51m钢烟囱(自立式)结构设计计算excel表

合集下载

烟囱计算.xls

烟囱计算.xls

烟囱内径(m)d 5.2烟囱外径(m)D 5.22壁厚(m)δ0.01截面的惯性矩(m4)J0.555360076单位高度质量(kg/m)m1284.864271烟囱高度(m)H25弹性模量(Pa)E 2.06E+11第一振型自振周期(s)T10.118560695f1(Hz)8.43第二振型自振周期(s)T20.018876982f2(Hz)52.97第三振型自振周期(s)T30.006755973f3(Hz)148.02临界风速(m/s)Vcn220.1404098实际风速(m/s)V 3.7塔设备的强度计算1.风载荷:风压值(Pa)q=ev2/2q8.385125风压按50年一遇(Pa)q0550计算段设计风压(Pa)q i q i=f i q0f i 查表可得q1550q2687.5q3775.5任意段i承受的水平分力(N)Pi Pi=K1K2i q i H i D ei每10m分一段P129944.53H110P233913.6875H210P337404.5364H352.风弯矩Mw0-0风弯矩(N·m)Mw0-01500030.0321500.030032KN ·m3.地震力计算水平地震力(N)地震影响系数α 1.138657292T17.151566852T219.98231915T3筒身总重(Kg)M032121.60679烟囱设备强度计算水平地震力(N)F F=9.8Cαm p F 179219.9588第一振型的地震力F k F k 43.5194817地震弯矩(N·M)M E 0-0M E 0-0=4.9Cαm 0H (H/D<15)457193.7725T 12871497.729T 28023302.478T 3当第一振型时设备中、下部截面(0,3/4)M E a-a 裙座底部截面(0)M E 0-0571492.2156顶部截面(3/4,1)M E a-a 114298.4431当第二振型时设备中、下部截面(0,3/4)M E a-a 裙座底部截面(0)M E 0-03589372.161顶部截面(3/4,1)M E a-a 717874.4323当第三振型时设备中、下部截面(0,3/4)M E a-a 裙座底部截面(0)M E0-010029128.1顶部截面(3/4,1)M E a-a2005825.624.筒体的强度计算及校核真空中筒其中引起的轴向应力σ1σ1=PD i /(4S)σ1715001500030.032489305.951上面两组中取较大值1500030.032质量载荷在筒体中引起的轴向应力(Pa)σ21926948.558最大弯矩在筒体中引起的轴向应力(Pa)σ37066813.174组合拉应力σ拉5211364.616=5.21Mpa 组合压应力σ压9065261.731=9.07Mpa材料的许用应力[σ]t 215Mpa校核σ拉正确σ压正确5.裙座的强度计算及校核1500030.032⎪⎩⎪⎨⎧+++--D W a a E D aa W M 25M .0M M M 321σσσσ+-=拉321σσσσ++=压⎩⎪⎨⎧+++---D W 00ED 00W M 25M .0M M M 0000maxM -946499.7235上面两组中取较大值1500030.032裙座基底截面断面系数W sb0.04082裙座基底截面面积A s0.163362818裙座圈计算σs压38674377.06=38.67Mpa材料的许用应力[σ]t 215Mpa校核σs压正确6.地脚螺栓的计算裙座基础环上的应力 (Pa)σb 85145基础环外径(m)D b0 5.82基础环内径(m)D bi 5.22裙座圈外径(m)D s0 5.52基础面积(m 2)A b 5.1998基础环断面系数(m 3)W b 6.9564每个螺栓所受的拉力(N)T 18447M30螺栓力学性能(N)T 0174000校核σs压正确[]S1s 000s00maxs A 8m .9W M σσ〈+=--压⎪⎩⎪⎨⎧+++---D W 00ED 00W M 25M .0M M M 000maxM -。

自立式钢烟囱基础顶面内力计算

自立式钢烟囱基础顶面内力计算

广东省轻纺建筑设计院自立式钢烟囱基础顶面内力计算与基础设计钢烟囱基础顶面内力计算 一、钢烟囱基本信息烟囱直径:d =2500mm ; 烟囱高度:H =20000mm烟囱运行重量:15T (折合150kN ) 二、烟囱基础地震作用计算1)罐体基本自振周期 根据《烟囱设计规范》(GB50051-2013)钢烟囱基本自振周期按如下公式计算,dH T 2211024.026.0-⨯+= (1) 式中,1T 为结构基本自振周期;H 为结构高度;d 为烟囱直径。

已知H =20m ,d =2.5m ,代入公式(1)求得T 1=0.644s 。

2)地震动设计参数抗震设防烈度为8度,设计地面基本加速度0.20g ,场地类别为Ⅲ类,地震分组为二组。

根据《构筑物抗震设计规范》(GB50191-2012)表5.1.5-1及5.1.5-2得,对于多遇地震场地水平地震影响系数最大值αmax =0.16,场地特征周期T g =0.55s 。

