四. 功分器、定向耦合器和.
耦合器和功分器的作用

耦合器和功分器的作用
一、耦合器的作用
耦合器呢,就像是一个小助手,在很多电子设备里都能见到它的身影。
它主要的作用就是把一路信号分成多路信号,而且这些分出来的信号在功率上是有一定比例关系的。
比如说,在一些通信系统里,一个强信号可能需要分给好几个不同的部分去处理,耦合器就派上用场啦。
它就像一个很公平的分配者,按照设定好的规则把信号分配出去。
还有哦,在一些射频电路里,耦合器可以用来检测信号的强度。
就像是一个小侦探,悄悄地查看信号到底有多强,这样就能方便工程师们去调整电路的参数啦。
二、功分器的作用
功分器呀,它和耦合器有点像,但又有自己的特点。
功分器主要是将输入的功率平均地分配到几个输出端口。
想象一下,有一块大蛋糕(输入功率),功分器就把这个蛋糕平均切成几块(输出端口),每个小块的大小都差不多呢。
在天线系统里,功分器就很有用啦。
比如一个发射机的功率要供给多个天线同时发射信号,功分器就能把功率均匀地分给每个天线,这样每个天线都能正常工作啦。
而且在一些微波电路里,功分器也能保证信号在不同支路里按照预定的功率分配方式去传输,就像一个很靠谱的快递员,把包裹准确无误地送到每个地方。
功分器、耦合器、电桥_原理与分析

功分器、耦合器、电桥_原理与分析功分器、耦合器、电桥原理与分析本文主要介绍通信链路上的部分无源器件,介绍器件的外观、作用、种类、主要技术指标定义和范围等。
1功分器1)功分器的作用:是将功率信号平均地分成几份,给不同的覆盖区使用。
2)种类:功分器一般有二功分、三功分和四功分3种。
功分器从结构上分一般分为:微带和腔体2种。
腔体功分器内部是一条直径由粗到细程多个阶梯递减的铜杆构成,从而实现阻抗的变换,二微带的则是几条微带线和几个电阻组成,从而实现阻抗变换.主要指标:包括分配损耗、插入损耗、隔离度、输入输出驻波比、功率容限、频率范围和带内平坦度。
以下对各项指标进行说明:l 分配损耗:指的是信号功率经过理想功率分配后和原输入信号相比所减小的量。
此值是理论值,比如二功分3dB,三功分是4.8dB,四功分是6dB。
(因功分器输出端阻抗不同,应使用端口阻抗匹配的网络分析仪能够测得与理论值接近的分配损耗)耦合器和三功分器图示分配损耗的理论计算方法:如上图所示。
比如有一个30dBm的信号,转换成毫瓦是1000毫瓦,将此信号通过理想3功分器分成3份的话,每份功率=1000÷3=333.33毫瓦,将333.33毫瓦转换成dBm=10lg333.33=25.2dBm, 那么理想分配损耗=输入信号-输出功率=30-25.2=4.8dB,同样可以算出2功分是3dB,4功分是6dBl 插入损耗:指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量再减去分配损耗的实际值,(也有的地方指的是信号功率通过实际功分器后输出的功率和原输入信号相比所减小的量)。
插入损耗的取值范围一般腔体是:0.1dB以下;微带的则根据二、三、四功分器不同而不同约为:0.4~0.2dB、0.5~0.3dB、0.7~0.4dB。
插损的计算方法:通过网络分析仪可以测出输入端A到输出端B、C、D的损耗,假设3功分是5.3dB,那么,插损=实际损耗-理论分配损耗=5.3dB-4.8dB=0.5dB.微带功分器的插损略大于腔体功分器,一般为0.5dB左右,腔体的一般为0.1dB左右。
功分器定向耦合器和混合环

上述性质的证明:
(1)若元件是互易的,则有ST=S,散射矩阵变成[S]1
⎡S11
[S]1 = ⎢⎢S12
⎢⎣ S13
S12 S13 ⎤
S 22
S
23
⎥ ⎥
S23 S33 ⎥⎦
