基于 MATLAB 分析语音信号频域特征

合集下载

实验二基于MATLAB分析语音信号频域特征

实验二基于MATLAB分析语音信号频域特征

实验二 基于MATLAB 分析语音信号频域特征一、实验目的信号的傅立叶表示在信号的分析与处理中起着重要的作用。

因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。

另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更深入地说明信号的各项物理现象。

由于语音信号是随着时间变化的,通常认为,语音是一个受准周期脉冲或随机噪声源激励的线性系统的输出。

输出频谱是声道系统频率响应与激励源频谱的乘积。

声道系统的频率响应及激励源都是随时间变化的,因此一般标准的傅立叶表示虽然适用于周期及平稳随机信号的表示,但不能直接用于语音信号。

由于语音信号可以认为在短时间内,近似不变,因而可以采用短时分析法。

本实验要求掌握傅里叶分析原理,会利用已学的知识,编写程序估计短时谱、倒谱,画出语谱图,并分析实验结果,在此基础上,借助频域分析方法所求得的参数分析语音信号的基音周期或共振峰。

二、实验原理1、短时傅立叶变换由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为:()()()jwjwmn m X e x m w n m e∞-=-∞=-∑ (1.1)其中w(n-m)是实窗口函数序列,n 表示某一语音信号帧。

令n-m=k',则得到(')'()(')(')jwjw n k n k X e w k x n k e∞--=-∞=-∑ (1.2)于是可以得到()()()jw jwnjwkn k X e ew k x n k e∞-=-∞=-∑ (1.3)假定()()()jwjwkn k X e w k x n k e∞=-∞=-∑ (1.4)则可以得到()()jw jwn jw n n X e e X e -= (1.5)同样,不同的窗口函数,将得到不同的傅立叶变换式的结果。

由上式可见,短时傅立叶变换有两个变量:n 和ω,所以它既是时序n 的离散函数,又是角频率ω的连续函数。

语音信号的频域分析

语音信号的频域分析

实验二:语音信号的频域分析实验目的:以MATLAB 为工具,研究语音信号的频域特性,以及这些特性在《语音信号处理》中的应用情况。

实验要求:利用所给语音数据,分析语音的频谱、语谱图、基音频率、共振峰等频域参数。

要求会求取这些参数,并举例说明这些参数在语音信号处理中的应用。

实验内容:1、 语音信号的频谱分析1.1加载“ma1_1”语音数据。

基于DFT 变换,画出其中一帧数据(采样频率为8kHz ,帧长为37.5ms ,每帧有300个样点)的频域波形(对数幅度谱)。

load ma1_1;x = ma1_1 (4161:4460); plot (x)N = 1024; k = - N/2:N/2-1;X = fftshift (fft (x.*hann (length (x)),N));plot (k,20*log10 (abs(X))), axis ([0 fix(N/2) -inf inf ])已知该帧信号的时域波形如图(a )所示,相应的10阶LPC 谱如图(b )所示。

问题1:这帧语音是清音还是浊音?基于DFT 求出的对数幅度谱和相应的LPC 谱相比,两者有什么联系和区别?问题2:根据这帧基于DFT 的对数幅度谱,如何估计出共振峰频率和基音周期?问题3:时域对语音信号进行加窗,反映在频域,其窗谱对基于DFT 的对数幅度谱有何影响?如何估计出窗谱的主瓣宽度?1.2对于浊音语音,可以利用其频谱)(ωX 具有丰富的谐波分量的特点,求出其谐波乘积谱:∏==R r r X HPSx 1)()(ωω式中,R 一般取为5。

在谐波乘积谱中,基频分量变得很大,更易于估计基音周期。

1.3加载“vowels.mat”语音数据,分别画出一帧/i/和一帧/u/(采样频率为10kHz,帧长为30ms,每帧有300个样点)的基于DFT的对数幅度谱。

其Matlab代码如下:load vowelsx = vowels.i_1(2001:2300);N = 1024; k= -N/2:N/2-1;X = fftshift (fft (x.*hann (length(x)),N));plot (k,20*log10(abs(X))), axis([0 fix(N/2) 0 100])x = vowels.u_1(2001:2300);N= 1024; k = -N/2:N/2-1;X = fftshift (fft (x.*hann(length(x)),N));plot (k,20*log10(abs(X))), axis([0 fix(N/2) 0 100])1.4画出一帧清音语音的基于DFT的对数幅度谱。

