(完整版)(整理)列二元一次方程组解应用题练习题及答案

合集下载

初中数学:二元一次方程组应用题专题训练附详解(精)

初中数学:二元一次方程组应用题专题训练附详解(精)
(2)设甲施工队单独完成工程需要a天,乙施工队单独完成工程需要b天,根据题意列方程组求出两施工队单独完成工程的天数,根据总费用=每天需支付的费用×工作时间,可分别求出单独请甲施工队和单独请乙施工队施工所需费用,分单独请甲施工队施工、单独请乙施工队施工和请甲、乙两施工队合做施工三种情况考虑,分别求出三种情况下损失的钱数,比较后即可得出结论.
(1)求该轮船在静水中的速度和水流速度;
(2)若在甲、乙两地之间的丙地新建一个码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少千米?
7.永辉超市计划购进甲、乙两种体育器材,若购进甲器材3件,乙器材6件,需要480元,购进甲器材2件,乙器材3件,需要280元,销售每件甲器材的利润率为37.5%,销售每件乙器材的利润率为30%.
3.(1)甲施工队工作一天饭店应付400元,乙施工队工作一天饭店应付250元.
(2)安排甲、乙两个装修施工队同时施工更有利于饭店
【分析】
(1)设甲施工队工作一天饭店应付x元,乙施工队工作一天饭店应付y元,根据“若先请甲施工队单独做3天、再请乙施工队单独做24天,可完成施工,风味美饭店老板应付两队工钱共7200元.若先请甲施工队单独做9天、再请乙施工队单独做16天,可完成施工,风味美饭店老板应付两队工钱共7600元”,即可得出关于x,y的二元一次方程施工队,解之即可得出结论;
品种
高档
中档
低档
价格/元
20
15
10
9.甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司人均捐款120元,乙公司人均捐款100元.如图是甲、乙两公司员工的一段对话.
(1)甲、乙两公司各有多少人?
(2)现甲、乙两公司共同使用这笔捐款购买 、 两种防疫物资, 种防疫物资每箱1500元, 种防疫物资每箱1200元.若购买 种防疫物资不少于20箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A、B两种防疫物资均需购买,并按整箱配送).

完整版二元一次方程组应用题经典题及答案

完整版二元一次方程组应用题经典题及答案

完整版二元一次方程组应用题经典题及答案二元一次方程组是数学中的一个重要概念,它广泛应用于解决各种实际问题。

本文将通过一道经典题及其解答,来展示如何完整地解决一道二元一次方程组的应用题。

问题:某公司有一项工程需要进行,考虑到成本问题,公司决定将工程分成两部分,分别承包给两个不同的工程队。

假设甲工程队每小时的工作效率为a,乙工程队每小时的工作效率为b,且a、b均为正整数。

若甲工程队单独完成工程需要24小时,乙工程队单独完成工程需要32小时。

问:甲、乙两工程队合作完成这项工程需要多少小时?解题思路:为了解决这个问题,我们需要先列出方程组,然后解方程组得到答案。

根据题意,我们可以列出以下方程组:24a = 1 (甲工程队单独完成工程所需时间)32b = 1 (乙工程队单独完成工程所需时间)ab + ba = 1 (甲、乙两工程队合作完成工程所需时间)接下来,我们解这个方程组。

首先,将第一个方程式两边同乘以b,得到:24ab = b (1)将第二个方程式两边同乘以a,得到:32ab = a (2)将(1)式和(2)式两边分别相加,得到:24ab + 32ab = a + b整理得到:ab = 1/56 (3)将(3)式代入(1)式或(2)式,得到:a = 6 或b = 6因此,甲、乙两工程队合作完成这项工程需要的时间为:x = 1/(1/24 + 1/32) = 19.2 小时综上所述,我们通过解二元一次方程组得到了问题的答案。

这个问题是二元一次方程组应用的一个经典案例,通过解决这个问题,我们可以更深入地理解二元一次方程组的概念和应用。

二元一次方程组应用题经典题有答案二元一次方程组的应用题是数学中的经典题型之一,掌握这类问题的解法对于解决实际问题非常有帮助。

下面我们来看一道经典的二元一次方程组应用题,并给出相应的答案。

问题:某班共有40名学生,其中男生人数是女生人数的1.5倍。

已知每个男生每学期花费的学杂费为300元,而每个女生每学期花费的学杂费为400元。

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案

二元一次方程组应用题经典题及答案一、商品销售问题例 1:某商店购进一批衬衫,成本价每件 40 元,按每件 50 元出售,一个月内可售出 500 件。

已知这种衬衫每件涨价 1 元,其销售量就减少 10 件。

为了在一个月内赚取 8000 元的利润,售价应定为每件多少元?解:设售价应定为每件 x 元,每件的利润为(x 40)元。

因为每件涨价 1 元,销售量就减少 10 件,所以销售量为500 10(x 50)件。

根据总利润=每件利润×销售量,可列方程:(x 40)500 10(x 50) = 8000(x 40)(500 10x + 500) = 8000(x 40)(1000 10x) = 80001000x 10x² 40000 + 400x = 8000-10x²+ 1400x 48000 = 0x² 140x + 4800 = 0(x 60)(x 80) = 0解得 x₁= 60,x₂= 80答:售价应定为每件 60 元或 80 元。

二、行程问题例 2:A、B 两地相距 18 千米,甲、乙两人分别从 A、B 两地同时相向而行,2 小时后在途中相遇;相遇后甲返回 A 地,乙继续向 A 地前进,甲回到 A 地时,乙离 A 地还有 2 千米。

求甲、乙两人的速度。

解:设甲的速度为 x 千米/小时,乙的速度为 y 千米/小时。

根据相遇问题的公式:路程=速度和×时间,可列方程:2(x + y) = 18甲返回 A 地所用的时间也为 2 小时,这 2 小时乙走的路程为 2y 千米。

因为甲回到 A 地时,乙离 A 地还有 2 千米,所以可列方程:18 2y = 2x将第一个方程变形为 x + y = 9,即 x = 9 y,代入第二个方程得:18 2y = 2(9 y)18 2y = 18 2y方程恒成立。