⎡0
[S]2 = ⎢⎢S12
S12 S13 ⎤
0
S
23
⎥ ⎥
⎢⎣ S13 S23 0 ⎥⎦
(2)若所有的端口均匹配,则有S11=S22=S33=0,散射矩阵变成[S]2
= 10 lg k2
♠确定耦合线尺寸的方法
第一步:根据中心频率f0时的耦合度C求出耦合系数k
C (dB) −
k = 10 20
第二步:由k的值及其定义式 k = Zoe − Z oo 可得 Z oe + Z oo
1+ k Z oe = Z o 1 − k
1− k Z oo = Z o 1 + k
第三步:由Zoe和Zoo的值,可以确定耦合线的尺寸。 这是计算平行耦合定向耦合器结构尺寸的基本公式。
图3-2 耦合器的结构
3、技术指标: 耦合度、定向性系数、隔离度、输入驻波比、频带宽度
图3-3 定向耦合器的原理图 主传输线(1)(2),副传输线(3)(4): (1)端口为输入端、 (2)端口为直通端、(3)端口为耦合端、(4)端口为隔离端
♣耦合度C(或过渡衰减):定义为输入端的输入功率P1与耦 合输出端的输出功率P3之比,通常用分贝表示,即
(3)若元件无耗,则由能量守恒知满足
S+S=1S,12 即2 + S13 2 = 1 S12 2 + S23 2 = 1 (a)
S13 2 + S23 2 = 1
功分器、定向耦合器及应用简介

2.5.2 三分支线定向耦合器 (Three-Branch Coupler)
图2.8为三分支线定向耦合器。三分支 线定向耦合器的带宽比双分支线定向耦 合器宽,相对带宽为20%。 三分支线定向耦合器也有图2.1 1类定 向耦合器的理想方向性。 S12=S21=0
2.5.3 集总参数分支线lkinson功分器输出端所加隔离电阻 为输出端提供了很高的隔离度。但在高 频应用中,隔离电阻的寄生电抗将造成 严重问题。因为隔离电阻的几何尺寸和 波长相比拟,在大功率应用中,为了承 受大的功率,电阻的几何尺寸也必须很 大,电阻的寄生电抗则降低了功分器的 性能,不仅使隔离度、电压驻波比变坏, 而且增加了插损。
2.2 用途
在那些微波器件中会使用定向耦合器, 定向耦合器在如下所示许多微波器件中 都有应用。 平衡混频器 平衡放大器 功分器/合成器 移相器 衰减器 调制器 鉴频器(鉴相器)(Discriminators) 天线阵的馈电网络
2.3定向耦合器参数的定义
如图2.1(a)所示,定向耦合器是一个 四端口网络。假定从端口1为输入端,端 口3为输出端,端口4为耦合端,端口2为 隔离端。假定P1为端口1的输入功率, P1’ 是从端口1反射回来的功率。P2、P3、P4 分别是输出端口3、耦合端口4、隔离端 口2的输出功率。
图1.6
为了比较,图1.6(a)为同频常规3dB 功分器的形状和大小。相对图1.6(a)常 规设计,图1.6(b)所示3dB功分器等效 矩形面积比图(a)减少40%,图1.6(c) 则减少37% 。 为了减少功分器的尺寸,可以采用电 容加载技术,图1.7就是缩短尺寸2功分器 的一种结构形式。图中功分臂的特性阻 抗Z01及加载电容C1、C2可由下式求出:
λ/4
3、缩小尺寸的3dB Wilkinson功分器
四.功分器和定向耦合器的设计

C10logP P1320logS31
dB[S(3,1)]
• 隔离度: 隔离端口4的输出功率P4和输入端口1的输入功率P1之比:
I10logP P1 420logS41 dB[S(4,1)]
定向耦合器的基本原理
• 8-16GHz倍频程内定向度: S41/S31<-17dB
• 8-16GHz倍频程内隔离度: S41<-20dB
定向耦合器的仿真设计
建立耦合器设计的电路原理图
耦合端口
输入端口
