SARS传播的数学模型
关于SARS传播和影响的数学模型

关于SARS传播和影响问题的模型摘要本文首先采用Logistic模型、人工神经网络两个方法对SARS疫情公布的数据进行分析挖掘后,建立了不同的传染病模型来对疫情的变化趋势给出预测,从而为预防控制提供了可靠、足够的信息。
然后又考虑到证券市场被视为国民经济的晴雨表,因此在收集医药类、交通运输类等行业的股票价格的基础上,分别使用“事件分析法”、Markov 链建立数学模型对SARS给股市的影响进行分析预测。
在对早期模型进行合理性与实用性评价的基础上,对它的参数确定方法进行改进,消除了对港粤地区经验性数据的依赖,建立的二阶Logistic回归模型能就本地已知数据预测疫情发展趋势,给出预测值并拟合出疫情走势图。
并且该模型的决定系数R2高达99.02%,这表明预测值与实际值无显著性差异,拟合效果很好。
由疫情走势图可推算出发病高峰为4月29日及持续时间,且能体现出预防措施对疫情走势有明显的影响,也即随着预防指数K(t)的增大,累计发病人数N(t)趋于稳定。
因此该模型可为疾病的预防和控制提供有效的信息。
又考虑到本问题是一个动态预测问题,故建立了误差逆传播神经网络模型(BP,Back-Propagation)。
经过理论分析和多次实验确定其为三层结构的BP网络模型,节点数分别为(5,6,5),激励函数为双曲正切函数。
该模型能够根据前五天的累计患者数预测出未来五天的累计患者数。
首先,将已知65个数据分为13组,分别作为网络的输入、输出端输入网络,进行学习。
然后,用训练过的网络预测未知数据,正确率达99.9%以上。
最后,考虑到网络初值对模型灵敏度的影响,提出了初始化的合理建议,并将其与早期模型进行了比较。
在分析SARS对证券市场的影响时,由于这是一个突发事件,缺乏历史数据,所以SARS对股市产生的影响很难用传统的计量模型进行分析,因而采用“事件分析法”对其进行研究:利用一个相对短时期的股票价格的变化情况来分析和衡量该事件的影响程度。
sars数学建模获奖论文_11

sars数学建模获奖论文二.数学模型的分析与建立 2.1 分析与假设将人群分为四类:健康者(易受感染者):用 S 表示健康者在人群中的比例。
潜伏期者(已感染,尚未发病):用 E 表示他们在人群众的比率。
发病期者(已发病者):用 I 表示病人在人群中的比例。
退出者(死亡者):用 R 表示退出者在人群中的比例。
2.2 模型的建立 1 .参数设定 1每个病人平均每天有效接触(足以使被接触者感染)的人数。
q 退出率,为 SARS 患者的日死亡率和日治愈率之和。
l (流入)流出人口占本地总人口的比率。
1处于潜伏期的病人的日发病率。
P流入人口中带菌者所占的比例。
2 .控前方程的建立根据我们的分析和各变量的分析,结合实际的疫情的传播规律,我们可以建立如下的方程组:ISdtdS1(1)LE LP E ISdtdE 1 1(2)1/ 3qI EdtdI1(3)qIdtdR(4) 0 0 00, , , E R I S (初值)3 .参数的确定 1) 1根据医学资料和有关数据推导而得。
2) q 由该城市的医疗水平和已知的统计数据分析,求其统计平均值。
3) l 由城市的出入人口流动情况(主要由经济发达程度和交通状况决定)。
可查有关资料。
4) 1根据医学研究和调查的有关结果和该城市的疫情发展状况可得。
5) P由流入该城市人群的地区分布情况和各其他地区的疫情决定。
II 控后模型的建立 1 .参数设定 2 不可控人群(在后面的分析中可得到)在发病后到被隔离前平均每天接触的人的数目。
q 退出率,为 SARS 患者的日死亡率和日治愈率之和。
接触病源的人的发病率。
每天由可控人群和不可控人群转化为病人的日转化率。