将 x = 9 y 代入第一个方程得:2(9 y + y) = 1818 = 18所以原方程组有无数组解。

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案

完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。

类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。

类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。

(完整版)七年级下二元一次方程组应用题含答案

(完整版)七年级下二元一次方程组应用题含答案

新人教版数学七年级下册 8. 3 实际问题与二元一次方程组课时练习、选择题1.成渝路内江至成都全长 170 千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过 1 小时 10 分钟相遇. 相遇时, 小汽车比小客车多行驶 20 千米. 设小汽车和客车的平均速度分别为x千米 /时和 y 千米 /时,则下列方程组正确的是()答案: B知识点: 二元一次方程组的应用 解析:解答:先找出题目中的两个相等关系: 程=170 千米, 1小时 10 分钟小汽车走的路程- 1小时 10分钟小客车走的路程 =20 千米,再列出方 程组.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.2.为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购 1 副羽毛球拍和 1 副乒乓球拍共需 50 元,小强一共用 320 元购买了 6 副同样的羽毛球拍和 10 副同样的乒 乓球拍,若设每副羽毛球拍为 x 元,每副乒乓球拍为 y 元,列二元一次方程组得( )答案: B知识点: 二元一次方程组的应用 解析:解答:先找出题目中的两个相等关系:购 同样的羽毛球拍和 10 副同样的乒乓球拍,再列出方程组.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出方程组.B .C .D .1 小时 10 分钟小汽车走的路程 +1 小时 10 分钟小客车走的路1 副羽毛球拍和 1 副乒乓球拍共需 50 元,320 元购买 6 副3.现有 190 张铁皮做盒子,每张铁皮可做 8 个盒身或 22 个盒底,一个盒身与两个盒底配成一个完答案: D知识点: 二元一次方程组的应用解析: 套,得方程 2 8x 22y ,故选 D . 分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.4.把一根长 100cm 的木棍锯成两段,使其中一段的长比另一段的 2 倍少 5cm, 则锯出的木棍的长不 可能为( ) A . 70cmB . 65cmC .35cmD . 35cm 或 65cm答案: A知识点: 二元一次方程组的应用 解析:解答:不妨设其中一段的长为 x ,另一段的长为 y ,根据题意有,解这个二元一次方程组得 ,因为这两段没有顺序,所以锯出的木棍的长可能为 65cm 或 35cm ,不可能为 70cm , 故选 A . 分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.5.一套《少儿百科全书》总价为 270 元,张老师只用 20 元和 50 元两种面值的人民币正好全额付 清了书款,则他可能的付款方式一共有( )A .5 种B .4 种C .3 种D .2种答案: C 知识点: 二元一次方程组的应用 解析:解答:设 20元面值的为 x 张,50 元面值的为 y 张,可列方程 20x +50 y =270 .因为 x 、y 均为正整数, x 1 x 6 x11所以满足条件的解为 , , ,所以可能的付款方式一共有 3 种,故选 C .y 5 y 3 y 1分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出整的盒子,设用 x 张铁皮做盒身,y 张铁皮做盒底,则可列方程组为(A .x 2y 190 2×8x 22y B . 2y x 190 C.8x 22yx y 190 2 22y 8x D .x y 190 2 8x 22y解答:根据共有 190 张铁皮,得方程 x y 190 ;根据做的盒底数等于盒身数的2 倍时才能正好配方程组.各有多少?( )A . 150,350B .250,200 答案: D知识点: 二元一次方程组的应用 解析:x y 400 ,解这个二元1000x 1200 y 45x 150次方程组得 x y 125500,所以甲乙债券分别有 150 元与 250 元,故选 D .分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.7.一种饮料大小包装有 3 种,1 个中瓶比 2 小瓶便宜 2 角,1 个大瓶比 1个中瓶加 1 个小瓶贵 4 角, 大、中、小各买 1 瓶,需 9 元 6 角,若设小瓶单价为 x 角,大瓶为 y 角,可列方程为()3xy983xy982xy983x y 98 A .B .C .D .y3x 2y3x 2y3x 42xy4答案: A知识点: 二元一次方程组的应用 解析:解答:根据 1 个中瓶比 2 小瓶便宜 2 角可知中瓶价格为 (2x - 2)角,大、中、小各买 1 瓶,需 9 元 6 角可列方程x +(2 x - 2)+ y =96 即得 3x + y =98 ,根据 1 个大瓶比 1 个中瓶加 1 个小瓶贵 4 角可列方程 y - (2x - 2+ x )=4 即 y -3x =2 ,联立后选 A .分析:可以设大、中、小瓶中的任意两个为未知数,另一个用其中一个未知数表示出来,根据题目 中的相等关系列出方程组并整理得.8.某品牌服装店一次同时售出两件上衣, 每件售价都是 135 元,若按成本计算, 其中一件盈利 2500 ,另一件亏损 2500 ,则这家商店在这次销售过程中()A .盈利为 0B .盈利为 9 元C .亏损为 8 元答案: D知识点: 二元一次方程组的应用 解析: 解答:设盈利的上衣售价为 x 元,亏损的上衣为 y 元,根据题意有 ((11 2255%%))x y 113355,解这个二元 (1 25%)y 135x 108次方程组得 ,所以这两件的利润为 135×2- (108+180)= - 18,所以亏损 18 元. y 180 分析:售价 =进价 +利润,亏损即利润为负.9.某校体操队和篮球队的人数之比是 5:6,篮球队的人数与体操队的人数的 3 倍的和等于 42 人,若设体操队的人数是 x 人,篮球队的人数为 y 人,则可列方程组为()6.有甲乙两种债券,年利率分别是10%与 12%,现有 400 元债券,一年后获利 45 元,问甲乙债券C . 350,150D .150,250解答:不妨设甲乙债券分别有多少x 元与 y 元,根据题意有 D .亏损为 18 元5x6y 6x5y5x6y6x5y A.B.C.D.3x y 42 3x y 42x y 423x y 42答案:B知识点:二元一次方程组的应用解析:解答:根据题目中的相等关系:体操队和篮球队的人数之比是5:6,篮球队的人数与体操队的人数的3 倍的和等于42 人,可列方程组为B.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出方程组.10.李勇购买80 分与100 分的邮票共16 枚,花了14 元6 角,购买80 分与100 分的邮票的枚数分别是( ) A.6,10 B.8,8 C.7,9 D.9,7答案:C知识点:二元一次方程组的应用解析:x y 16解答:设李勇购买80 分与100 分的邮票的枚数分别是x 与y,根据题意有,解这个0.8x y 14.6x7二元一次方程组得,所以李勇购买80 分与100 分的邮票的枚数分别是7 与9.y9分析:本题目中的相等关系是:购买的邮票共16枚,花了14 元6角,再利用相等关系列出方程组;注意单位要统一.11.已知甲、乙两种商品的原价和为200 元,因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%,求甲、乙两种商品的原单价分别是( ) A.50 元,150 元B.150 元,50 元C.80 元,120 元D.120 元,80 元答案:A知识点:二元一次方程组的应用解析:x y 200解答:设甲、乙两种商品的原单价分别是x元与y元,则有(x1 1y0%2)0x0(1 10%)y 200 (1 5%)x 50解这个二元一次方程组得x y 15500,所以甲、乙两种商品的原单价分别是 50 元与 150 元.分析:本题目中的相等关系是:甲、乙两种商品的原价和为 200 元,调价后甲、乙两种商品的单价 和比原单价和提高了5%,再利用相等关系列出方程组.12. 2辆大卡车和 5辆小卡车工作 2小时可运送垃圾 36吨,3 辆大卡车和 2 辆小卡车工作 5小时可 运输垃圾 80吨,那么 1辆大卡车和 1 辆小卡每小时分别运 x 吨与 y 吨垃圾,则可列方程组( )A.2x 5y36B.2 2x5y 363x 2y805 3x 2y 80C.2 2x 25y 36D.2x 2 5y 365 3x 52y 803x 5 2y 80答案: C知识点: 二元一次方程组的应用 解析:解答:根据题目中的相等关系: 2 辆大卡车和 5 辆小卡车工作 2 小时可运送垃圾 36 吨, 3 辆大卡车 和 2 辆小卡车工作 5 小时可运输垃圾 80 吨,可列方程组为 C .分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.xy 50xy 50 C .D .xy90xy90答案: D知识点: 二 元一 次方程组的应用解析:解答:根据题目中的相等关系: ∠1 的度数比 ∠2 的度数大 50°,从图中可知 ∠1与∠2 的和为 90°, 可列方程组为D .13.一副三角板按如图摆放,且∠1的度数比 ∠2的度数大 50°,若设 1=x o,2=y o ,则可得到x y 50x y 180 x y 180分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.14.