利用Matlab进行频谱分析的方法

利用Matlab进行频谱分析的方法

利用Matlab进行频谱分析的方法引言频谱分析是信号处理和电子工程领域中一项重要的技术,用于分析信号在频率域上的特征和频率成分。

在实际应用中,频谱分析广泛应用于音频处理、图像处理、通信系统等领域。

Matlab是一种强大的工具,可以提供许多功能用于频谱分析。

本文将介绍利用Matlab进行频谱分析的方法和一些常用的工具。

一、Matlab中的FFT函数Matlab中的FFT(快速傅里叶变换)函数是一种常用的频谱分析工具。

通过使用FFT函数,我们可以将时域信号转换为频域信号,并得到信号的频谱特征。

FFT 函数的使用方法如下:```Y = fft(X);```其中,X是输入信号,Y是输出的频域信号。

通过该函数,我们可以得到输入信号的幅度谱和相位谱。

二、频谱图的绘制在进行频谱分析时,频谱图是一种直观和易于理解的展示形式。

Matlab中可以使用plot函数绘制频谱图。

首先,我们需要获取频域信号的幅度谱。

然后,使用plot函数将频率与幅度谱进行绘制。

下面是一个示例:```X = 1:1000; % 时间序列Y = sin(2*pi*10*X) + sin(2*pi*50*X); % 输入信号Fs = 1000; % 采样率N = length(Y); % 信号长度Y_FFT = abs(fft(Y)); % 计算频域信号的幅度谱f = (0:N-1)*(Fs/N); % 频率坐标plot(f, Y_FFT);```通过上述代码,我们可以得到输入信号在频谱上的特征,并将其可视化为频谱图。

三、频谱分析的应用举例频谱分析可以应用于许多实际问题中。

下面将介绍两个常见的应用举例:语音信号分析和图像处理。

1. 语音信号分析语音信号分析是频谱分析的一个重要应用领域。

通过对语音信号进行频谱分析,我们可以探索声波的频率特性和信号的频率成分。

在Matlab中,可以使用wavread 函数读取音频文件,并进行频谱分析。

下面是一个示例:```[waveform, Fs] = wavread('speech.wav'); % 读取音频文件N = length(waveform); % 信号长度waveform_FFT = abs(fft(waveform)); % 计算频域信号的幅度谱f = (0:N-1)*(Fs/N); % 频率坐标plot(f, waveform_FFT);```通过上述代码,我们可以获取语音信号的频谱特征,并将其可视化为频谱图。

基于matlab实现语音信号频谱分析

基于matlab实现语音信号频谱分析

目录第1章课题的设计要求、目的、意义 (3)1.1课题的设计要求: (3)1.1.1.信号采集 (3)1.1.2.构造受干扰信号并对其进行FFT频谱分析 (3)1.1.3.数字滤波器设计 (3)1.1.4.信号处理 (3)1.1.5.设计图形用户界面 (3)1.2课题的设计目的与意义: (3)第2章课程设计报告内容 (4)2.1理论依据 (4)2.2信号采集 (4)2.3构造一个正弦干扰信号来干扰语音信号 (4)2.4数字滤波器设计 (4)2.5信号处理 (4)2.6具体指标 (4)2.7设计图形用户界面 (4)第3章设计理论依据 (5)3.1采样定理 (5)3.2采样频率 (5)第4章图形用户界面制作及Matlab实现 (6)4.1 按钮、静态文本和编辑器的使用 (6)4.1.1打开guide (6)4.2 按钮与程序的联系 (8)第5章调试及分析 (8)5.1打开信号。

(8)5.2声音播放,同时显示波形。

(9)5.3语音信号的频谱、幅度和相位。

(10)5.3.1频谱。

(10)5.3.2幅度。

(10)5.3.3相位。

(11)5.4加噪声后的语音信号波形。

(12)5.5加噪声后的语音信号的频谱、幅度和相位。

(12)5.5.1频谱。

(12)5.5.2幅度。

(13)5.5.3相位。

(13)5.6信号通过FIR滤波器后的波形。

(14)5.7信号通过FIR滤波器后的频谱、幅度和相位。

(15)5.7.1频谱。

(15)5.7.2幅度。

(16)5.7.3相位。

(16)5.8信号通过IIR滤波器后的波形。

(17)5.9 信号通过IIR滤波器后的频谱、幅度和相位。

(18)5.9.1频谱。

(18)5.9.2幅度。

(18)5.9.3相位。

(19)5.10信号通过巴特沃斯滤波器后的波形。

(20)5.11 信号通过巴特沃斯滤波器后的频谱、幅度和相位。

(21)5.11.1频谱。

基于MATLAB的语音频域特征分析

基于MATLAB的语音频域特征分析

经典功率谱估计与现代功率谱估计的对比 [摘要]本文主要介绍了在MATLAB环境下,从介绍功率谱的估计原理入手分析了经典谱估计和现代谱估计两类估计方法的原理、各自特点以及实现方法。