2 .控后方程的建立根据上面我们的各种假设和各变量和参数的实际意义,我们可以建立如下控制后的疾病模型的方程组:(5)qI GdtdI(6) qIdtdR(7) SdtdS 2 GGGSdtdG 2GSdtd2 (9) 0 0 0 0 0, , , , E R I S (初值)在得到这个模型后,我们对模型和数据进行了进一步的分析,发现这个模型中存在以下的问题...3/ 3。
SARS传播的数学模型_数学建模全国赛论文1

SARS传播的数学模型_数学建模全国赛论文SARS 传播的数学模型摘要本文分析了题目所提供的早期 SARS 传播模型的合理性与实用性,认为该模型可以预测疫情发展的大致趋势,但是存在一定的不足.第一,混淆了累计患病人数与累计确诊人数的概念;第二,借助其他地区数据进行预测,后期预测结果不够准确;第三,模型的参数 L、K 的设定缺乏依据,具有一定的主观性. 针对早期模型的不足,在系统分析了 SARS 的传播机理后,把 SARS 的传播过程划分为:征兆期,爆发期,高峰期和衰退期 4 个阶段.将每个阶段影响SARS传播的因素参数化,在传染病 SIR 模型的基础上,改进得到SARS 传播模型.采用离散化的方法对本模型求数值解得到:北京 SARS 疫情的预测持续时间为 106 天,预测 SARS 患者累计2514 人,与实际情况比较吻合. 应用 SARS 传播模型,对隔离时间及隔离措施强度的效果进行分析,得出结论:早发现,早隔离能有效减少累计患病人数;严格隔离能有效缩短疫情持续时间. 在建立模型的过程中发现,需要认清 SARS 传播机理,获得真实有效的数据.而题目所提供的累计确诊人数并不等于同期累计患病人数,这给模型的建立带来不小的困难. 本文分析了海外来京旅游人数受 SARS 的影响,建立时间序列半参数回归模型进行了预测,估算出 SARS 会对北京入境旅游业造成 23.22 亿元人民币损失,并预计北京海外旅游人数在 10 月以前能恢复正常. 最后给当地1/ 2报刊写了一篇短文,介绍了建立传染病数学模型的重要性. 1.问题的重述 SARS(严重急性呼吸道综合症,俗称:非典型肺炎)的爆发和蔓延使我们认识到,定量地研究传染病的传播规律,为预测和控制传染病蔓延创造条件,具有很高的重要性.现需要做以下工作:(1)对题目提供的一个早期模型,评价其合理性和实用性. (2)建立自己的模型,说明优于早期模型的原因;说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够信息的模型,并指出这样做的困难;评价卫生部门采取的措施,如:提前和延后 5 天采取严格的隔离措施,估计对疫情传播的影响. (3)根据题目提供的数据建立相应的数学模型,预测 SARS 对社会经济的影响. (4)给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性. 2.早期模型的分析与评价题目要求建立 SARS 的传播模型,整个工作的关键是建立真正能够预测以及能为预防和控制提供可靠、足够的信息的模型.如何结合可靠、足够这两个要求评价一个模型的合理性和实用性,首先需要明确:合理性定义要求模型的建立有根据,预测结果切合实际. 实用性定义要求模型能全面模拟真实情况,以量化指标指导实际. 所以合理的模型能为预防和控制提供可靠的信息;实用的模型能为预防和控制提供足...。
SARS传播数学模型

SARS 的传播问题模型一 SI 模型模型假设1、在疾病传播期内,所考察地区的总人数N 不变,人群分为易感染者和已感染者两类,以下简称健康者和病人,两类人在总人数N 中占的比例分别记作()s t ,()i t ;2、每个病人每天有效接触的平均人数是常数λ,称为日常接触率。
当病人与健康者有效接触时,使健康者感染变为病人。