根据《烟囱设计规范》,取钢烟囱的阻尼比为0.01。

根据5.1.6条第2款:当构筑物阻尼比不等于0.05时,地震影响系数曲线的阻尼调整系数和形状参数需参考下述公式计算。

ζζγ63.005.09.0+-+= (2)式中,γ为曲线下降段的衰减指数;ζ为阻尼比。

代入数据求得γ=1.0111。

ζζη6.108.005.012+-+= (3)式中,2η为阻尼调整系数,当小于0.55时取为0.55。

代入数据求得2η=1.4167。

根据5.1.6条1款图5.1.6地震影响系数曲线:T g <T 1<5T g ,故计算地震影响系数,19325.016.04167.1644.055.00111.1max 2g =⨯⨯⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=αηαγT T (4) 且max 12.0αα>。

3)水平地震作用计算烟囱基本自振周期的等效总重力荷载G eq =150kN 。

根据5.2.1条第1款,结构总水平地震作用标准值kN 9875.28eq EK ==G F α,则水平地震作用倾覆弯矩标准值kN.m 875.289EK =M 。

50米高钢烟囱结构设计

50米高钢烟囱结构设计
50米高钢烟囱结构设计
1 前言 本计算主要包括两大部分,第一部分为校核计算,其中包括烟囱在风荷载、地震荷载、烟囱自重和因水平烟道热膨胀产生的推力等外力作用
下烟囱各截面的强度校核,烟囱起吊时的强度校核和烟囱在风荷载作用下的挠度校核;第二部分为结构尺寸计算,其中包括烟囱直径计算,破
风圈尺寸和安装计算,因为燃料为瓦斯气或天然气,含硫酸近于零,且系统有引风机,所以烟囱高度未按排放标准和抽吸力计算,而是按环保要
M ω,O
=
P1
h1 2
+
P2 (h1
+
h2 2
)
+



+
Pi
(h1
+ h2
+⋅⋅⋅+
hi 2
) ⋅ ⋅ ⋅ +Pn (h1
+ h2
+⋅⋅⋅+
hn 2
)
……… (7)
5.2.2 计算结果 见表4
风弯矩计算结果
段号 P i (kN)
h mi
各截面的风弯矩( KN ⋅ m)
O-O
A-A
B-B
C-C
D-D
∑ 84451.0
5.2.1 计算公式 各段风载荷在烟囱任意截面a-a处产生的总弯矩( KN ⋅ m)为
式M中ω 的,a 下= 标Pii是⋅ 截h2i面+a-aP以i +1上⋅的( h某i 一+ 计h2i算+1 段) +的⋅序⋅ ⋅号+,各Pn段⋅风( h荷i 载+ 在h i烟+1 囱+ 底⋅ ⋅部⋅ +截h面2n上) 产…生…的…总…弯(6矩) 为:
底板

钢烟囱结构计算

钢烟囱结构计算

钢烟囱结构计算一、筒身自重计算及拉索自重(1)筒身自重筒壁1220.2960.00878.5 1.17/G rt kN m πρπ==⨯⨯⨯=烟囱全高自重13541G G kN =⨯=筒(2)拉索自重钢丝绳采用镀锌钢丝绳16NAT6(6+1)+NF1470ZZ124 89.9 GB/T 8918-1996 拉索自重:8.99N/m 每根索长:2538.9cos50S m ==︒每根拉索自重:28.9938.9350G m N =⨯=近似计算三根索,自重全部由筒身承担:3350=1.05k G N =⨯索二、风荷载产生的弯矩设计值及拉索拉力设计值(1)风荷载另行计算,结果如下:烟囱25m 位置设定拉索,25m 位置以上,风荷载设计值 1.4 1.74=2.44k /N m =⨯ 25m 位置以下,风荷载设计值 1.4 1.52=2.13k /N m =⨯(2)风荷载产生的弯矩设计值近似计算如下:22111= 2.4410=122kN m 22M q l =⨯⨯⨯⨯⋅ ()()2212221277.653535225122.3kN m 8825QH H h M h -⨯⨯-⨯===⋅⨯(公式参烟囱工程手册7.3-2) 作用在烟囱上总水平力: 2.4410 2.1325=77.65k Q N =⨯+⨯(3)拉索拉力设计值177.653570.95kN<124kN 2sin 225sin 50QH S h α⨯===⨯⨯︒(公式参烟囱工程手册7.3-3) 16φ钢丝绳最小破断拉力为124kN ,故16φ镀锌钢丝绳满足要求。

(4)拉索拉力焊缝计算假设拉索翼缘板厚8t mm =,焊缝长度200w l mm =32270.9501044.34/210/2008t w S N mm N mm l t σ⨯===<⨯ 满足要求。