[关键词]功率谱;功率谱估计;经典功率谱估计;现代功率谱估计;语谱图;共振峰信号的频谱分析是研究信号特性的重要手段之一,通常是求其功率谱来进行频谱分析。

功率谱反映了随机信号各频率成份功率能量的分布情况,可以揭示信号中隐含的周期性及靠得很近的谱峰等有用信息,在许多领域都发挥了重要作用。

然而,实际应用中的平稳随机信号通常是有限长的,只能根据有限长信号估计原信号的真实功率谱,这就是功率谱估计。

⑴功率谱估计cleara=wavread('鸟语花香.wav');subplot(2,1,1),plot(a);title('original signal');grid;N=256;h=hamming(N);for m=1:Nb(m)=a(m)*h(m);endy=20*log(abs(fft(b)));subplot(2,1,2);plot(y);title('短时谱');xlabel('频率(Hz)');ylabel('功率谱(db)');grid;①%相关法:相关法是利用维纳-辛钦定理该方法先由序列x(n)估计出自相关函数R(n),然后对R(n)进行傅立叶变换,便得到x(n)的功率谱估计。

[xn,Fs,bits]=wavread('鸟语花香.wav');n=0:1/Fs:1;nfft=512;cxn=xcorr(xn,'unbiased');CXk=fft(cxn,nfft);Pxx=abs(CXk);index=0:round(nfft/2-1);k=index*Fs/nfft;a=log(10);b=log(Pxx(index+1));c=b/a;plot_Pxx=10*c;plot(k,plot_Pxx);xlabel('frequeney(hz)相关法');ylabel('power spectraldensity');title('recorrelation psd estimate');②周期图法周期图法是直接将信号的采样数据x(n)进行Fourier 变换求取功率谱密度估计的方法。

基于MATLAB实现对语音信号频谱分析

基于MATLAB实现对语音信号频谱分析

的起点移至 处截取信号 ,再做傅里叶变换而得到
的一个频谱函数。这是直接将频率轴方向来理解的。
另一种解释是从时间轴方向来理解,当频率固定时,
例如
,则
可以看作是信号经过一个中心频
率为 的带通滤波器产生的输出。这是因为窗口函数
通常具有低通频率响应,而指数 对语音信号
有调制的作用,使频谱产生移位,即将 频谱中
对应于频率 的分量平移到零频。
3、短时傅里叶反变换(倒谱分析)
傅里叶变换建立了信号从时域到频域的变换桥
梁,而傅里叶反变换则建立了信号从频域到时域的
变换桥梁这两个域之间的变换为一对一映射关系。
我们知道,
可以看作是加窗后函数的傅里叶变
换,为了实现反变换,将
进行频率采样,即令
图2 频谱分析过程
,则有
2、短时傅里叶变换(频谱分析)
公司推出的一种面向工程和科学计算的交互式计算软 的录音机功能可以用麦克风直接录制一段女声“世界
件,它以矩阵运算为基础,把计算、可视化、程序设 上最遥远的距离不是生与死,而是我就站在你面前
计融合到了一个简单易用的交互式工作环境中。同时 你确不知道我爱你”,并保存为WAV 格式文件,供
由于Matlab是一个数据分析和处理功能十分强大的工程 MATLAB 相关函数直接读取、写入或播放。本文以
三、语音信号分析及MATLAB的实现 1、语音信号的频谱分析过程 傅里叶频谱分析是语音信号频域分析中广泛采用的 一种方法。语音波是一个非平稳过程,因此适用于周 期、瞬变或平稳随机信号的标准傅里叶变换不能直接 表示语音信号,而应该用短时傅里叶变换对语音信号 的频谱进行分析,相应的频谱称为“短时谱”。 进行频谱分析时,在时域数据进行短时FFT处理之 前都要进行加窗处理。在FFT处理之后,普通频谱分析 可以进行频域上的滤波处理,从而使频谱更加平滑。 最后IFFT处理观察恢复后的时域信号图形,频谱分析过 程(如图2所示)。

