1个、开关和导线等。

四、实验设计报告和实验报告的要求(1). 实验设计报告的要求:1.实验目的;2.实验仪器[含仪器参数];3.实验原理[热敏电阻、非平衡电桥测温原理,有电流-电阻关系公式,实验设计思路解释];4. 电路中仪器的可调物理量数值预先选定和计算[电桥上三个电阻阻值、电源总电压等],5. 实验步骤[结合预先选择和计算的的数据,准确写出“把电阻箱阻值调到xxΩ,电源电压调到x.xxV”],6. 数据表[结合测量量和自变量,此外,电路中所用仪器的数值量都要记录;7. 实验注意事项。

(2) 实验报告的要求:在实验设计报告的基础上,增加实验中测量到的数据,完成数据处理和分析,实验总结和感受。

五、实验原理:1. 半导体热敏电阻半导体热敏电阻随温度变化典型特性可分为三种类型:负温度系数热敏电阻(NTC );正温度系数热敏电阻(PTC )和特定温度下电阻值发生突变电阻器(CTR )。

具有负温度系数的热敏电阻,电阻值随温度升高而迅速下降,这是因为热敏电阻由一些金属氧化物如Fe 3O 4、MgCr 2O 4等半导体制成,在这些半导体内部,自由电子数目随温度的升高增加得很快,导电能力很快增强;虽然原子振动也会加剧并阻碍电子的运动,但这种作用对导电性能的影响远小于电子被释放而改变导电性能的作用,所以温度上升会使电阻值迅速下降。

热敏电阻测温原理

热敏电阻测温原理

热敏电阻测温原理1. 热敏电阻的基本原理热敏电阻是一种根据温度变化而改变电阻值的电阻器件。

它由热敏材料制成,当温度升高时,热敏材料的电阻值会增加;当温度降低时,电阻值会减小。

这种特性使得热敏电阻可以应用于温度测量。

热敏电阻的基本原理是基于热敏材料的电阻与温度之间的关系。

热敏材料是一种具有温度敏感性的半导体材料,其电阻值随温度的变化而变化。

一般来说,热敏电阻的电阻值与温度呈负相关关系,即温度升高时电阻值增加,而温度降低时电阻值减小。

2. 热敏电阻测温原理热敏电阻测温的基本原理是利用热敏电阻的温度敏感性来测量环境温度。

热敏电阻通常被用作温度传感器,可以将温度转换为电阻值,再通过电路进行测量和处理。

热敏电阻测温的原理可以分为以下几个步骤:步骤一:建立电路首先,需要建立一个测量电路,以将热敏电阻的电阻值转换为电压或电流信号。

这个电路通常由一个电流源和一个测量电阻组成。

电流源通过热敏电阻产生电流,测量电阻用于测量电流的大小。

步骤二:测量电阻值当电流通过热敏电阻时,热敏电阻的电阻值会随温度的变化而变化。

通过测量电路,可以测量到电流的大小,进而计算出热敏电阻的电阻值。

步骤三:温度与电阻值的关系根据热敏电阻的特性,可以建立温度与电阻值之间的关系模型。

这个模型可以是一个数学函数或者一个查找表,用于将电阻值转换为温度值。

步骤四:温度测量通过将热敏电阻的电阻值转换为温度值,就可以实现温度的测量。

根据温度与电阻值的关系模型,可以将测量到的电阻值转换为相应的温度值。

3. 热敏电阻测温的应用热敏电阻测温技术广泛应用于各种领域,包括工业控制、家用电器、医疗设备等。

以下是一些常见的应用场景:温度控制热敏电阻可以用于温度控制系统中,通过测量环境温度并与设定温度进行比较,实现对温度的控制。

例如,空调系统中的温度控制就可以使用热敏电阻来实现。

温度监测热敏电阻可以用于温度监测系统中,实时监测环境温度的变化。

例如,温度监测系统可以用于监测电子设备的工作温度,以防止过热导致设备损坏。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程题目:热敏电阻测温电路的设计院系:机电汽车工程学院班级:学生:学号:小组成员:指导教师:目录一、设计目的、要求及方案选择-----------------------------------------------------(2)1、设计目的---------------------------------------------------------------------------(2)2、设计要求---------------------------------------------------------------------------(2)3、设计方案的选择--------------------------------------------------------------------(2)二、硬件系统各模块电路的设计---------------------------------------------------(3)1、单片机系统的设计---------------------------------------------------------------(3)1-1、AT89C51的简介及管脚功能---------------------------------------------(3)1-1、AT89C51的最小系统介绍-----------------------------------------------(5)2、基于MF58的NTC热敏电阻温度测量电路设计 ---------------------------(7)2-1、MF58热敏电阻的介绍---------------------------------------------------(8)2-2、温度测量电路的设计----------------------------------------------------(10)3、LED数码管显示电路的设计---------------------------------------------------(11) 3-1、显示电路驱动系统的设计------------------------------------------------(11)3-2、数码管显示的原理--------------------------------------------------------(17) 3-3、显示电路的原理图---------------------------------------------------------(19)三、软件系统各模块电路的设计----------------------------------------------------(19)1、程序设计语言的选用-------------------------------------------------------------(19)2、软件程序的设计-------------------------------------------------------------------(1 9)2-1、测量系统软件的设计------------------------------------------------------(20) 2-2、显示电路软件的设计------------------------------------------------------(22)四、结论---------------------------------------------------------------------------------(24)五、参考文献---------------------------------------------------------------------------(25)六、附页----------------------------------------------------------------------------------(26)一、设计目的、要求及方案选择1、设计目的随着人们生活水平的提高,人们对各种测量器具的智能化、多功能化提出了更高的要求,而电子技术的飞速发展使得单片机在各种测量产品领域中的应用越来越广泛。