(5)拉索拉力对烟囱产生的竖向压力P 设计值cos cos5070.9591.2k 180180cos cos 3P S N n α︒==⨯= 三、承重能力极限状态设计(1)筒壁局部稳定性的临界应力值按《烟囱工程手册》公式(7.2-7)计算如下:520.40.4 1.88108668.4/1.5600t crt E t N mm K d σ⨯⨯=⨯=⨯= 式中:300°温度作用下钢材的弹性模量550.92 2.0510 1.8810t E =⨯⨯=⨯局部抗压强度调整系数 1.5K =(2)在荷载(自重和风)作用下钢烟囱强度计算按《烟囱工程手册》公式(7.2-6)计算如下:i i t ni niN M f A W ⨯≤ 及 crt σ 式中:计算截面处净截面面积()222600584148714ni A mm π=⨯-=计算截面处净截面抵抗矩2230.770.7760082217600ni W d t mm ==⨯⨯=2210/t f N mm = 2668.4/crt N mm σ=钢烟囱水平计算截面i 的轴向压力设计值: 1.2i ik N N =()1 1.2 1.171091.2105.2N kN =⨯⨯+=2251.2 1.1710 1.0591.2124kN 2N ⎡⎤⎛⎫=⨯⨯+++= ⎪⎢⎥⎝⎭⎣⎦()3 1.2 1.171025 1.0591.2141.6kN N =⨯⨯+++=⎡⎤⎣⎦钢烟囱水平计算截面i 的最大弯矩设计值: 1.4i ik M M =111.4122kN m k M M ==⋅221.4122.3kN m k M M ==⋅30kN m M ≈⋅(3)钢烟囱整体稳定验算拉索式钢烟囱整体稳定验算的计算简图可近似假定为两端简支的压杆。