语音信号处理及matlab仿真实验总结

语音信号处理及matlab仿真实验总结

语音信号处理及matlab仿真实验总结
语音信号处理是利用数字信号处理技术对语音信号进行分析、处
理和改进的过程。

语音信号是不规则的波形,其包含了很多信息,如
语音的音高、音调、音色、语速、语气等,因此语音信号处理是一项
非常重要的技术。

语音信号处理的一般流程包括语音信号采集、预处理、特征提取、模型建立和应用,其中预处理包括信号增强、降噪、去混响等,特征
提取包括时域特征、频域特征和时频域特征,模型建立包括声学模型
和语言模型等。

为了更加深入地掌握语音信号处理技术,我们进行了一些matlab
仿真实验。

我们首先学习了语音信号的采样和量化过程,并使用
matlab软件对语音信号进行了仿真采样和量化,了解了采样率和分辨
率等概念,还了解了量化噪声的影响。

其次,我们学习了语音信号的基本特征提取技术,并用matlab仿
真实现了时域特征、频域特征和时频域特征的提取,如时域的短时能
量和短时过零率、频域的傅里叶变换和倒谱系数、时频域的小波变换等。

最后,我们学习了基于模型的语音信号处理技术,如基于隐马尔
可夫模型、高斯混合模型、人工神经网络等模型的语音识别、语音合
成等应用,并用matlab进行了相关的仿真实验。

总之,语音信号处理是一项非常重要的技术,它可以在语音识别、语音合成、语音压缩、语音增强等领域得到广泛应用。

通过学习语音
信号处理及matlab仿真实验,我们了解到了它的基本理论和应用方法,并得到了一些实践经验,这对我们今后的学习和工作将具有很大的指
导意义。

基于MATLAB的语音信号的时、频域分析课程设计

基于MATLAB的语音信号的时、频域分析课程设计

摘要用MATLAB对于语音信号进行分析和处理,采集语音信号后,在MATLAB软件平台进行频谱分析;并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。

本次设计介绍了基于MATLAB的对语音信号的采集,处理及滤波器的设计,并使之实现的过程。

关键词:MATLAB;语音信号;滤波器;加噪;除噪目录摘要 (1)1 设计原理 (1)1.1 理论原理 (1)1.1.1采样频率 (1)1.1.2采样位数 (1)1.1.3采样定理 (1)1.1.4时域信号的FFT分析 (2)1.1.5数字信号的滤波器原理和方法 (2)1.1.6 各种不同类型滤波器的性能比较 (3)1.1.7离散傅立叶变换 (3)2 信号采集及读取 (4)3 构造受干扰信号并对其进行FFT频谱分析 (6)4 数字滤波器设计 (8)4.1 用窗函数法设计IIR带通滤波器 (8)4.2 用窗函数法设计FIR低通滤波器 (10)5信号处理 (12)5.1 IIR带通滤波 (12)5.2 FIR低通滤波 (14)6心得体会 (16)7 参考文献: (16)1设计原理1.1 理论原理1.1.1 采样频率也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。

采样频率只能用于周期性采样的采样器,对于非周期性采样的采样器没有规则限制。

通俗的讲采样频率是指计算机每秒钟采集多少个声音样本,是描述声音文件的音质、音调,衡量声卡、声音文件的质量标准。

采样频率越高,即采样的间隔时间越短,则在单位时间内计算机得到的声音样本数据就越多,对声音波形的表示也越精确。

1.1.2采样位数即采样值或取样值,用来衡量声音波动变化的参数,是指声卡在采集和播放声音文件时所使用数字声音信号的二进制位数。

1.1.3采样定理在进行模拟/数字信号的转换过程中,当采样频率fs.max 大于信号中最高频率fmax的2倍时(fs.max>=2fmax),采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

语音信号处理实验报告实验三基于 MATLAB 分析语音信号频域特征所在院系:工学院专业: 电子信息工程班级:电信112姓名:学号:指导教师:***2014年05月06日实验三基于 MATLAB 分析语音信号频域特征一、实验目的信号的傅立叶表示在信号的分析与处理中起着重要的作用。