直通端口
隔离端口
/4;f012GHz
定向耦合器的仿真设计
建立耦合器设计的电路原理图
耦合端口
输入端口
直通端口
功分器的设计、仿真、优化
设置完成的功分器电路图
功分器的设计、仿真、优化
开始仿真 全频段内隔离度未达指标,并且平坦度较差,需优化
功分器的设计、仿真、优化
电路优化
• 对阻抗匹配电路的优化---优化变量w2,lh
功分器的设计、仿真、优化
电路优化
• 优化仿真器和优化目标的设置—由于电路对称性,S(3,1)和S(3,3)不需优化
dB[S(2,1)]
C1310logP P 3 i 20logS13
dB[S(3,1)]
功分器的基本原理
功分器的基本指标
• 输出端口间的隔离度: 根据输出端口2的输出功率P2与输出端口3的输出功率P3之比计算
• 功分比:
C2310logP P2 320logS S1 12 3
• 定向耦合器属于无源微波器件,为四端口器件,分为:
隔离
耦合
功分器和耦合器的作用

功分器和耦合器的作用
功分器和耦合器,这可真是电子世界里的两个神奇小宝贝呀!它们就像是电子信号传输道路上的交通指挥员一样,发挥着至关重要的作用呢。
功分器呀,它能把一路输入信号能量分成两路或多路输出相等或不相等能量。
这就好比是一个慷慨的分配者,把一份资源公平地分给大家,让大家都能享受到。
你想想看,如果没有功分器,那信号传输不就乱套啦?有的地方信号多得用不完,有的地方却一点儿都没有,那可不行呀!功分器让信号能够均匀地分布到各个需要的地方,是不是很厉害?
再说说耦合器,它就像是一个聪明的调控者。
它能在主传输路径上取出一部分信号能量,送到其他地方去。
这就好像是从一条大河里引出一条支流,让水流到需要的地方去发挥作用。
耦合器可以让我们更灵活地控制信号的流向和强度,让整个电子系统运行得更加顺畅。
功分器和耦合器在各种电子设备中都有着广泛的应用呢。
比如在通信系统中,它们确保了信号能够准确无误地传输到各个接收端;在雷达系统中,它们帮助雷达更好地探测目标;在广播电视系统中,它们让信号能够覆盖更广泛的区域。
难道它们不是电子世界的无名英雄吗?它们默默地工作着,却很少被人注意到。
但如果没有它们,我们的手机怎么能正常通话?我们的电视怎么能清晰地播放节目?我们的无线网络怎么能快速稳定地连接?
功分器和耦合器的存在,让电子世界变得更加有序、高效和精彩。
它们就像是隐藏在幕后的魔法使者,用自己的力量为我们创造了一个便捷、智能的电子生活。
我们真的应该好好感谢它们呀!它们的作用是不可替代的,是无比重要的。
所以呀,可别小瞧了这两个小小的器件哦,它们可是有着大大的能量呢!。
功分器耦合器电桥_原理与分析
功分器耦合器电桥_原理与分析一、功分器(Power Divider)功分器是一种被动器件,用于将输入功率平均分配到多个输出端口上,广泛应用于无线通信、雷达和微波器件等领域。
功分器的原理是基于二端口网络的设计,其中输入端口与输出端口之间具有固定的功率分配比例。
功分器的原理可以通过阻抗匹配和功率分配的方法实现。
常见的功分器有平分器和非平分器两种类型。
1.平分器(Equal Power Divider):平分器是将输入功率均匀分配到多个输出端口的功分器。
根据网络中的功率匹配特性,输入阻抗要等于输出阻抗的开方,即Z_in =Z_out/sqrt(n),其中n为输出端口的数量。
平分器可以采用传输线、微带线、同轴线等实现。
2.非平分器(Unequal Power Divider):非平分器是将输入功率按照不同比例分配到多个输出端口的功分器。
根据负载阻抗的不同,可以实现不同的功率分配比例。
非平分器常用于天线系统中,用于实现不同天线的功率平衡。