m钢烟囱计算书

m钢烟囱计算书

目录1、设计资料基本设计资料烟囱总高度H =烟气温度T gas = ℃烟囱底部高出地面距离: 0mm夏季极端最高温度T sum = ℃冬季极端最低温度T win = ℃最低日平均温度T win = ℃烟囱日照温差△T = ℃基本风压?0 = m2瞬时极端最大风速: (m/s)地面粗糙度: B类烟囱筒体几何缺陷折减系数? =烟囱安全等级: 二级抗震设防烈度: 7度设计地震分组: 第一组建筑场地土类别: Ⅱ类筒壁腐蚀厚度裕度:衬里起始高度:设置破风圈: 是自定义设计温度下筒壁钢材的许用应力: 是否计算抽力: 否材料信息序号使用部位材料名称最高使用温度(℃)密度(kg/m3)导热系数?(W /(m·K))1 筒壁钢材S31603 250几何尺寸信息烟囱总分段数: 18烟囱筒身分段参数表编号标高(m) 烟囱筒壁外直径(mm) 分段高度(m)0 -----123456789101112131415161718烟囱总截面数: 21烟囱筒身分节参数表(1)截面编号标高(m)烟囱筒壁外直径(mm)分节高度(m)筒壁厚度(mm)坡度(%)0 -----1234567891011121314151617181920烟囱筒身分节参数表(2)截面编号标高(m)附加重量(kN)附加风载(kN)洞口数量洞口形状洞口宽度(mm)洞口高度(mm)洞口直径(mm)5 0 矩形0 0 -----6 0 矩形0 0 -----7 0 矩形0 0 -----8 0 矩形0 0 -----9 0 矩形0 0 -----10 0 矩形0 0 -----11 0 矩形0 0 -----12 0 矩形0 0 -----13 0 矩形0 0 -----14 0 矩形0 0 -----15 0 矩形0 0 -----16 0 矩形0 0 -----18 1 圆形----- ----- 180020 0 矩形0 0 -----是否设置爬梯: 否烟囱底座设计参数烟囱底板材料: Q235(B)烟囱底板内径D1:烟囱底板外径D2:偏心弯矩M e: 地脚螺栓材料: Q235(B)地脚螺栓数量n: 20地脚螺栓腐蚀裕量c2:地脚螺栓中心线直径D3: 4500mm筋板材料: Q235(B)筋板高度hj:盖板材料: Q235(B)盖板类型: 环形盖板是否有垫板: 否2、计算依据《烟囱设计规范》 GB 50051-2013《建筑结构荷载规范》GB 50009-2012《建筑抗震设计规范》GB 50011-2010《钢结构设计规范》GB 50017-2003《烟囱设计手册》(2014年5月第1版)《不锈钢结构技术规程》CECS 410:2015 《低合金高强度结构钢》GB/T 1591-2008《钢结构设计手册》(第三版)《钢结构连接节点设计手册》(第二版)不锈钢S31603强度设计值见下表:3、筒体自重计算筒身自重表格(1)截面编号标高(m) 重量(kN) 筒壁1234567891011121314151617181920合计--筒身自重表格(2)截面编号标高(m)附加重量(kN)破风圈重(kN)本节总重量(kN)每节根部重量(kN)0 --1 29 292 29 593 40 984 20 1185 40 1586 29 1877 29 2168 64 2809 102 38110 62 44411 45 48812 37 52513 41 56614 32 59815 66 66416 41 70417 45 74918 65 81419 86 90020 67 967合计-- 967 967 筒身总重量 G = (每节重量) =6、动力特征计算前五阶自振周期分别为:T1 =T2 =T3 =T4 =T5 =前五阶振型相对位移计算结果标高(m) 第一振型(相对值)第二振型(相对值)第三振型(相对值)第四振型(相对值)第五振型(相对值)0 0 0 0 07、风荷载计算横向风振判断第1振型时的临界风速计算错误!式中D2/3-----2H/3高度处烟囱的外直径烟囱雷诺数R e错误!R e = 69000V cr1D2/3 = 69000 ×× = × 106R e≥× 106,×V H > V cr1需要考虑横风向风荷载已经设立破风圈,不考虑横风向作用风荷载标准值计算顺风向风压时风荷载计算结果标高R o?z?B?v z/H R?1(z) B z?z?k (m)90090090090020002000200020002000200020002000200020002000200020002000200020002000注:R0——筒身截面外半径(mm)风弯矩标准值计算风荷载及风弯矩标准值计算结果标高(m) Q i M wki-- --682667188881176139916392000231026043072343438674158451649235531648677548643注: 1、Q i表示作用于每一节中心处的集中风荷载, 单位为kN2、M wki = ∑(Q i h i), 单位为考虑瞬时极端最大风速时的风荷载计算(只计算顺风向风压)瞬时极端最大风速时风荷载计算结果标高R o?z?B?v z/H R?1(z) B z?z?k (m)90090090090020002000200020002000200020002000200020002000200020002000200020002000风荷载标准值计算结果标高(m) Q i M wki-- --913569621189157518742196267930953488411646015180557060496594740886851038011569 注: 1、Q i表示作用于每一节中心处的集中风荷载, 单位为kN2、M wki = ∑(Q i h i), 单位为8、地震作用及内力计算地震作用下的剪力(kN)标高第一振型第二振型第三振型第四振型第五振型振型组合值(m)地震作用下弯矩标高第一振型第二振型第三振型第四振型第五振型振型组合值(m)1858128149180203227262293324376418470506 551 603 684 815 992 11169、附加弯矩计算标高(m) 承载能力极限状态风荷载附加弯矩M ai承载能力极限状态地震附加弯矩M Eai正常使用极限状态风荷载附加弯矩M aki10、荷载内力组合荷载组合工况表组合1 S = + + + ××S Lk组合2 S = + + + ××S Lk组合3 S = + ××S wk + + ××S Lk组合4 S = + + ××S wk + ×M aE组合5 S = + + ××S wk + ×M aE组合6 S = + + + ××S wk +组合7 S = + - + ××S wk +组合8 S = + + + ××S wk +组合9 S = + - + ××S wk +组合10 S = + +组合11 S = + +标高(m)组合1 组合2 组合3N M N M N M 0 0 0 0 0 0 29 100 35 100 40 62 59 392 70 392 79 243 98 1063 118 1063 133 661 118 1314 142 1314 159 817 158 1740 190 1740 213 1082 187 2069 224 2069 252 1285 216 2423 259 2423 291 1505 280 2955 335 2955 377 1835 381 3411 458 3411 515 2118 444 3844 533 3844 599 2386 488 4534 586 4534 659 2814 525 5067 630 5067 709 3144 566 5704 680 5704 765 3539 598 6132 718 6132 807 3804 664 6658 796 6658 896 