模型构成根据假设,每个病人每天可使()s t λ个健康人变为病人,因为病人人数为()Ni t ,所以每天共有()()Ns t i t λ个健康人被感染,于是Nsi λ就是病人人数Ni 的增加率,即有diNNsi dt λ= (1)又因为()()1s t i t += (2)再记初始时刻(t=0)病人的比例为0i,则()()01,0dii i i dt i λ=-= (3)对方程(5)的解有()01111ti t i λ-=⎛⎫+- ⎪ ⎪⎝⎭(4)由(5),(6)式可知,第一, 当12i =时,didt 达到最大值m di dt ⎛⎫ ⎪⎝⎭,这时刻: 101ln 1m t i λ-⎛⎫=- ⎪⎪⎝⎭ (5)这时病人增加的最快,预示着传染病高潮的到来,提前5天采取严格的隔离措施可以推迟传染病高潮的到来,为医疗卫生部门迎接高潮做好充分的准备。
推迟5天则会使感染者更多;第二, 当t →∞时1i →,所有人终将被感染,全变为病人,显然,这与实际不符,故必须对上模型做出修正。
模型二 SIS 模型模型假设1、在疾病传播期内,所考察地区的总人数N 不变,人群分为易感染者和已感染者两类,以下简称健康者和病人,两类人在总人数N 中占的比例分别记作()s t ,()i t ;2、 每个病人每天有效接触的平均人数是常数λ,称为日常接触率。
当病人与健康者有效接触时,使健康者感染变为病人;3、每天被治愈的病人人数占病人总人数的比例为常数μ,称为日治愈率。
病人治愈后成为仍可被感染的健康人,显然,1μ是该传染病的平均传染期。
sars的传播2003数学建模题目

sars的传播2003数学建模题目在2003年,严重急性呼吸综合征(Severe Acute Respiratory Syndrome,简称SARS)的爆发引起了全球范围内的恐慌。
为了更好地了解SARS的传播特点和控制措施,我们可以应用数学建模的方法来分析SARS的传播规律,并提出相关的应对策略。
1. SARS的传播模型为了探究SARS的传播规律,我们可以采用传染病的基本传播模型——SIR模型。
SIR模型将人群分为三类:易感者(Susceptible)、感染者(Infected)和康复者(Recovered)。
根据该模型,我们可以列出如下的微分方程:dS/dt = - βSIdI/dt = βSI - γIdR/dt = γI其中,S,I和R分别表示易感者、感染者和康复者的数量;β表示传染率;γ表示康复率。
2. 参数估计与模型拟合要对SARS的传播模型进行参数估计和模型拟合,我们需要收集大量的疫情数据。
通过对实际数据进行统计学分析,我们可以获得β和γ的估计值,并将其代入SIR模型方程中进行模型拟合。
通过与实际数据的对比,我们可以评估模型的拟合效果以及参数的准确性。
3. 传播速率和传播方式SARS的传播速率直接影响到其传播范围和传播强度。
在SARS爆发期间,我们可以通过统计病例的增长速率来估计SARS的传播速率。
此外,研究发现,SARS主要通过空气飞沫传播,在密闭环境中飞沫的传播距离较远,因此需要采取相应的防控措施,如戴口罩、保持良好的通风等。
4. 人群的易感性和免疫力SARS的传播过程中,人群的易感性和免疫力起着重要的作用。
通过研究易感者和感染者的流行病学数据,我们可以了解人群的易感性和免疫力对于传播过程的影响。
同时,针对易感者的接种疫苗和提高人群的免疫力也是有效控制SARS传播的策略之一。
5. 社会干预措施的效果评估为了控制SARS的传播,社会干预措施起到了至关重要的作用。
例如,早期的病例隔离、密切接触者的追踪和隔离、社交距离的维持等都可以有效降低SARS的传播风险。
SARS模型

一、问题的重述SARS 作为21世纪第一个在世界范围内传播的传染病,它的爆发和蔓延给我国的经济发展和人民生活带来很大影响,同时也给人们许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
现在的问题是针对SARS 的传播建立数学模型,要求如下:(1)对题目中所提供的一个早期的模型,评价其合理性和实用性。