某公司向银行申请了甲、乙两种贷款共计 68 万元,每年需付出 8.42 万元利息,已知甲种贷款每年的利率为 12%,乙种贷款每年的利率为 13%,则该公司甲、乙两种贷款的数额分别为()A .26 万元, 42 万元B .40 万元, 28 万元C .28 万元, 40 万元D .42 万元, 26 万元答案: D知识点: 二元一次方程组的应用 解析:x y 68解答:设该公司甲、乙两种贷款的数额分别为x 万元与 y 万元,则有 ,解这个12%x 13%y 8.42x 42元一次方程组得y x 4226,所以该公司甲、乙两种贷款的数额分别为 42 万元与 26 万元.分析:本题目中的相等关系是:甲、乙两种贷款共计 68 万元,每年需付出 8.42 万元利息,再利用 相等关系列出方程组.15.甲、乙二人按 2:5 的比例投资开办了一家公司,约定除去各项开支外,所得利润按投资比例分 成.若第一年所得利润为 14000 元,那么甲、乙二人分别应分得( )A . 2000 元, 5000 元B .4000 元, 10000 元C .5000 元, 2000 元D .10000 元, 4000 元 答案: B 知识点: 二元一次方程组的应用 解析:5x 2yx 元与 y 元,则有 x y 14000,解这个二元一次方程组得所以甲、乙二人分别应分得 4000 元与 14000 元. 分析:本题目中的相等关系是:所得利润按投资比例分成,第一年所得利润为 等关系列出方程组. 二、填空题1.在一次知识竞赛中,学校为获得一等奖和二等奖共 30名学生购买奖品,共花费 528 元,其中一等奖奖品每件 20 元,二等奖奖品每件 16 元,求获得一等奖和二等奖的学生各有多少名?设获得一 等奖的学生有 x 名,二等奖的学生有 y 名,根据题意可列方程组为 . 答案: 知识点: 二元一次方程组的应用 解析:x y 30 解答:解:设获得一等奖的学生有 x 名,二等奖的学生有 y 名,由题意得 2x 0x y 163y 0 528 故答案x 4000 y 10000解答:设甲、乙二人分别应分得 14000 元,再利用相为x y 3020x 16y 528分析:设获得一等奖的学生有 x 名,二等奖的学生有 y 名,根据 “一等奖和二等奖共 30 名学生,一 等奖和二等奖共花费 528 元”列出方程组即可.2.一只船在 A 、 B 两码头间航行,从 A 到 B 顺流航行需 2 小时,从 B 到 A 逆流航行需 3 小时,那么 一只救生圈从 A 顺流漂到 B 需要 小时. 答案: 12知识点: 二元一次方程组的应用 解析:a ,船在静水中的速度为 x ,水流的速度为 y ,根据航行问题的数a 1 a 12 (小时).12与计算.3.某公园 “六 ·一 ”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他 们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3 个大人和4 个小孩,共花了 38 元钱;李利说他家去了 4 个大人和 2 个小孩,共花了 44 元钱,王 斌家计划去 3 个大人和 2 个小孩,请你帮他计算一下,需准备 元钱买门票. 答案: 34知识点: 二元一次方程组的应用解析: 解答:设大人门票为 x 元,小孩门票为 y 元,由题意,得 3x 4y 38 ,解得4x 2y 44即王斌家计划去 3个大人和 2 个小孩,需要 34 元的门票.分析:设大人门票为 x 元,小孩门票为 y 元,根据题目给出的等量关系建立方程组,然后解出x 、y的值,再代入计算即可.4.如图所示的两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克 力的质量为 .g解答:设 A 、 B 两码头间的距离为 量关系建立方程组2(x 3(x y) y)解得5a 1212,所以一只救生圈从 A 顺流漂到 B 需要1a 12分析: ① 一只救生圈从 A顺流漂到 B 即求水流速度, ② 很多时候解实际问题可以借助一个字母参x 10x y 120,则 3x 2y34答案: 20知识点: 二元一次方程组的应用 解析:答案: 6 秒知识点: 二元一次方程组的应用 解析:巧克力果冻解答:设每块巧克力的质量是 x g ,每个果冻的质量是 y g ,则 3x 2y,解得x y 50x 20 y 30分析:设每块巧克力的质量是 x g ,每个果冻的质量是 yg ,根据题目给出的等量关系建立方程组,然后解出 x 、y 的值,再代入计算即可.5.如下图所示,高速公路上,一辆长为 4 米,速度为 110 千米/时的轿车准备超越一辆长为 12 米,速度为 100 千米 / 时的卡车, 则轿车从开始追赶到超越卡车, 需要花费的时间约是 秒(结果保留整数)知识点: 二元 次方程组的应用解析:解答:设整个超越过程历时x 小时,在这一过程中卡车行驶了 y 千米,则轿车行驶了( y +0.012 +100x 0.004)千米,则 110100x xyy 0.012 0.004,解得 x =0.0016(小时),0.0016 小时=5.76秒≈6秒.分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组. 三、解答题 1.为表彰在某活动中表现积极的同学, 老师决定购买文具盒与钢笔作为奖品.已知 5 个文具盒、 2支钢笔共需 100 元;3 个文具盒、 1 支钢笔共需 57 元.那么每个文具盒、每支钢笔各多少元?答案: 每个文具盒 14 元,每支钢笔15 元50g 砝码解答:解:设每个文具盒 x 元,每支钢笔 y 元,则 5x 2y 100,解得 x 14 ,所以每个文具盒3x y 57 y 1514 元,每支钢笔 15 元.分析:设每个文具盒 x 元,每支钢笔 y 元,然后根据花费 100 元与 57元分别列出方程组,解二元一 次方程组即可.2.小林在某店购买 A 、B 商品共三次,只有一次购买时,商品A 、B 同时打折,其余两次均按标价购买,三次购买商品 A 、B 的数量和费用如下表:( 1)小林以折扣价购买商品 A 、B 是第 次购物;(2)求出商品 A 、B 的标价;( 3)若商品 A 、B 的折扣相同,问商店是打几折出售这两种商品的? 答案:(1)三;(2)商品 A 的标价为 90元,商品 B 的标价为 120 元;(3)6折 知识点: 二元一次方程组的应用 解析:解答:解:( 1)因为第三次购物较多但是价格较便宜,所以小林以折扣价购买商品A 、B 是第三次购物;6x5y 1140 x 90( 2)设商品 A 的标价为 x 元,商品 B 的标价为 y 元,根据题意,得,解得3x 7y 1110y120答:商品 A 的标价为 90 元,商品 B 的标价为 120 元;(3)设商店是打 a 折出售这两种商品,由题意得, 9 90 8 120a 1062 ,解得 a 6.10答:商店是打 6 折出售这两种商品的. 分析:列二元一次方程组解应用题的关键是通过审题确定题目中的相等关系,再利用相等关系列出 方程组.3.已知该公司每天能精加工蔬菜6 吨或粗加工蔬菜 16 吨(两种加工不能同时进行) ,某蔬菜公司收 购蔬菜进行销售的获利情况如下表所示:(1)现在该公司收购了 吨蔬菜,如果要求在 天内全部销售完这 吨蔬菜,请完成下列表格:( )如果先进行精加工,然后进行粗加工,要求天刚好加工完 吨蔬菜,则应如何分配加工时间?答案:(1)依次填:14000,35000,518000;(2)10 天进行精加工,5 天进行粗加工知识点:二元一次方程组的应用解析:解答:解:(1)当全部直接销售时140 ×100=14000 (元);当全部粗加工后销售时250×140=35000(元);当尽量精加工,剩余部分直接销售时18 6 450 140 18 6 100 51800 (元);所以)依次填:14000,35000,518000 ;x y 15 x 10(2)设应安排x 天进行精加工,y天进行粗加工,根据题意得:,解得:,6x 16y 140 y 5答:应安排10 天进行精加工,5 天进行粗加工.分析:(1)按已知把已知表中的数据1和2都乘以140 完成表格;而3中18天只能精加工6×18=108(吨),所以为108 450 140 108 100 51800(元);(2)由题意列二元一次方程组求解.4.“下乡”活动期间,凡购买指定家用电器的农村居民均可得到该商品售价13%的财政补贴.村民小李购买了一台A型洗衣机,小王购买了一台B型洗衣机,两人一共得到财政补贴351 元,又知B型洗衣机售价比A 型洗衣机售价多500 元.求:(1)A 型洗衣机和B 型洗衣机的售价各是多少元?(2)小李和小王购买洗衣机除财政补贴外实际各付款多少元?答案:(1)A型与B型洗衣机的售价分别为1100 元与1600 元;(2)实际各付款957元和1392 元知识点:二元一次方程组的应用解析:解答:解:(1)设A 型洗衣机的售价为x元,B型洗衣机的售价为y 元;根据题意可列方程组:解得:答:A型洗衣机的售价为1100 元,B型洗衣机的售价为1600 元.(2 )小李实际付款为:1100×(1-13%)=957 (元);小王实际付款为:1600 ×(1-13%)=1392 (元).答:小李和小王购买洗衣机各实际付款957 元和1392 元.分析:(1)可根据:“两人一共得到财政补贴351 元;又知B型洗衣机售价比A 型洗衣机售价多500元”来列出方程组求解;(2)根据(1)得出的A,B 洗衣机的售价根据补贴的规定来求出两人实际的付款额.5.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1 支签字笔和2 个笔记本共8.5 元,2 支签字笔和3 个笔记本共13.5 元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类且定价为15 元的图书.书店出台如下促销方案:购买图书总数超过50 本可以享受8 折优惠,学校如果多买12 本,则可以享受优惠且所花钱数与原来相同,问学校获奖的同学有多少人?答案:(1)签字笔和笔记本的单价分别是 1.5 元与3.5元;(2)学校获奖的同学有48 人知识点:二元一次方程组的应用;一元一次方程的应用解析:x 2y 8.5解答:解:(1)设签字笔和笔记本的单价分别是x 元与y 元,由题意可得,解得2x 3y 13.5x 1.5y 3.5 答:签字笔和笔记本的单价分别是1.5元与3.5 元(2)设学校获奖的同学有z 人,由题意可得15 0.8 z 12 15z解得z 48 答:学校获奖的同学有48 人.分析:(1)可根据“1支签字笔和2个笔记本共8.5元,2 支签字笔和3 个笔记本共13.5 元”列方程组并解方程组;(2)可根据“购买图书总数超过50本可以享受8 折优惠,学校如果多买12本,则可以享受优惠且所花钱数与原来相同”列一元一次方程,并解方程即可.。