4129 704 7257 845 7257 951 4500 749 8148 899 8148 1011 5051 814 9545 976 9545 1099 5913 900 11391 1080 11391 1215 7048 967 12676 1160 12676 1305 7836标高(m)组合4 组合5N M N M0 0 0 035 45 29 4570 156 59 156 118 387 98 387 142 467 118 467 190 596 158 596 224 694 187 694 259 799 216 799 335 956 280 956 458 1092 381 1092 533 1223 444 1223 586 1435 488 1435 630 1601 525 1601 680 1802 566 1802 718 1939 598 1939 796 2108 664 2108 845 2303 704 2303 899 2597 749 2597 976 3063 814 3063 1080 3686 900 3686 1160 4123 967 4123标高(m)组合10N(kN) M0 0 29 96 59 376 98 1020 118 1260 158 1669 187 1984 216 2324 280 2834 381 3272 444 3687 488 4349 525 4860 566 5471 598 5881 664 6385 704 6958 749 7812 814 9150 900 10915967 12144标高(m)组合11N(kN) M0 0 29 100 59 392 98 1063 118 1314 158 1740 187 2069 216 2423 280 2955 381 3411 444 3844 488 4534 525 5067 566 5704 598 6132 664 6658 704 7257 749 8148 814 9545 900 11391 967 1267611、钢烟囱强度与稳定计算钢烟囱强度计算截面编号标高(m)A ni(m2)W ni(m3)N i(kN)M iN iA ni±M iW ni(N/mm2)f t(N/mm2)⎝⎛⎭⎫N iA ni±M iW ni/f t(%)0 -- -- -- -- -- -- --1 35 1002 70 3923 118 10634 142 13145 190 17406 224 20697 259 24238 335 29559 458 341110 533 384411 586 453412 630 506713 680 570414 718 613215 796 665816 845 725717 899 814818 976 954519 1080 1139120 1160 12676钢烟囱局部稳定计算钢烟囱局部稳定验算表(一)截面编号标高(m)t(mm)D i(mm)?N?B A ni(m2)W ni(m3)N i(kN)M i?N(N/mm2)?B(N/mm2)0 -- -- -- -- -- -- -- -- -- --1 1796 35 1002 1796 70 3923 1796 118 10634 3996 142 13145 3996 190 17406 3996 224 20697 3996 259 24238 3996 335 29559 3996 458 341110 3996 533 384411 3996 586 453412 3996 630 5067 13 3996 680 5704 14 3996 718 6132 15 3996 796 6658 16 3996 845 7257 17 3996 899 8148 18 3996 976 9545 19 3996 1080 11391 203996116012676钢烟囱局部稳定验算表(二)截面 编号 标高 (m) f yt (N/mm 2) ?? E t ×105 (N/mm 2) ?et ??crt?N +?B(N/mm 2) ()σN +σB /σcrt(%)0 -- -- -- -- -- -- -- -- -- 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20钢烟囱整体稳定性计算 截面位置 A bi (m 2) W bi(m 3) 计算长 度l 0(m)长细比? 稳定 系数? N Ex (kN) N i (kN) M i ? (N/mm 2) f t(N/mm 2)?/f t(%) 底部48525116012676钢烟囱孔洞应力计算 根据烟囱规范式()计算σ = ⎣⎡⎦⎤N A 0 + MW 0αk ≤ f t标高(m) ?k A0(m2)W0(m3)N(kN)M?N/(mm2)f tN/(mm2)结果976 9545不通过(洞口补强)(12、考虑瞬时极端最大风速下验算结果标高(m)A ni(m2)W ni(m3)N i(kN)M iN iA ni±M iW ni(N/mm2)f y(N/mm2)⎝⎛⎭⎫N iA ni±M iW ni/f y(%)-- -- -- -- -- -- --29 9659 37698 1020118 1260158 1669187 1984216 2324280 2834381 3272444 3687488 4349525 4860566 5471598 5881664 6385704 6958749 7812814 9150900 10915967 12144烟囱底板厚度计算底板面积:A(m2)底板抵抗矩:W(m3)底板压应力:?cbt(kN/m2)筒壁外侧为三边支撑板自由边长度a(m)两端与自由边相邻的边长度b(m)?M max m)底板厚度t(mm)筒壁内侧为一边支撑板筒壁内侧为一边支撑板C(m)M max m)底板厚度t(mm)底板厚度取较大结果且要大于14mm ,因此取底板厚度t为45mm地脚螺栓直径计算单个地脚螺栓的拉力(kN)所需地脚螺栓净面积(mm2)地脚螺栓计算直径d1(mm)地脚螺栓所需直径d(mm)地脚螺栓所需面积(mm2)最终取地脚螺栓为30-M76筋板厚度计算底板分布反力得到的压力N1(kN)锚栓产生的拉力N2(kN)根据筋板抗拉强度计算的筋板厚度t1(mm)根据筋板抗剪强度计算的筋板厚度t2(mm)构造要求t3(mm)筋板厚度取以上三者的较大值,最终取值为28mm盖板厚度计算盖板类型为环形盖板筋板内侧间距l3'(mm)筋板自由外伸宽度b(mm)盖板上地脚螺栓孔直径d3(mm)计算盖板厚度t g(mm)构造要求:盖板厚度不小于底板厚度,最终取值为38mm筒壁各截面位移结果截面编号标高(m)基本风压作用下位移(mm)瞬时最大风速作用下位移(mm)地震作用下位移(mm)0 1 2 3 4 5 6 7 8 9101112131415161718192015、加强圈间距计算编号标高(m)D r(mm)t r(mm)E t×105(N/mm2)??(N/mm2)f rv co(m/s)加强筋截面H s(m)0 -- -- -- -- -- -- -- --1 1800 102 1800 103 1800 104 4000 105 4000 106 4000 107 4000 108 4000 129 4000 1210 4000 1211 4000 1212 4000 1213 4000 1414 4000 1415 4000 1416 4000 1417 4000 1418 4000 14计算结果:1.塔筒体上部1/3筒高处需设置破风圈,以消除横风向风振;2.标高处管道按直径1800的开洞计算,根据计算结果,洞口处需要补强;3.沿筒高壁厚变化,厚度分别为16mm,14mm,12mm。