(2)建立自己的模型,并比较它与题目提供模型的优劣;对建立一个真正能够预测且能为预防和控制提供可靠、足够的信息的模型,提出建议,并指出难点所在;另外对卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
问题二要求建立SARS 传播模型。
一个健康人被传染过程为:健康人→潜伏类人→病人→退出者(包括死亡者和治愈者)通过分析各类人之间的转化关系,建立微分方程模型。
在SARS 传播过程中,政府的干预起较大作用,以政府采取措施控制疫情的时刻0t 作为分割点,分别考虑0t 前后两阶段,称之为控制前阶段和控制后阶段。
疫情发展规律主要由日接触率()t λ制约,在不同的阶段()t λ的影响因素不同。
控制前,因按自然传播规律传播,故()t λ可视为常量;同时,在疫情初期,人们的防范意识比较弱,再加上非典自身的传播特点,在许多地区出现一个病人传染很多人的现象,即“超级传染事件”(SSE 事件)[1];随着人们防范意识的增强, SSE 事件发生的概率减小,因此SSE 事件在非典的发展早期起着重要作用。
而SSE 事件作为超级传染事件,特性在于在较短的时间内,即可使传染者数目增幅较大。
因此可将SSE 事件对疫情的影响看作一个脉冲的瞬时行为,使用脉冲微分方程描述。
控制后,)(t λ受人们防范意识的影响,而引起人们防范意识变化的原因主要有两方面,一方面来自因对疫情的恐慌而迫使人们自身加强防范意识,用警惕指标()t h 来刻划,另一方面由于政府政策,法律法规的颁布等而加强的防范意识,用政府措施力度()t g 来刻划。
2003SARS传播的数学模型

SARS传播的数学模型摘要:我们以传统的微分方程为理论根底,从经典的传染病模型SIR模型入手,参考用2003年6月以前的有关SARS的统计数据,对SARS病情的特殊性进展了分析,建立了描述SARS疫情传播的微分方程模型。
还用曲线拟合的方式,给出了模型中参数确实定方法,以及模型的数值解法。
关键词:SARS,传染病模型,微分方程,曲线拟合SARS的简介:SARS〔Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎〕是21世纪第一个在世界范围内传播的传染病。
SARS的爆发和蔓延给我国的经济开展和人民生活带来了很大影响,我们从中得到了许多重要的经历和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
与以往的传染病不同,SARS具有其自身的特征:除了考虑易感染者、已感染者和移出者外,还要考虑疑似者、疑似者中确实诊者、不可控者、不可控者中转化为病人〔感染〕者。
我们从经典的传染病模型SIR模型出发,考虑了传染病蔓延过程中政府部门的决策和措施对抑制疾病蔓延的积极作用根本假设:1. 除感病特征外,人群的个体间没有差异、感病者与易感者的个体在人群中混合是均匀的人群的数量足够大,只考虑传染过程的平均效应。
2. 易感者感病的时机与他接触感病者的时机成正比。
3. 疾病的传染率为常数。
4. 不考虑出生与死亡的过程和人群的迁出和迁入5 .已感染者以固定的比率痊愈或死亡。
6 .对于一个SARS康复者我们可以假设他二度感染SARS的概率为0,这些人既不是安康者(易感染者),也不是病人(已感染者)。
符号说明:S(t) 为易感染者在总人口中所占的比例I(t) 为已感染者在总人口中所占的比例R(t) 为移出者在总人口中所占的比例N(t) 为疑似者在总人口中所占的比例M(t) 为不可控者在总人口中所占的比例k为每个易感染者平均每天感染的有效人数h为移出率〔即SARS患者的日死亡率和日治愈率之和〕ε为不可控者中转化为病人的日转化率α为被不可控者有效感染的人中可以控制的比率y1为疑似者中每日被诊断为未被感染者占疑似者的比例y2为疑似者中每日被诊断为被感染者占疑似者的比例对问题一的答复:某种函数的形式,引入一些参量因子进展考虑。