(完整版)二元一次方程组练习题(含答案),推荐文档

(完整版)二元一次方程组练习题(含答案),推荐文档

二元一次方程组练习题一.解答题(共16小题) 1.解下列方程组 (1)(2)(3))(6441125为已知数a a y x a y x ⎩⎨⎧=-=+ (4)(5)(6).(7)(8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x(9)(10) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x2.求适合的x ,y 的值.3.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值. (3)当x 为何值时,y=3?1.解下列方程组(1)(2);(3);(4)(5).(6)(7)(8)(9)(10);2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x ﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:①相同未知数的系数相同或互为相反数时,宜用加减法;②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考解二元一次方程组.点:专题:计算题. 分析: 先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法. 解答:解:原方程组可化为, ①×4﹣②×3,得 7x=42, 解得x=6.把x=6代入①,得y=4. 所以方程组的解为.点评: ;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点: 解二元一次方程组. 专题: 计算题. 分析: 把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单. 解答:解:(1)原方程组化为,①+②得:6x=18, ∴x=3.代入①得:y=.所以原方程组的解为. 点评: 要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点: 解二元一次方程组. 专题: 计算题;换元法. 分析: 本题用加减消元法即可或运用换元法求解. 解答:解:,①﹣②,得s+t=4, ①+②,得s ﹣t=6, 即, 解得.所以方程组的解为.点评: 此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值. (3)当x 为何值时,y=3?考点: 解二元一次方程组. 专题: 计算题. 分析:(1)将两组x ,y 的值代入方程得出关于k 、b 的二元一次方程组,再运用加减消元法求出k 、b 的值.(2)将(1)中的k 、b 代入,再把x=2代入化简即可得出y 的值. (3)将(1)中的k 、b 和y=3代入方程化简即可得出x 的值.解答: 解:(1)依题意得:①﹣②得:2=4k , 所以k=, 所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x ﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a 、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解.。