因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。

另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更深入地说明信号的各项红物理现象。

由于语音信号是随着时间变化的,通常认为,语音是一个受准周期脉冲或随机噪声源激励的线性系统的输出。

输出频谱是声道系统频率响应与激励源频谱的乘积。

声道系统的频率响应及激励源都是随时间变化的,因此一般标准的傅立叶表示虽然适用于周期及平稳随机信号的表示,但不能直接用于语音信号。

由于语音信号可以认为在短时间内,近似不变,因而可以采用短时分析法。

本实验要求掌握傅里叶分析原理,会利用已学的知识,编写程序估计短时谱、倒谱,画出语谱图,并分析实验结果,在此基础上,借助频域分析方法所求得的参数分析语音信号的基音周期或共振峰。

二、实验原理1、短时傅立叶变换由于语音信号是短时平稳的随机信号,某一语音信号帧的短时傅立叶变换的定义为:其中 w(n-m)是实窗口函数序列,n 表示某一语音信号帧。

令 n-m=k',则得到同样,不同的窗口函数,将得到不同的傅立叶变换式的结果。

由上式可见,短时傅立叶变换有两个变量:n 和ω,所以它既是时序 n 的离散函数,又是角频率ω的连续函数。

与离散傅立叶变换逼近傅立叶变换一样,如令ω=2πk/N,则得离散的短时傅立叶吧如下:2、语谱图水平方向是时间轴,垂直方向是频率轴,图上的灰度条纹代表各个时刻的语音短谱。

语谱图反映了语音信号的动态频率特性,在语音分析中具有重要的实用价值。

被成为可视语言。

语谱图的时间分辨率和频率分辨率是由窗函数的特性决定的。

时间分辨率高,可以看出时间波形的每个周期及共振峰随时间的变化,但频率分辨率低,不足以分辨由于激励所形成的细微结构,称为宽带语谱图;而窄带语谱图正好与之相反。

宽带语谱图可以获得较高的时间分辨率,反映频谱的快速时变过程;窄带语谱图可以获得较高的频率分辨率,反映频谱的精细结构。

两者相结合,可以提供带两与语音特性相关的信息。

语谱图上因其不同的灰度,形成不同的纹路,称之为“声纹”。

声纹因人而异,因此可以在司法、安全等场合得到应用。

3、复倒谱和倒谱在时域上,语音产生模型实际上是一个激励信号与声道冲激响应的卷积。

对于浊音,激励信号可以由周期脉冲序列表示;对于清音,激励信号可以由随机噪声序列表示。

声道系统相当于参数缓慢变化的零极点线性滤波器。

这样经过同态处理后,语音信号的复倒谱,激励信号的复倒谱,声道系统的复倒谱之间满足下面的关系:由于倒谱对应于复倒谱的偶部,因此倒谱与复倒谱具有同样的特点,很容易知道语音信号的倒谱,激励信号的倒谱以及声道系统的倒谱之间满足下面关系:浊音信号的倒谱中存在着峰值,它的出现位置等于该语音段的基音周期,而清音的倒谱中则不存在峰值。

利用这个特点我们可以进行清浊音的判断,并且可以估计浊音的基音周期。

4、基因周期估计浊音信号的倒谱中存在峰值,它的出现位置等于该语音段的基音周期,而清音的倒谱中则不存在峰值。

利用倒谱的这个特点,我们可以进行语音的清浊音判决,并且可以估计浊音的基音周期。

首先计算语音的倒谱,然后在可能出现的基因周期附近寻找峰值。

如果倒谱峰值超过了预先设置的门限,则输入语音判断为浊音,其峰值位置就是基因周期的估计值;反之,如果没有超出门限的峰值的话,则输入语音为清音。

5、共振峰估计对倒谱进行滤波,取出低时间部分进行进行逆特征系统处理,可以得到一个平滑的对数谱函数,这个对数谱函数显示了输入语音段的共振峰结构,同时谱的峰值对应于共振峰频率。