SARS的预测控制模型

SARS的预测控制模型SARS(严重急性呼吸综合征)是2002年至2003年期间爆发的一种可怕传染病,给全球健康安全带来了巨大威胁。
在SARS爆发后不久,科学家们就开始研究和开发预测控制模型,以便更好地理解疾病的传播方式,预测疫情的发展趋势并制定相应的预防措施。
本文将探讨SARS的预测控制模型,并介绍其中一些重要的方法和技术。
一、传染病的数学模型传染病的数学模型是一种抽象的方式,用来定量描述和预测疾病的传播过程。
通常,传染病的传播可以分为多个阶段,如潜伏期、感染期等。
数学模型可以根据不同的传播机制来描述这些阶段并计算其动态变化。
二、基本的SARS传播模型基本的SARS传播模型通常基于传统的流行病学模型,其中考虑了人群的易感人数、感染人数和康复人数等因素。
这些模型通常使用微分方程来描述各个人群的数量变化,并根据已知的参数进行数值计算和预测。
此外,还可以结合统计学方法对疫情数据进行分析和建模。
三、网络传播模型针对SARS的网络传播模型是基于人与人之间的接触关系构建的。
这种模型通常将人群构建为一个网络图,图中的节点表示个体,边表示人与人之间的直接接触。
通过该模型可以定量计算每个个体之间的传播概率,并据此预测疫情的扩散路径和规模。
四、随机传播模型随机传播模型是为了更好地描述传染病在人群中随机传播的特性而提出的一种模型。
这种模型通常基于随机过程理论,通过引入概率参数来描述个体之间的传播事件。
在SARS研究中,随机传播模型被广泛应用于疫情的预测和分析。
五、人工智能在SARS预测控制模型中的应用近年来,人工智能技术在SARS预测控制模型中的应用发挥了重要作用。
通过使用机器学习算法,可以从大量的疫情数据中提取有价值的信息,并进行精确的预测和决策。
例如,可以使用支持向量机(SVM)等算法,通过对已有数据进行训练,预测未来一段时间内SARS疫情的发展趋势以及采取相应的控制措施。
六、早期预警系统为了尽早预测和控制SARS疫情,科学家们还提出了早期预警系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学建模与数学实验综合实验》课程设计任务书一、设计目的“数学建模与数学实验”是一门实践性、综合性、应用性较强的数学基础课程,是交叉学科和新兴边缘学科发展的基础,对学生动手能力要求很高。
数学建模与数学实验综合实验是该课程的必要实践环节。
通过实验学生实践数学建模的各个环节,以帮助学生强化数学建模基础知识与建模方法的掌握,激励学生勇于创新,全面提高学生解决实际问题的动手能力,掌握常用数学计算工具和数学软件,为从事科学研究和工程应用打下坚实基础。
通过基础实验,使学生加深对“数学建模与数学实验”课程中基本理论和基本方法的理解,了解常用数学工具和方法,增强学生的实验技能和基本操作技能,在提高学生学习数学建模课程兴趣的同时,培养和提高学生的动手能力和理论知识的工程应用能力。
二、设计教学内容1、生产计划制定 ;2、利润最大化问题 ;3、光纤铺设问题 ;4、大学生的个人花费问题;5、电站建设问题;………26、印花税调整与证券市场;27、学生成绩的综合评定;28、人口问题;(28个中任选1个)三、设计时间2010—2011学年第一学期:第16周共计1周目录摘要 (1)一.问题的提出 (1)二.对早期模型的评价 (2)三.传播模型 (2)四.模型的评价和改进 (11)五.参考文献 (12)附件 (12)SARS传播的数学模型摘要本文针对SARS的传播建立了数学模型。
首先,对附件1提供的早期模型,认为“传染概率”的说法欠妥,传染期限L的确定缺乏医学上的支持,使模型的说服力降低。
模型中借鉴广东香港的参数来预测北京的疫情走势,不失为一种方法,但在不同地区因政策,地域的不同,病毒的传播和控制呈现不同的特点,使不同城市之间的可比性降低。