二元一次方程组经典应用题及答案

实际问题与二元一次方程组题型归纳(练习题答案)一:列二元一次方程组解决——行程问题甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。

两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。

解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,二:列二元一次方程组解决——工程问题小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:三:列二元一次方程组解决——商品销售利润问题李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩四:列二元一次方程组解决——银行储蓄问题小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75解得:X = 1500,Y = 2500。

(完整版)二元一次方程组练习题(含答案)

二元一次方程组练习题一.解答题(共16小题) 1.解下列方程组(1)(2)(3)(4))(6441125为已知数a a y x ay x ⎩⎨⎧=-=+(5)(6).(7)(8)⎩⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x (9)(10) ⎪⎪⎩⎪⎪⎨⎧=-++=-++1213222132y x y x 2.求适合的x ,y 的值.3.已知关于x ,y 的二元一次方程y=kx+b 的解有和.(1)求k ,b 的值.(2)当x=2时,y 的值.(3)当x 为何值时,y=3?1.解下列方程组(1)(2);(3);(4)(5).(6)(7)(8)(9)(10);2.在解方程组时,由于粗心,甲看错了方程组中的a ,而得解为,乙看错了方程组中的b ,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解. a t a nd Al l th i ng si nh ei r be i ng a 二元一次方程组解法练习题精选参考答案与试题解析一.解答题(共16小题)1.求适合的x,y的值.考点:解二元一次方程组.分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.解答:解:由题意得:,由(1)×2得:3x﹣2y=2(3),由(2)×3得:6x+y=3(4),(3)×2得:6x﹣4y=4(5),(5)﹣(4)得:y=﹣,把y的值代入(3)得:x=,∴.点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.2.解下列方程组(1)(2)(3)(4).考点:解二元一次方程组.分析:(1)(2)用代入消元法或加减消元法均可;(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.解答:解:(1)①﹣②得,﹣x=﹣2,解得x=2,把x=2代入①得,2+y=1,解得y=﹣1.故原方程组的解为.(2)①×3﹣②×2得,﹣13y=﹣39,解得,y=3,把y=3代入①得,2x﹣3×3=﹣5,解得x=2.故原方程组的解为.(3)原方程组可化为,①+②得,6x=36,x=6,①﹣②得,8y=﹣4,y=﹣.所以原方程组的解为.(4)原方程组可化为:,①×2+②得,x=,把x=代入②得,3×﹣4y=6,y=﹣.所以原方程组的解为.点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:t h i n gt a t i mA l lt h in gs inh ei r be i ng ar ef o rs om et h②其中一个未知数的系数为1时,宜用代入法.3.解方程组:考点:解二元一次方程组.专题:计算题.分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.解答:解:原方程组可化为,①×4﹣②×3,得7x=42,解得x=6.把x=6代入①,得y=4.所以方程组的解为.点评:;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.4.解方程组:考点:解二元一次方程组.专题:计算题.分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.解答:解:(1)原方程组化为,①+②得:6x=18,∴x=3.代入①得:y=.所以原方程组的解为.点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.5.解方程组:考点:解二元一次方程组.专题:计算题;换元法.分析:本题用加减消元法即可或运用换元法求解.解答:解:,①﹣②,得s+t=4,①+②,得s﹣t=6,即,解得.所以方程组的解为.点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.6.已知关于x,y的二元一次方程y=kx+b的解有和.(1)求k,b的值.(2)当x=2时,y的值.(3)当x为何值时,y=3?考点:解二元一次方程组.专题:计算题.h i ng at h i n ga ta ti m分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.解答:解:(1)依题意得:①﹣②得:2=4k,所以k=,所以b=.(2)由y=x+,把x=2代入,得y=.(3)由y=x+把y=3代入,得x=1.点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.7.解方程组:(1);(2).考点:解二元一次方程组.分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.解答:解:(1)原方程组可化为,①×2﹣②得:y=﹣1,将y=﹣1代入①得:x=1.∴方程组的解为;(2)原方程可化为,即,①×2+②得:17x=51,x=3,将x=3代入x﹣4y=3中得:y=0.∴方程组的解为.点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.根据未知数系数的特点,选择合适的方法.8.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.解答:解:原方程组可化为,①+②,得10x=30,x=3,代入①,得15+3y=15,y=0.则原方程组的解为.t h i n ga ta ti n gs inh ei r be i ng ar eg oo df o rs om e点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.9.解方程组:考点:解二元一次方程组.专题:计算题.分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.解答:解:原方程变形为:,两个方程相加,得4x=12,x=3.把x=3代入第一个方程,得4y=11,y=.解之得.点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.10.解下列方程组:(1)(2)考点:解二元一次方程组.专题:计算题.分析:此题根据观察可知:(1)运用代入法,把①代入②,可得出x,y的值;(2)先将方程组化为整系数方程组,再利用加减消元法求解.解答:解:(1),由①,得x=4+y③,代入②,得4(4+y)+2y=﹣1,所以y=﹣,把y=﹣代入③,得x=4﹣=.所以原方程组的解为.(2)原方程组整理为,③×2﹣④×3,得y=﹣24,把y=﹣24代入④,得x=60,所以原方程组的解为.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.11.解方程组:(1)(2)考点:解二元一次方程组.专题:计算题;换元法.分析:方程组(1)需要先化简,再根据方程组的特点选择解法;方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.t h i n ga ta ti me an dA lh ei ro od fo rs om e解答:解:(1)原方程组可化简为,解得.(2)设x+y=a,x﹣y=b,∴原方程组可化为,解得,∴∴原方程组的解为.点评:此题考查了学生的计算能力,解题时要细心.12.解二元一次方程组:(1);(2).考点:解二元一次方程组.专题:计算题.分析:(1)运用加减消元的方法,可求出x、y的值;(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.解答:解:(1)将①×2﹣②,得15x=30,x=2,把x=2代入第一个方程,得y=1.则方程组的解是;(2)此方程组通过化简可得:,①﹣②得:y=7,把y=7代入第一个方程,得x=5.则方程组的解是.点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解.考点:解二元一次方程组.专题:计算题.分析:(1)把甲乙求得方程组的解分别代入原方程组即可;(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.解答:解:(1)把代入方程组,得,解得:.把代入方程组,得,解得:.∴甲把a看成﹣5;乙把b看成6;i n g a ta ti me an dA l lt h in gs inh ei r be i ng ar eg oo df o rs om et h in g(2)∵正确的a是﹣2,b是8,∴方程组为,解得:x=15,y=8.则原方程组的解是.点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.14.考点:解二元一次方程组.分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.解答:解:由原方程组,得,由(1)+(2),并解得x=(3),把(3)代入(1),解得y=∴原方程组的解为.点评:用加减法解二元一次方程组的一般步骤:1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;3.解这个一元一次方程;4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.15.解下列方程组:(1);(2).考点:解二元一次方程组.分析:将两个方程先化简,再选择正确的方法进行消元.解答:解:(1)化简整理为,①×3,得3x+3y=1500③,②﹣③,得x=350.把x=350代入①,得350+y=500,∴y=150.故原方程组的解为.(2)化简整理为,①×5,得10x+15y=75③,②×2,得10x﹣14y=46④,③﹣④,得29y=29,∴y=1.把y=1代入①,得2x+3×1=15,∴x=6.故原方程组的解为.点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程. 16.解下列方程组:(1)(2)考点:解二元一次方程组.分析:观察方程组中各方程的特点,用相应的方法求解.解答:解:(1)①×2﹣②得:x=1,将x=1代入①得:2+y=4,y=2.∴原方程组的解为;(2)原方程组可化为,①×2﹣②得:﹣y=﹣3,y=3.将y=3代入①得:x=﹣2.∴原方程组的解为.点评:解此类题目要注意观察方程组中各方程的特点,采用加减法或代入法求解. 。