功分器在实际应用中需要考虑尽可能少的功率损耗、尽可能平衡的功率分配和良好的阻抗匹配等特性。
二、耦合器(Coupler)耦合器是一种被动器件,用于将信号从一个电路传递到另一个电路,常用于分配功率、耦合信号和测量功率等应用。
耦合器的原理是基于传输线的相互耦合。
1.固定耦合器:固定耦合器是将一部分信号从一个传输线传播到另一个传输线上的器件。
常见的固定耦合器有平行耦合器、串联耦合器和倍频耦合器等。
这些耦合器通过精确控制传输线之间的耦合长度和耦合系数来实现所需的耦合程度。
2.可变耦合器(Directional Coupler):可变耦合器是一种能够调整耦合程度的耦合器。
它由四个传输线组成,其中两个用于输入和输出信号,另外两个用于耦合信号。
可变耦合器通过改变耦合信号传输线之间的距离来实现不同的耦合程度。
耦合器在实际应用中需要考虑尽可能小的插入损耗、良好的信号隔离和适当的耦合程度等特性。
室分常见器件介绍
四、衰减器
=30-24
=6dB
POUT_4 POUT_3 POUT_2 POUT_1
B. 插入损耗
该指标也称直通损耗,指的是信号功率通过功分器后输出的功率 和原输入信号相比所减小的量再减去分配损耗的实际值。插入损 耗是由于器件焊接、传输、连接所产生的损耗,由于不同厂商器 件设计及工艺差异造成该值存在一定差距。
四、电桥
(一)、概念 电桥是四端口网络,有两个输入和输出端口,输入端口之间和输出
端口之间均存在相互隔离。 电桥可以将两路信号合成一路信号,也可以将一路信号分成大小相
同的两路信号。因电桥可以合成同频信号,所以也叫同频合路器。电桥 的输入输出是相互对称的。 注:这里的电桥指无源3dB电桥。
(二)、主要技术指标 1、频带宽度
室分常见器件介绍
一、概 述 二、功分器 三、耦合器 四、电 桥 五、衰减器 六、负 载 七、干放
目录
一、概 述
在通信设备和信号覆盖中都会用到一些 无源器件,用于信号的分配、合成以及提取 等。
常见的有功分器、耦合器、电桥、衰减 器、负载、滤波器等。本文主要对这些常见 的无源器件做简单介绍。
二、功分器
(一)、概念 功分器全称功率分配器,是一种将一路输入信号分成两路或多路,输
出相等或不相等能量的器件,也可反过来将多路信号合成一路输出,此 时可也称为合路器。
1. 功分器的分类
A. 按结构划分 ① 微带功分器 ② 腔体功分器 B. 按分支数 ① 二功分器 ② 三功分器 ③ 四功分器
2. 功分器的主要技术指标
1. 耦合器的分类
A. 按结构划分 ① 微带耦合器 ② 腔体耦合器
B. 按耦合度划分 6dB 、10dB 、 15dB 、 20dB、 25dB 、 30dB 、 40dB C. 按是否具有方向性
射频实施技术-功率分配器和定向耦合器
微波炉工作原理(磁控管)
磁控管是在同轴放射状的电场加上与其成直角的磁场,并 由它来控制电子发射的电子管。我公司管系连续波磁控管 (固定频率、包装式磁钢、探头输出)。
我司磁控管的铭牌如下图:
图中以流水号最后六位数来分辨磁控管 的性质:如果在“—”前的三位数与后面 三位数相等的话为普通高功率磁控管, 如果两三位数数值相差2,侧为EMC 磁控管。
微波炉工作原理(微波发生系统)
微波炉的微波发生部分如下图所示
高压整流电路电路工作原理为,220伏电网电源经过变压器升压,输 出约2000伏左右的交流高压。高压绕组在正半周时,二极管D导通对 电容器C充电,电容器被充到电压的峰值。当高压绕组电压为负半周 时,二极管D截止,磁控管导通。电容器C上正半周所充的电与绕组 电压正相串联,获得2倍高压,即4000伏左右的直流高压,加在磁控 管的阳极与阴极之间射。频实施技术-功率分配器和定向耦合器
射频实施技术-功率分配器和定向耦合器