把以单片机为核心,开发出来的各种测量及控制系统作为测量产品的主要部分,使各种测量产品更具智能化、拥有更多功能、便于人们操作和使用,更具时代感,这是测量产品的发展方向和趋势所在。

有的测量产品要求测量温度、测量光强度、测量流量、测量速度,需要增加显示、报警和自动诊断等功能。

这就要求我们的生产具有自动控制系统,自动控制主要是由计算机的离线控制和在线控制来实现的,离线应用包括利用计算机实现对控制系统总体的分析、设计、仿真及建模等工作;在线应用就是以计算机代替常规的模拟或数字控制电路使控制系统“软化”,使计算机位于其中,并成为控制系统、测试系统及信号处理系统的一个组成部分,这类控制由于计算机要身处其中,因此对计算机有体积小、功耗低、价格低廉以及控制功能强有很高的要求,为满足这些要求,应当使用单片机。

单片机在电子产品中应用的广泛,在很多的电子产品中也用到了温度检测和温度控制,但那些温度检测与控制电路通常较复杂,成本也高,本设计提供了一种低成本的利用单片机多余I/O口实现的温度检测电路,该电路非常简单,且易于实现,并且适用于几乎所有类型的单片机。

2、设计要求20、热敏电阻温度测量系统设计任务要求:a、设计基于MF58的NTC热敏电阻信号调理电路b、设计A/D转换电路c、设计数码管显示电路3、设计方案的选择本设计以AT89C51单片机系统为核心,采用热敏电阻对温度进行检测;通过电容进行充放电进行A/D转换把温度信号调解转换为电压信号,计算出电阻,与AT89C51单片机接口设置LED八段数码管实时显示温度值。

本设计包括热敏电阻选择、测量模块、数据传输模块、温度显示模块四个部分。

文中对每个部分功能、实现过程作详细介绍。

二、硬件系统各模块电路的设计1、单片机系统的设计F1ash AT89系列单片机是一种部含Flash存储器的特殊单片机。

由于它部含有大容量的Flash存储器,所以,在产品开发及生产便携式商品、手提式仪器等方面有着十分广泛的应用,也是目前取代传统的MCS-51系列单片机的主流单片机之一。

AT89系列单片机对于一般用户来说,有下列明显的优点:①部含有Flash存储器,在系统开发过程中很容易修改程序,可以大大缩短了系统的开发时间。

②与MCS-51系列单片机引脚兼容,可以直接进行代换。

③AT89系列并不对80C31的简单继承,功能进一步增强。

AT89系列包括两大类第一类是常规的,就是AT89C系列,这类单片机要用常规的并行方法编程,必需使用编程器编程;第二类是在系统可编程(即芯片安装到电路板上之后不用拿下来而直接往里面烧写程序)ISP Flash系列,也就是AT89S系列,这类单片机除了用常规的并行方法编程外,还可以在系统用下载线进行编程,省去价格较贵的编程器,而且可以在目标板上直接修改程序。

AT89C51是一种带4K字节FLASH存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。

单片机的可擦除只读存储器可以反复擦除1000次。

该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。

由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL 的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

考虑到单片机的存储空间与价格,以及我对单片机的熟悉程度,课本学习的是AT89C51单片机,因此,此次设计我选用了AT89C51单片机来完成此次设计。

1-1AT89C51的简介及管脚功能VCC:供电电压。

GND:接地P0口:P0口为一个8位漏极开路双向I/O口,每脚可吸收8个TTL门电流。

当P0口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。

在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口:P1口是一个部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4个TTL门电流。

P1口管脚写入1后,被部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于部上拉的缘故。

在FLASH编程和校验时,P1口作为低八位地址接收。

P2口:P2口为一个部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带部上拉电阻的双向I/O口,可接收输出4个TTL 门电流。

当P3口写入“1”后,它们被部上拉为高电平,并用作输入。

作为输入时,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口,如下表所示:P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(定时器/计数器0外部输入)P3.5 T1(定时器/计数器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

/EA/VPP:当/EA保持低电平时,则在此期间只外部程序存储器(0000H-FFFFH),不管是否有部程序存储器。

注意加密方式1时,/EA将部锁定为RESET;当/EA端保持高电平时,此间访问部程序存储器。

当PC值超过片程序存储器空间时,则自动转向外部程序存储器的程序。

在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:反向振荡放大器的输入及部时钟工作电路的输入XTAL2:来自反向振荡器的输出。

相关文档
最新文档