完整版二元一次方程应用题及答案

浠水县思源实验学校七年级试题利用二元一次方程组解简单的应用题1、李明以两种形式分别储蓄了2000元和1000元,一年后全部取出,扣除利息所得税后可得利息43.92元。

已知这?20%利息金额应交利息所得税=储蓄的年利率各是多少?(注:公民年两种储蓄的利率的和为3.24%,问这两种2、某班学生参加义务劳动,男生全部挑土,女生全部抬土,这样安排恰需筐68个,扁担40根,问这个班男生、女生各有多少人?3、甲、乙两人做加法,甲将其中一个加数后面多写了一个0,所以得和是2342,乙将同一个加数后面少写了一个0,所得和是65,求原来的两个加数。

4、甲、乙2个工人同时接受一批任务,上午工作的4小时中,甲用了2.5小时改装机器以提高工效,因此,上午工作结束时,甲比乙少做40个零件;下午2人继续工作4小时后,全天总计甲反而比乙多做420个零件,问这一天甲、乙各做多少个零件?5、去年甲、乙两车间计划共完成税利150万元,由于技术革新,生产效率大幅度提高,结果甲车间超额完成税利110%,乙车间超额完成税利120%,两车间一共上缴税利323万元,问甲、乙车间实际上缴税利多少万元?6一列快车长168米,一列慢车长184米,如果两车相向而行,那么两车错车需4秒,如果同向而行,两车错车需16秒钟,求两车的速度。

7、甲、乙两人分别以均匀的速度在周长为600米的圆形轨道上运动,甲的速度较快,当两人反向运动时,每15秒钟相遇一次;当两人同向运动时,每1分钟相遇一次,求各人的速度。

8、某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元。

该工厂的生产能力是:如制成酸奶,每天可加工3吨;制成奶片,每天可加工1吨,受人员限制,两种加工方式不可同时进行。

受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕。

为此,该厂设计了两种方案:方案一:尽可能多的制成奶片,其余直接销售鲜奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。

二元一次方程(组)解应用题(含答案)