故借鉴法存在一定的适用范围,且不能对首发城市进行预测。
对于第二问,在分析常用传染病模型的局限性后,文中把患者所处的状态明确划分为潜伏阶段、发病阶段和隔离阶段,根据各阶段的转化关系建立了第一个数学模型。
考虑到发病和被隔离等事件发生的随机性,本文在原有模型的基础上适当改进,建立了随机模拟模型。
通过对5月10日以前数据的拟合,并经过500次模拟,对北京的疫情进行了预测:7月上旬北京将基本解除疫情,累计病例约2800多人。
预测结果与实际情况符合得很好。
另外,改变有关参数,发现提前5天采取严格的隔离措施,将使疫情解除的时间提前约10天,累计人数降至1958人;若延迟5天采取措施,疫情将推迟11天,累计人数达4487人。
根据这些预测,文中对卫生部门采取控制措施提出了相关建议。
对第三个问题,本文研究SARS 对入境旅游人数的影响,建立了数学模型。
通过数据拟合的方法确定日增长病例数对旅游人数的影响,预测9~12月份入境旅游人数分别为24.02,36.06,33.04,25.85万人。
与往年同期相比,9月降低了23.5个百分点,10月以后影响逐步减小,经济进入恢复时期。
对于第四个问题,给报刊写了一篇通俗短文,说明了建立传染病数学模型的重要性。
最后在模型的评价中,对该模型优于原附件1模型的方面作了说明,特别说明了建立一个真正能预测和为预防、控制提供可靠、足够的信息的模型需要满足的条件和困难之处。
一、问题的提出2002年至2003年,SARS(严重急性呼吸道综合症,俗称非典型肺炎)悄然无息地靠近我们的生活,在潜伏一段时间后忽然爆发,在全球掀起了轩然大波。
作为重灾区的国家之一,我国的经济发展和人民生活受到了很大的影响。
我们从中得到了许多重要的经验和教训,认识到定量研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
对此,要求对SARS的传播建立数学模型,具体要求如下:1、对附件1所提供的一个早期的模型,评价其合理性和实用性。
2、对SARS的传播建立一个自己的模型,并说明:(1) 为什么优于附件1中的模型;(2) 怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,以及这样做的困难之处。
(3) 对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
(附件2提供的数据供参考。
)3、收集SARS对经济某个方面影响的数据,建立相应的数学模型并进行预测。
(附件3提供的数据供参考。
)4、给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性。
二、对早期模型的评价附件1的模型主要采用“数据拟合”和“借鉴参数”的方法对北京疫情走势进行预测。
在数据拟合方面,该模型中有两个疑点:1、感染期限L的确定。
由于被严格隔离、治愈、死亡等原因,感染者在某一时段后不再具有对易感人群的传染力,故对病毒的传染加上感染期限是合理的。
但在对该参数的确定上,作者为了较好地拟合各阶段的数据 ,通过人为调试来确定L的取值,缺乏医学上的支持,使模型的说服力减弱,合理性和可靠性大大降低。
2、文中认为“K代表某种环境下一个人传染他人的平均概率”。
但从模型的公式中可以看出,参数K的实际意义是一个病人平均每天传染其他人的个数。
两者之间有实质的区别,文中的说法显然不妥。
从预测思想来看,该模型是借鉴先发地区——广东、香港的有关参数对北京的疫情进行预测的。
由于广东、香港的疫情和控制都在北京之前,已经过了高峰期,到5月8日为止每日新增病例已降至10来例,基本处于后期控制阶段。
而当时北京的疫情刚过了高峰期,正处于社会剧烈调整时期,数据较为凌乱,略有下降趋势,但不明显。
可见在当时,采取这种借鉴是无奈之举。
但是由于城市之间的政策,风俗习惯等不同,城市之间的可比性不强,借鉴存在很大的局限性。