通过此对数谱进行峰值检测,就可以估计出前几个共振峰的频率和强度。

对于浊音的声道特性,可以采用前三个共振峰来描述;清音不具备共振峰特点。

二、实验结果1 短时谱2 语谱图3 倒谱和复倒谱图 3、4 是加矩形窗和汉明窗的倒谱图和复倒谱图,图中横轴的单位是Hz,纵轴的单位是 dB。

4 基因周期和共振峰估计四、参考程序cleara=wavread('beijing.wav'); subplot(2,1,1),plot(a);title('original signal'); gridN=256;h=hamming(N);for m=1:Nb(m)=a(m)*h(m)endy=20*log(abs(fft(b))) subplot(2,1,2)plot(y);title('¶ÌʱÆ×'); grid00.51 1.52 2.53 3.54x 104-0.500.51050100150200250300-150-100-50050短时谱[x,fs,nbits]=wavread('beijing.wav') specgram(x,512,fs,100); xlabel('ʱ¼ä(s)'); ylabel('ƵÂÊ(Hz)'); title('ÓïÆ×ͼ');00.51 1.52 2.53 3.54x 104-0.500.51时间(s)频率(H z )语谱图0.511.522.533.544.51000200030004000cleara=wavread('beijing.wav',[4000,4350]); N=300; h=linspace(1,1,N); for m=1:N b(m)=a(m)*h(m); end c=cceps(b); c=fftshift(c); d=rceps(b); d=fftshift(d); subplot(2,1,1)plot(d);title('¼Ó¾ØÐδ°Ê±µÄµ¹Æ×') subplot(2,1,2)plot(c);title('¼Ó¾ØÐδ°Ê±µÄ¸´µ¹Æ×')050100150200250300-6-4-202050100150200250300-6-4-202加矩形窗时的复倒谱cleara=wavread('beijing.wav',[4000,4350]); N=300; h=hamming(N); for m=1:N b(m)=a(m)*h(m); end c=cceps(b); c=fftshift(c); d=rceps(b); d=fftshift(d); subplot(2,1,1)plot(d);title('¼ÓººÃ÷´°Ê±µÄµ¹Æ×') subplot(2,1,2)plot(c);title('¼ÓººÃ÷´°Ê±µÄ¸´µ¹Æ×')050100150200250300-6-4-202050100150200250300-10-55加汉明窗时的复倒谱语音信号处理实验报告实验四基于 MATLAB 的 LPC 分析所在院系:工学院专业: 电子信息工程班级:电信112姓名:学号:指导教师:汤永清2014年05月06日实验四基于 MATLAB 的 LPC 分析一、实验目的线性预测分析是᳔有效的语音分析技术之一,在语音编码、语音合成、语音识别和说话人识别等语音处理领域中得到了广泛的应用。

语音线性预测的基本思想是:一个语音信号的抽样值可以用过去若干个取样值的线性组合来逼近。

通过使实际语音抽样值与线性预测抽样值的均方误差达到᳔小,可以确定唯一的一组线性预测系数。

采用线性预测分析不仅能够得到语音信号的预测波形,而且能够提供一个非常好的声道模型。

如果将语音模型看作激励源通过一个线性时不变系统产生的输出,那么可以利用 LP 分析对声道参数进行估值,以少量低信息率的时变参数精确地描述语音波形及其频谱的性质。

此外,LP 分析还能够对共振峰、功率谱等语音参数进行精确估计,LP 分析得到的参数可以作为语音识别的重要参数之一。

由于语音是一种短时平稳信号,因此只能利用一段语音来估计模型参数。

此时有两种方案:一种是将长的语音序列加窗,然后对加窗语音进行 LP 分析,只要限定窗的长度就可以保证分析的短时性,这种方案称为自相关法;另一种方案不对语音加窗,而是在计算均方预测误差时限制其取和区间,这样可以导出 LP 分析的自协方差法。

本实验要求掌握 LPC 原理,会利用已学的知识,编写程序估计线性预测系数以及 LPC 的推演参数,并能利用所求的相关参数估计语音的端点、清浊音判断、基因周期、共振峰等。

二、实验原理1 LP 分析基本原理LP 分析为线性时不变因果稳定系统 V(z)建立一个全极点模型,并利用均方误差准则,对已知的语音信号 s(n)进行模型参数估计。

如果利用 P 个取样值来进行预测,则称为 P 阶线性预测。

假设用过去 P 个取样值显然,误差越接近于零,线性预测的准确度在均方误差᳔小的意义上为᳔佳,由此可以计算出预测系数。

通过 LPC 分析,由若干帧语音可以得到若干组 LPC 参数,每组参数形成一个描绘该帧语音特征的矢量,即 LPC 特征矢量。

由 LPC 特征矢量可以进一步得到很多种派生特征矢量,例如线性预测倒谱系数、线谱对特征、部分相关系数、对数面积比等等。

不同的特征矢量具有不同的特点,它们在语音编码和识别领域有着不同的应用价值。

2 自相关法值得注意的是,自相关法在计算预测误差时,数据段的两端都需要加 P 个零取样值,因而可造成谱估计失真。

相关文档
最新文档