第八章二元一次方程(组)解应用题(含答案)1缉私艇与走私艇相距 120海里的同一航道上航行,如果走私艇与缉私艇同时相向而行,则2小时缉私艇即可将走私艇截住;如果走私艇与缉私艇同时同向而行,则缉私艇需12小时才能追上.问走私艇与缉私艇的速度分别是多少?1. 解:设走私艇的速度是 x海里/时,缉私艇的速度是 y海里/时,由题意得:[2(x+y)=120[12 (y- K)-120,解得卜,辽(y=35答:走私艇的速度是 25海里/时,缉私艇的速度是 35海里/时2. 甲、乙两人从 A , B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶.出发后经 3小时两人相遇.已知在相遇时乙比甲多行驶了90千米,相遇后经1小时乙到达A地.(1)问甲、乙行驶的速度分别是多少?(2)甲、乙行驶多少小时,两车相距30千米?2. 解:(1)设甲、乙行驶的速度分别是每小时 x 千米、y千米,根据题意,得’,ir v-i & 解得….(y=45所以甲、乙行驶的速度分别是每小时15千米、45千米;(2)由第(1)小题,可得 A , B两地相距45X( 3+1) =180 (千米).设甲、乙行驶x小时,两车相距 30千米,根据题意,得两车行驶的总路程是(180- 30)千米或(180+30)千米,则:(45+15) x=180 - 30 或(45+15) x=180+30 .解得:戸|或疋所以甲、乙行驶"或—小时,两车相距 30千米2 23. 小明家离学校1.8千米,其中有一段为上坡路,另一段为下坡路.如果小明在上坡路的平均速度为3千米/时,而在下坡路上的平均速度为5千米/时,那么从家里到学校共用了32 分钟.求小明上坡、下坡各用了多长时间?3. 解:32分钟小时,15设小明上坡用了 x小时,下坡用了(亠-x)小时,由题意,得15]3x+5 (一-x) =1.8,解得:x=90 y=304. A 、B 两地相距20千米.甲乙两人同时从 A 、B 两地相向而行,经过 2小时后两人相遇, 相遇时甲比乙多行 4千米•根据题意,列出两元一次方程组,求出甲乙两人的速度. 4•解:(1设甲的速度为 x 千米/时,乙的速度为 y 千米/小时,由题意得,(2s+2y=20(2K - 2y=4,解得:|{二.答:甲的速度为6千米/时,乙的速度为4千米/小时5.长春至吉林现有铁路长为 128千米,为了加快长春与吉林的经济一体化发展,有关部门决定新修建一条长春至吉林的城际铁路,城际铁路全长96千米•开通后,城际列车的平均速度将为现有列车平均速度的 2.25倍,运行时间将比现有列车运行时间缩短 芒小时.求城际3列车的平均速度.5.解:设现有列车的平均速度为x 千米/小时,现在列车的运行时间为y 小时.xy=1282.药小(y- -|) =96,卜二內4解得 :.64X2.25=144 千米 /小时.城际列车的平均速度 144千米/小时6•甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行, 1小时20分后相遇•相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?[解得:x=「,则下坡所用时间为:答:小明上坡用了 鱼左』=丄15 30"10'小时1CI—小时,下坡用了306. 解:设汽车的速度是[■| (x+y) =160丄』 ,x 千米每小时,拖拉机速度 y 千米每小时,根据题意得:则汽车汽车行驶的路程是: (一+_) >90=165 (千米),3 2拖拉机行驶的路程是:(一+卫)>30=85 (千米).冈2答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米7.—列客车长200 m ,一列货车长280 m ,在平行的轨道上相向行驶,从两车头相遇到两 车尾相离经过16s,已知客车与货车的速度之比是 3: 2,问两车每秒各行驶多少米? 7.解:设客车的速度是每秒x 米,货车的速度是每秒 -x 米.由题意得(x+Zx ) >6=200+280 ,3解得x=18.答:两车的速度是客车 18m/s ,货车12m/s& A 、B 两地相距36千米•甲从A 地出发步行到B 地,乙从B 地出发步行到 A 地•两人 同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的 2倍•求两人的速度.&解:设甲的速度是 x 千米/时,乙的速度是y 千米/时. 「4 (x+yj =36 (36-內0 二2 (36-6y)解得: 答:甲的速度是4千米/时,乙的速度是5千米/时9•从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走 3km ,平路每小时走4km ,下坡每小时走 5km ,那么从甲地到乙地用 54分钟,从乙地到甲地用 42分钟,甲地到 乙地的全程是多少?xkm ,平路为ykm ,/• x+y=3.1km ,答:甲地到乙地的全程是 3.1km 10•甲、乙分别自 A 、B 两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速 度都提高了 1千米/小时,当甲到达B 地后立刻按原路向 A 地返行,当乙到达A 地后也立刻由题意得:9•解:设从甲地到乙地的上坡路为解之得宙1・5 ]尸1花按原路向B 地返行,甲、乙二人在第一次相遇后 3小时36分又再次相遇,则 A 、B 两地的距离是多少?10•解:设甲的速度为 x 千米/时,乙的速度为y 千米/时, 可得:x+y=18 A 、B 两地的距离=2 (x+y) =2 XI8=36 答:A 、B 两地的距离是36千米11 •某班同学,从学校出发步行到某地搞军训活动,如果每小时走 6km ,则可提前10min到达目的地;如果每小时走 5km ,则比预定时间迟到 18min ,问:学校到某地有多远预定到达时间是多少?11 •解:设学校到某地 x 千米•预定到达时间是 y 小时.$(厂”I 5吨)=/解得.*1° •故学校到某地14千米•预定到达时间是 2.5小时 12.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20km ,那么甲用1小时就能追上乙;如果乙先走 1小时,那么甲只用15分钟就能追上乙,求甲、乙二人 的速度.12 •解:设甲的速度是 x 千米/时,乙的速度为y 千米/时, 答:甲的速度是25千米/时,乙的速度为5千米/时13.甲,乙两人相距15千米,如果两人同时相向而行,过 1小时30分相遇;如果乙向相反方向走,甲同时追赶,经过 7小时30分可以追上,求甲,乙二人的速度各是多少.13.解:设甲,乙二人的速度是 x 千米/小时和y 千米/小时.fl. 5K +1. 5y=157.由题意得,x=20+y0.25s= (141X25)y由题意可得:答:甲,乙二人的速度是 6千米/小时和4千米/小时14、在某条高速公路上依次排列着A B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米•分别在A C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A C两个加油站驶去,结果往 B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上. 问巡逻车和犯罪团伙的车的速度各是多少?14、解:设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,则3 x y 120 x y 40 x 80,整理,得y ,解得,x y 120 x y 120 y 40答:巡逻车的速度是 80千米/时,犯罪团伙的车的速度是 40千米/时.15、悟空顺风探妖踪,千里只行四分钟.归时四分行六百,风速多少才称雄?15、解:设悟空飞行速度是每分钟x里,风速是每分钟 y里,依题意得 4(x+y)=10004(x-y)=600 x=200 y=5016. 某列火车通过450米的铁桥,从车头上桥到车尾下桥, 度穿过760米长的隧道时,整列火车都在隧道里的时间是分别是多少?16. 解:设火车长为x米,火车的速度为 y米/秒,33y=x + 45022y=760 — xX=276 「解方程组得:[y=22答:火车长276米,速度为22米/秒. 共33秒,同一列火车以同样的速22秒,问这列火车的长度和速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列二元一次方程组解应用题专项训练1、王大伯承包了25亩土地,今年春季改种茄子和西红柿两种大棚蔬菜,用去了44000元,其中种茄子每亩用去了1700元,获纯利2600元;种西红柿每亩用去了1800元,获纯利2600元,问王大伯一共获纯利多少元?2、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。

在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?3、初三(2)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其他两位同学交流的情况.根据他们的对话,请你分别求出A,B两个超市今年“五一节”期间的销售额.4、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。

(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?5、某玩具工厂广告称:“本厂工人工作时间:每天工作8小时,每月工作25天;待遇:熟练工人按计件付工资,多劳多得,计件工资不少于800元,每月另加福利工资100元,按月结算;……”该厂只生产两种玩具:小狗和小汽车。

熟练工人晓云元月份领工资900多元,她记录了如下表的一些数据:元月份作小狗和小汽车的数目没有限制,从二月分开始,厂方从销售方面考虑逐月调整为:k月份每个工人每月生产的小狗的个数不少于生产的小汽车的个数的k倍(k=2,3,4,……,12),假设晓云的工作效率不变,且服从工厂的安排,请运用所学数学知识说明厂家广告是否有欺诈行为?6用白铁皮做罐头盒,每张铁皮可制成盒身25个,或制盒底40个,一个盒身和两个盒底配成一套罐头盒,现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套7 甲,乙两人分别从A、A两地同时相向出发,在甲超过中点50千米处甲、乙两人第一次相遇,甲、乙到达B、A两地后立即返身往回走,结果甲、乙两人在距A地100米处第二次相遇,求A、B两地的距离甲、乙两人从A地出发到B地,甲不行、乙骑车。