微波炉工作原理(磁控管)
工作原理:
在磁控管外侧阳极内壁上,沿着圆周 有偶数谐振腔。在这谐振腔内产生的 微波电场,与从位于中央部位的阴极 发射出来的电子进行能量交换,并由 此产生微波。
射频实施技术-功率分配器和定向耦合器
相关标准培训
引用标准:
IEC60335-1:2001 (家用电器通用标准) IEC60335-2-25:1996 (微波炉特殊要求) IEC60335-2-25:2002 (微波炉特殊要求) IEC60335-2-6:2002 (电热器具特殊要求) IEC60335-2-9:2002 (电热器具特殊要求) UL 923 (美国UL微波炉标准) CAN/CSA C22.2-No. 150-M89 (加拿大微波炉标准)
微波技术基础讲义7—功率分配器和定向耦合器
Z0 3 V1 V V2 V3 V Z0 Z0 3 4 2
微波技术基础
定向耦合器
定向耦合器种类
按传输线类型
按耦合方式
波导
同轴线
带状线
微带线
单孔耦合
多孔耦合
连续耦合
平行线耦合
输出方向
输出相位
按耦合强弱
同向耦合
反向耦合
90度定向
180度定向
强耦合
中等耦合
弱耦合
11
定向耦合器
定向耦合器举例
微波技术基础
(2)
定向耦合器
定向耦合器——工作参量
P 1 20 lg S 31 dB P3 S P3 方向性 D 10 lg 20 lg 31 dB P4 S 41 耦合度 C 10 lg 隔离度 I 10 lg P 1 20 lg S 14 P4
0 [S ] j 0
将S12与(III)式相乘、S34与(IV)式 相乘,并相减得
S34 0
S23 ( S12 2 S34 2 ) 0
令S14=S23=0,利用幺正性得
2 2 S12 S13 1 将第1列与第3列相乘、第4列 与第2列相乘得 2 2 S12 S24 1 * * (III) S S S 2 2 12 23 14 S 34 0 S13 S 34 1 * * 2 S S S S 2 14 12 34 23 0 (IV) S S 1 34 24
* S12 S13 0 * S21S23 0 S * S 0 31 32
S12 S23 S31 0 S21 S32 S13 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
互易: Sij S ji
无耗: S S 1
T*
0 S S12 S13
S12 0 S 23
S13 S 23 0
S12 S13 1 S12 S 23 1 S13 S 23 1
2 2 2 2
2
2
S 23* S13 0 S12* S 23 0 S12* S13 0
端口 1
P2 Z0/3
+ +
Z0
从分支点向有Z0/3电阻看入的阻抗
Z 4 Z ' Z0 0 Z0 3 3
P1 Z0
+
Z0/3
V2 Z0/3 -
+
V1
-
V0
-
在接头处看向另两个支路的阻抗
Z '' Z' 2 Z0 2 3
Zin
V3
-
端口 3
Z0 P3
端口匹配:由对称性,3个端口都匹配
三端口网络
三端口网络不可能同时满足无耗、互易、所有端口匹配的条件。
证明:采用反证法,假设三端口网络的所有端口匹配、互易,网络无耗。
S11 S S 21 S31
S12 S 22 S32
S13 S 23 S33
匹配: S11 S22 S33 0
2 2
S31* S32 0 S12* S13 0 S 21* S 23 0
无耗
S12 S32 1 S13 S 23 1
2 2
2
2
(1) S12 S23 S31 0
( 2)
S21 S32 S13 0
S13 S32 S21 1
2
S12 S23 S31 1