excel计算大全-钢结构计算表格-钢管混凝土结构计算程序

excel计算大全-钢结构计算表格-钢管混凝土结构计算程序

四,稳定性验算
轴心受压构件稳定系数ψ 0.686 N/ψAsc (N/mm2) 0.2fscktkc (N/mm2) 当N/ψAsc≥0.2fscktkc时,验算 N/ψAsc+βmM/1.5Wsc(1-0.4N/NE)≤fscktkc 当N/ψAsc<0.2fscktkc时,验算 N/1.4ψAsc+βmM/1.4Wsc(1-0.4N/NE)≤fscktkc 2.4E+04 9.47 满足
二,刚度验算
构件长细比λ=4*l/d 92.7 刚度验算 λ<[λ] 构件容许长细比[λ] 80 不满足
三,强度验算
5.42 N/Asc (N/mm2) 0.2fscktkc (N/mm2) 当N/Asc≥0.2fscktkc时,验算 N/Asc+M/1.5Wsc≤fscktkc 当N/Asc<0.2fscktkc时,验算 N/1.4Asc+M/1.4Wsc≤fscktkc 9.47 满足
数据输入
钢管外径d (mm) 820 管壁厚度t (mm) 16.0 2 315 钢材抗压强度设计值f (N/mm ) 2 345 钢材屈服强度值fy (N/mm ) 混凝土强度等级 C30 当构件处于温度变化的环境中时, 当构件处于温度变化的环境中时,请输入右值 构件偏心率 2M/Nd1 (此值仅供参考) 0.453 轴心压力N (KN) 最大弯矩M (KNm) 计算长度l (mm) 等效弯矩系数βm 2 钢材弹性模量Es (N/mm ) 温度t (℃) (80≤t≤150) 永久荷载所占比例 (%) 2860.00 510.00 19000 1.0 2.06E+05

数据输出
一,常规数据
20.1 混凝土抗压强度标准值fck (N/mm2) 混凝土抗压强度设计值fc (N/mm2) 钢管内径d1=d-2t (mm) 788 组合截面面积Asc=πd2/4 (mm2) 4.9E+05 钢管截面面积As=Asc-Ac (mm2) 混凝土截面面积Ac=πd12/4 (mm2) 含钢率α=As/Ac 5.4E+07 组合截面抵抗矩Wsc=Ascd/8 (mm3) 套箍系数ξ=αfy/fck 套箍系数ξ0=αf/fc 1.42 -4 1.232 系数C=-5.188×10-3fck+0.0309 系数B=7.483×10 fy+0.974 受压组合强度标准值fysc=(1.212+Bξ+Cξ2)fck (N/mm2) 2 2 受压组合强度设计值fsc=(1.212+Bξ0+Cξ )fc (N/mm ) 受压组合弹性模量Esc=(12.2×10-4+0.7284/fy)fyscEs (N/mm2) 温度折减系数kt 徐变折减系数kc 1.000 14.3 5.3E+05 4.0E+04 0.083 1.83 -0.073 56.6 47.4 3.88E+04 1.000

自立式钢烟囱荷载计算公式

自立式钢烟囱荷载计算公式自立式钢烟囱是工业设备中常见的一种结构,它承担着排放废气的功能。

在设计和施工过程中,需要对烟囱的荷载进行合理计算,以确保其安全可靠地运行。

本文将介绍自立式钢烟囱荷载计算的公式和相关内容。

首先,我们需要了解自立式钢烟囱的荷载来源。

烟囱荷载主要包括自重荷载、风荷载、地震荷载和温度荷载。

其中,自重荷载是烟囱本身的重量,风荷载是由于风力作用在烟囱上产生的荷载,地震荷载是由于地震力作用在烟囱上产生的荷载,温度荷载是由于烟囱温度变化引起的荷载。

接下来,我们将介绍自立式钢烟囱荷载计算的公式。

1. 自重荷载计算公式。

自重荷载是烟囱本身的重量,可以通过以下公式计算:自重荷载 = 烟囱截面积×烟囱长度×烟囱材料密度。

2. 风荷载计算公式。

风荷载是由于风力作用在烟囱上产生的荷载,可以通过以下公式计算:风荷载 = 0.5 ×风压系数×风速²×烟囱截面积。

3. 地震荷载计算公式。

地震荷载是由于地震力作用在烟囱上产生的荷载,可以通过以下公式计算:地震荷载 = 烟囱质量×地震加速度。

4. 温度荷载计算公式。

温度荷载是由于烟囱温度变化引起的荷载,可以通过以下公式计算:温度荷载 = 烟囱线膨胀系数×烟囱长度×温度变化量。

通过以上公式,我们可以计算出自立式钢烟囱的各项荷载,进而进行结构设计和施工。

需要注意的是,以上公式中的一些参数需要根据实际情况进行调整,例如风压系数、风速、地震加速度、温度变化量等,这些参数需要根据当地气候条件和地震烈度等因素进行合理选择。