若甲走6千米,则在乙出发45分钟后两人同时到达B地;若甲先走1小诗,则乙出发后半小时追上甲,求A、B两地的距离。

8、张栋同学到百货大楼买了两种型号的信封,共30个,其中买A型号的信封用了1元5角,买B型号的信封用了1元5角,B型号的信封每个比A型号的信封便宜2分。

两种型号的信封的单价各是多少?9、已知一铁路桥长1000米,现有一列火车从桥上通过,测得火车从一开始上桥到车身过完桥共用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度及火车的长度?10、在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下甲同学说:“二环路车流量为每小时10000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?11、已知关于、的二元一次方程组的解满足二元一次方程,求的值。

12、某同学在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元。

(1)求该同学看中的随身听和书包单价各是多少元?(2)某一天该同学上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B 全场购物满100元返购物券30元销售(不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的这两样物品,你能说明他可以选择哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?13、汽车从甲地到乙地,若每小时行驶45千米,就要延误30分钟到达;若每小时行驶50千米,那就可以提前30分钟到达,求甲、乙两地之间的距离及原计划行驶的时间?14、某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68个,扁担40根,问这个班的男女生各有多少人?15、甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?58、甲桶装水49升,乙桶装水56升,如果把乙桶的水倒入甲桶,甲桶装满后,乙桶剩下的水,恰好是乙桶容量的一半,若把甲桶的水倒入乙桶,待乙桶装满后则甲桶剩下的水恰好是甲桶容量的31,求这两个水桶的容量。

13、甲、乙两人在A 地,丙在B 地,他们三人同时出发,甲与乙同向而行,丙与甲、乙相向而行,甲每分钟走100米,乙每分钟走110米,丙每分钟走125米,若丙遇到乙后10分钟又遇到甲,求A 、B 两地之间的距离。

分析:因为现在总有36张铁皮制盒身和盒底.所以x+y=36.公式;用制盒身的张数+用制盒底的张数=总共制成罐头盒的白铁皮的张数36.得出方程(1).又因为现在一个盒身与2个盒底配成一套罐头盒.所以;盒身的个数*2=盒底的个数.这样就能使它们个数相等.得出方程(2)2*16x=40y x+y=36 (1) 2*16x=40y (2) 由(1)得36-y=x (3) 将(3)代入(2)得; 32(36-y)=40y y=16 又y=16代入(1)得:x=20 所以;x=20 y=16 答:用20张制盒身,用16制盒底.设甲的速度为a 千米/小时,乙的速度为b 千米/小时45分钟=3/4小时6+3/4a=3/4ba=(b-a )x1/2化简b-a=8(1)3a=b (2)(1)+(2)2a=8a=4千米/小时b=3x4=12千米/小时AB 距离=12x3/4=9千米解:设A 型信封的单价为a 分,则B 型信封单价为a-2分设买A 型信封b 个,则买B 型信封30-b 个1元5角=150分ab=150(1)(a-2)(30-b )=150(2)由(2)30a-60-ab+2b=150把(1)代入30a-150+2b=21030a+2b=36015a+b=180b=180-15a 代入(1)a (180-15a )=150a²-12a+10=0(a-6)²=36-10a-6=±√26a=6±√26a1≈11分,那么B 型信封11-2=9分a2≈0.9分,那么B 型信封0.9-2=-1.1不合题意,舍去A 型单价11分,B 型9分设火车的速度为a 米/秒,车身长为b 米1分钟=60秒60a=1000+b40a=1000-b100a=2000a=20米/秒b=60x20-1000b=200米车身长为200米。

车速为20米/秒()元王大伯一共获纯利答分元共获纯利分解得分得根据题意亩西红柿亩茄子设王大伯种了630001063000152600102400815105440001800170025::,,, =⨯+⨯⎩⎨⎧==⎩⎨⎧=+=+y x ②y x ①y x y x 21. 解:设甲服装的成本是x 元,乙服装的成本是y 元,依题意得。

⎩⎨⎧+=+++=+157500%90]%)401(%)501[(500y x y x 解得x=300,y=200答:甲、乙两件服装的成本分别为300元、200元25.解: 设去年A 超市销售额为x 万元,B 超市销售额为y 万元,由题意得()()⎩⎨⎧=+++=+,170%101%151,150y x y x解得⎩⎨⎧==.50,100y x100(1+15%)=115(万元),50(1+10%)=55(万元).答:A ,B 两个超市今年“五一节” 期间的销售额分别为115万元, 27. 解:(1)解法一:设书包的单价为x 元,则随身听的单价为()48x -元 根据题意,得48452x x -+=解这个方程,得 x =92484928360x -=⨯-=答:该同学看中的随身听单价为360元,书包单价为92元。

解法二:设书包的单价为x 元,随身听的单价为y 元根据题意,得x y y x +==-⎧⎨⎩45248解这个方程组,得x y ==⎧⎨⎩92360答:该同学看中的随身听单价为360元,书包单价为92元。

(2)在超市A 购买随身听与书包各一件需花费现金: 45280%3616⨯=.(元) 因为3616400.<,所以可以选择超市A 购买。

在超市B 可先花费现金360元购买随身听,再利用得到的90元返券,加上2元现金购买书包,总计共花费现金: 3602362+=(元)因为362400<,所以也可以选择在超市B 购买。

……4分 因为3623616>.,所以在超市A 购买更省钱。

……5分30.解: 设制作一个小狗用时间t 1分钟,可得工资x 元,制作一辆小汽车用时间t 2分钟,可得工资y 元。

依题意得⎩⎨⎧=+=+8523352121t t t t ⎩⎨⎧=+=+05.52315.2y x y x 解得:4.175.0 20t 1521===y x t ,,=, 就二月份来讲,设二月份生产汽车玩具a 件,则生产小狗2a 件,此时可得工资:M =a a a 9.2100100275.04.1+=+⨯+又因为工人每月工作8×25×60=12000分钟,所以二月份可生产玩具汽车 20a +15×2a =12000 解得 a =240件。

故二月份可领工资796元,小于计件工资的最低额,所以说厂家的广告有欺诈行为。

23、解法一:设高峰时段三环路的车流量为每小时辆,则高峰时段四环路的车流量为每小时辆,根据题意得:解这个方程得=11000 ∴=13000答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。

解法二:设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得:解得答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆。

五、结合题:24、解:由题意得三元一次方程组:化简得①+②-③得:④②×2-①×3得:⑤由④⑤得:∴25、解:(1)解法一:设书包的单价为元,则随身听的单价为元根据题意,得解这个方程,得答:该同学看中的随身听单价为360元,书包单价为92元。

相关文档
最新文档