0 0 e j
1
S12 e j
2
S33 e j
3
三端口网络——网络有耗,则互易、所有端口匹配
0 S S 21 S31 S12 0 S32 S13 S 23 0
i 1
Sij 1,
3
2
j 1, 2,3
分路器:电阻分路器,功分器
N
a1 2
偶模
a1
a1
N
a2 0
b2
a e 1 2
0 1/ 2 1/ 2 1/ 2 0 1/ 2 S 1/ 2 1/ 2 0
奇偶模分析法
基于线性网络叠加原理,将线性网络的散射参数用偶 模和奇模情况下的反射系数(和透射系数)来表示 。 如果在网络的两个端口上,同时分别以入射波a1和a2激 励,则响应b1、b2是两种情况下分别响应的叠加。 偶模:两个端口以幅度、相位都相同的电压波激励 (ae,ae); 奇模:两个端口以幅度相同、相位相反的电压波激励 (ao,-ao)。
1 1 1 Z1 Z 2 Z 0
根据输出功率功分比2:1, 同时:
1 V02 1 P Pin 1 2 Z1 3
1 V0 2 2 P2 Pin 2 Z2 3
则: Z1=3Z0=150Ω,Z2=3Z0/2=75Ω 接头处阻抗: Zin=75//150=50Ω=Z0,输入端对输出端匹配
S13 S 23 2 1
2 2
S12 0
结果矛盾,命题不成立。
S13 1
S23 1
三端口网络——网络是非互易的,匹配,无耗
0 匹配、 S S 21 非互易 S31 S12 0 S32 S13 S 23 0
S 21 S31 1
从150Ω线看入:Zout1=50//75=30Ω
从75Ω看入: 求得: Zout2=50//150=375Ω
30 150 out1 0.666 30 150
out 2
37.5 75 0.333 37.5 75
显然,输出端口1、2均不匹配。
端口 2
T型接头功分器——电阻功分器
在分路处加某种类型的电抗调谐元件,可在一个窄带内抵消电抗B (一般可用调谐杆、调谐螺钉等),则等效B=0 , 1 1 1 ,相当 Z1 Z 2 Z 0 于阻抗并联形式。
Z1、Z2的选值用于分功率比。
例:Z0=50Ω,功分比为2:1,求Z1、Z2,Γout
解:输入功率
1 V0 2 Pin 2 Z0
奇偶模分析法(续2)
b1 S11 a 1 S b2 21 a1
a2 0
令
a2 0
a1 a1 a2 0
a1 2
1 1 ae (a1 a 2) a1 2 2 ao 1 (a1 a 2) 1 a1 2 2
2
0 0 1 1 0 0 S 0 1 0
1
3
0 1 0 0 0 1 S 1 0 0
1
3
环形器
三端口网络——两个端口匹配,无耗,互易
S21 e j
0 j S e 0
e j 0 0
奇偶模分析法(续1)
ae
N
ae
T1 T2
a1
a1
N
a
T1
b2
ao
b1o
T1 T2
N
ao
奇模
b2 o
a1 ae ao a 2 ae ao
b1 b1e b1o b2 b2e b2o
1 ae (a1 a 2) 2 ao 1 (a1 a 2) 2
Z 2Z Z in 0 0 Z 0 3 3
2Z 0 2 3 V0 V1 V1 Z 0 2Z 0 3 3 3
Zin Z0/3 Z0
Z’’ Z’ Z0/3 Z0/3 Z0
Z0
V2 V3
3 1 V0 V0 V1 Z 4 2 Z0 0 3
Z0
S21 S32 S23 1/ 2
T型接头功分器——无耗功分器
+ 3 Z0 V0 - Yin jB Z2 2 Z1 1 Z0
Yin
jB
Z1
Z2
Yin jB
1 1 1 Z1 Z 2 Z0
Y1
1 1 1 jB Z0 Z2 Z1
网络是互易、无耗,但满足输入端口3匹配时,输出端口不匹配,并
且两输出端口之间没有隔离。