除了荷载计算公式外,还需要对烟囱的结构进行合理设计,以确保其能够承受各项荷载。

在结构设计中,需要考虑烟囱的材料、截面形状、连接方式等因素,以提高其承载能力和抗风抗震能力。

此外,施工过程中也需要对烟囱进行严格的质量控制和安全监测,以确保其在运行过程中不会出现安全隐患。

钢烟囱计算书计算书5

(如果不单独存档,不盖入库章)计 算 书xxxx 项目 xxxx 装置 66米钢烟囱文件编号:xxxx钢烟囱设计软件QY-Chimney*********工程建设有限公司2017年10月目录1、设计资料 (3)2、计算依据 (7)3、筒体自重计算 (8)4、筒体截面参数 (10)5、筒体温度计算 (11)6、动力特征计算 (15)7、风荷载计算 (17)8、考虑瞬时极端最大风速时的风荷载计算(只计算顺风向风压) (19)9、地震作用及内力计算 (21)10、附加弯矩计算 (25)11、荷载内力组合 (31)12、钢烟囱强度与稳定计算 (34)13、考虑瞬时极端最大风速下验算结果 (38)14、筒壁容许应力计算 (39)15、钢烟囱底座计算 (42)16、钢烟囱位移结果 (46)17、加强圈间距计算 (47)1、设计资料1.基本设计资料烟囱总高度H = 66.000m烟气温度T gas = 80.00℃烟囱底部高出地面距离: 0mm夏季极端最高温度T sum = 40.00℃冬季极端最低温度T win = -15.00℃最低日平均温度T win = -5.00℃烟囱日照温差△T = 15.00℃基本风压w0 = 0.35kN/m2瞬时极端最大风速: 50.00(m/s)地面粗糙度: B类烟囱筒体几何缺陷折减系数d = 0.50 烟囱安全等级: 二级抗震设防烈度: 7度(0.10g)设计地震分组: 第一组建筑场地土类别: Ⅱ类筒壁腐蚀厚度裕度: 2.00mm衬里起始高度: 0.00m设置破风圈: 是2.材料信息3烟囱总分段数: 7是否设置爬梯: 是爬梯自重(沿高度): 5.00(kN/m) 4.烟囱底座设计参数烟囱底板材料: Q235(B)烟囱底板内径D1: 3500.00mm烟囱底板外径D2: 8000.00mm偏心弯矩M e: 0.00kN.m地脚螺栓材料: Q235(B)地脚螺栓数量n: 6地脚螺栓腐蚀裕量c2: 4.0mm地脚螺栓中心线直径D3: 7500mm筋板材料: Q235(B)筋板高度hj: 600.00mm盖板材料: Q235(B)盖板类型: 环形盖板是否有垫板: 是垫板厚度td: 20mm垫板宽度L4: 500mm2、计算依据《烟囱设计规范》 GB 50051-2013(以下简称“烟规”)《建筑结构荷载规范》GB 50009-2012(以下简称“荷载规范”)《建筑抗震设计规范》GB 50011-2010(以下简称“抗震规范”)《钢结构设计规范》GB 50017-2003(以下简称“钢结构规范”)《烟囱设计手册》(中国计划出版社, 2014年5月第1版, 以下简称“烟囱手册”) 《塔式容器》NB/T 47041-2014《碳素结构钢》GB/T 700-2006《低合金高强度结构钢》GB/T 1591-2008《钢结构设计手册》(第三版)中国建筑工业出版社《钢结构连接节点设计手册》(第二版)中国建筑工业出版社3、筒体自重计算如果存在洞口的话则扣除洞口部位的重量。

烟囱计算


m0 m4
第 1 页,共 9 页
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
H7=H-L-L1-L2-L3-L4-L5-L6 h7=L+L1+L2+L3+L4++L5+0.5L6 I7=3.14*(D7+δ
e7) 3
13200.0 24450.0 20168898274.9 2400.0

e7/8
第8段(自下而上) mm mm mm mm kg kg mm mm mm
4
设计取值 设计取值

e9/8
第10段(自下而上) mm mm mm mm kg kg mm mm mm S
4
设计取值 设计取值
3300.0 6.0 3.7 1193.7 1790.5
m0 m10 H10 h10 I10 T1
H10=H-L-L1-L2-L3-L4-L5-L6-L7-L8-L9
h10=L+L1+L2+L3+L4++L5++L6+L7++L8+0.5L9
第9段(自下而上) mm mm mm mm 设计取值 设计取值 3300.0 6.0 3.7
第 2 页,共 9 页
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141

钢烟囱计算书(包括阻力计算)


1.43 荷载分布影响系数ω
0.675
ωβlft=
2.9
满足!
10 烟囱顶部位 移:
fmax=11ql4/120EI= H/fmax=
8.1258424 mm 2707.4116 >
100 满足!
验算荷载
N= 271.8 (kN)
M=
截面抗震调整系数γRE = 0.8 651.9 (kN.m)
7 截面荷载计算:
1. 强度验算
γx= 1.15
局部抗压调整系数k 1.5
σ=N/A2 +M/(γxWt2) (N/mm2) 18./d2 (N/mm2) 329.6
22.000 2.000 2.000
12 12
(m) (m) (m) (mm) (mm)
钢材牌号 Q235
截面面积A1 截面面积A2 旋转半径i1 旋转半径i2 重力荷载代表值GE 自振周期(按烟囱规
范):
74946 74946
703 703 214
(mm2) (mm2) (mm) (mm) (kN)
长细比λ1 63
长细比λ2 63
3 竖向荷载计算:
重力标准值Gk
167 (kN)
平台活荷标准值Qk 47 (kN)
4 风荷载计算:
基本风压ω0 0.35
ω0*T12= 0.494
z(m)
z/H
10.0
0.45
20.0
0.91
30.0
1.36
40.0
1.82
22.0
1.00
(kN/m2)
φz 0.06 0.23 0.46 0.79 1.00
>
2. 稳定验算
Nex=π2EA/(1.1λ2)(N) 11251882
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

51m钢烟囱(自立式)结构设计计算excel表
1. 引言
近年来,随着工业的不断发展,工厂和大型建筑物中的钢烟囱越来越普遍。

钢烟囱作为工业建筑中重要的排烟设施,其结构设计与计算显得尤为重要。

本文将对一种高度为51m的钢烟囱进行自立式结构设计计算,并使用excel表进行相应的计算。

2. 烟囱结构设计
钢烟囱的结构设计需要考虑到以下几个方面:
2.1. 烟囱的高度、直径和材料属性。

2.2. 烟囱的风载荷和地震荷载。

2.3. 烟囱的自重和温度应力。

2.4. 烟囱的基础设计。

3. 烟囱结构计算excel表
本文中所设计的excel表主要包括以下几个部分:
3.1. 烟囱的几何参数输入:包括烟囱的直径、高度、材料属性等。

3.2. 烟囱的风载荷和地震荷载计算:根据工程地理位置及当地环境,计算烟囱所受风载和地震荷载。

3.3. 烟囱的自重和温度应力计算:考虑烟囱本身的自重以及排烟时受到的温度变化,计算烟囱的应力情况。

3.4. 烟囱的基础设计:根据烟囱的几何参数和受力情况,设计烟囱的
基础参数。

4. 结果分析
通过excel表计算得到的数据结果,可以清晰地得知烟囱结构在各种
受力情况下的应力情况,可以进一步评估烟囱的稳定性和安全性。


过excel表的灵活性和便捷性,还可以进行参数的调整和结果的对比
分析,从而优化烟囱的结构设计。

5. 结论
51m钢烟囱的自立式结构设计计算excel表,不仅可以帮助工程师快
速准确地计算并评估烟囱的结构设计,还可以为烟囱的优化设计提供
有力的参考依据,设计计算excel表的使用将在未来得到更广泛的应用。

6. 实例分析
为了更具体地说明51m钢烟囱自立式结构设计计算excel表的实际应用,我们可以选取一个具体的工程实例进行分析。

假设某工厂需要建
造一座高度为51m的钢烟囱,我们可以借助excel表进行相关参数的计算和分析。

我们输入烟囱的直径、材料属性、所在地的风载荷和地震荷载等参数。

根据excel表中设定的公式和计算方法,我们可以得到烟囱受力情况
下的应力、变形等数据。

我们可以进行不同条件下的对比分析,调整
参数并重新计算得出最佳的设计方案。

在安装位置受到较大风载荷时,我们可以通过excel表快速得到烟囱的受力情况,并根据结果调整烟囱结构的设计方案,以提升烟囱的抗风能力。

我们还可以利用excel表进行烟囱基础设计的优化,确保烟囱在受力情况下的稳定性,从而确保其安全运行。

7. 应用前景
随着工业的不断发展,钢烟囱作为重要的排烟设施将得到更广泛的应用。

而烟囱的结构设计与计算是保证其运行安全和稳定的关键。

烟囱结构设计计算excel表的应用前景十分广阔。

烟囱结构设计计算excel表具有灵活性和便捷性,在设计过程中可以随时根据需要进行参数的调整和计算结果的对比分析,从而为烟囱的最优设计提供便利。

结合现代信息化技术,烟囱结构设计计算excel表可以与CAD等软件进行数据交互和集成,实现烟囱设计的数字化、智能化。

这将大大提高设计效率和准确性,有利于快速响应工程实际需求。

随着环保意识的提升,烟囱的设计不只是为了排放废气,还需要考虑其对环境和人类健康的影响。

烟囱结构设计计算excel表可以帮助设计人员根据不同的环保标准和要求,设计出更合理、更符合环保要求的烟囱结构。

烟囱结构设计计算excel表的应用前景广阔,将对工程设计和施工实践产生积极的推动作用。

8. 结语
51m钢烟囱自立式结构设计计算excel表是工程设计中的一项重要工具。

它通过便捷、灵活的计算方式,帮助工程师在烟囱结构的设计和计算过程中,快速、准确地得出相应的结果,并为最终的设计方案提供参考依据。

在未来的工程实践中,我们相信烟囱结构设计计算excel表将得到更广泛的应用,为工程设计和施工带来更多的便利和安全保障。

我们也期待这一类工程设计辅助工具在信息化、智能化的方向上不断发展,为工程设计和建设进程注入更多科技力量,为社会和环境的可持续发展贡献更大的力量。

相关文档
最新文档