如在香港,由于对传播机制认识不足,中途又出现高度感染的特殊情况。
另外使用借鉴法无法对首发城市进行预测。
三、传播模型(一)问题的分析在SARS爆发的初期,由于潜伏期的存在,人们对病毒传播速度和危害程度的认识不够,未能及时识别这一传染病的存在。
但当病患数不断增加,政府开始采取应对措施对其进行控制,同时社会舆论加大宣传力度,人们的警觉性提高,病毒的传播速度下降。
因此,我们通常把传染病的传播模式近似分为两个阶段:第一、自由传播阶段(即控前阶段):在采取切实有效的控制措施之前的一段时间。
第二、控后阶段:介入人为因素之后的一段时间。
由于SARS的传播涉及的因素很多,如潜伏期、人群的迁入迁出,感病者的数量、易感者的数量、传染率和治愈率的大小等。
而且在以上因素中,潜伏期的大小、传染率和治愈率的大小因人而易,具有一定的随机性。
不可能一开始就把所有的因素全部考虑在内建立模型。
对此,我们将作出相应的假设进行简化。
分析附件2所给出的数据,发现6月1日至15日,已确症病例累计数为2522人,其中夹杂3天累计数为2523人。
但6月16日后累计数降至2521人,认为累计数的减少可能是误诊引起的。
由于误诊的可能性很低,故在这里忽略不计。
(二)基本假设1、国家卫生部提供的北京疫情统计真实可信。
(误诊数仅为1,可忽略不计)。
2、由于非典的主要传播途径是近距离接触,通过受感染者咳嗽或打喷嚏时产生的飞沫传播,这里将所有传播途径都视为与病源的直接接触。
3、不考虑出生与自然死亡的过程和人群的迁入迁出(或认为迁入和迁出基本平衡),认为疾病传播期间所考察地区的总人数为常数。
4、根据国家卫生部资料可知处于潜伏期的SARS 病人不具有传染性。
5、目前尚不清楚康复患者是否具有免疫力,但据国家卫生部资料可知康复后的病患无一例复发。
故假设康复患者退出传染系统。
6、根据资料显示,SARS 病毒的潜伏期一般为2~7天,平均约为5天。
(这一条件将在后期的模型中有所改动)(三)常用基本模型目前常用的传染病模型,通常将传染病流行范围内的人群分为三类: S 类:易感者,指未得病者,但与感病者接触后容易受到感染。
I 类:感病者,指染上传染病的人。
R 类:移出者,指因患病而被隔离,或因病愈而具有免疫力的人,他们即非感病者,也非易感者,实际上他们已经退出了传染病系统。
并通过三类之间的互相转化关系建立微分方程组进行求解:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=++=-=-=N R I S hI dtdR hI kIS dtdI kISdt dS(1)变量和符号说明:k ——传染率:每个病人平均每天有效接触(足以使被解除者感染)的人数。
h ——退出率:单位时间内治愈和死亡人数占感病者人数的百分数。
S(t)——易感人群的总数。
I(t)——感病者总数。
R(t)——退出者总数。
N ——一个城市总人口数。
观察附件二中给出的数据,我们发现截至6月23日,感病者累计为2521人,远远小于北京城市的总人口数150万人,故认为感病者和退出者对易感人群的总数影响不大,易感者总人数I 为一常数。
原方程变形为:⎪⎪⎩⎪⎪⎨⎧=-=hI dtdR hI kIN dt dI (2) 注意到退出者不是我们研究的范围,故方程组(2)实际上是一个常微分方程I hI kNI dt dIλ=-= (3)其中h kN -=λ,不难用分离变量法解出:t e I t I λ-=0)( (4)其中I 0为初始值。
根据以上分析我们可以看出,常微分方程的传染病模型只适用于病例数与总人口数具有可比性的情况。
当病例数远小于总人口数时,常微分方程模型的实质与附件1的模型相同,感病人数将随时间以指数增长。
考虑这一特点,我们用计算机跟踪病毒的个体传播情况,建立了模拟模型。
(四)计算机模拟模型:在该模型中,我们将传染系统中的人分为五类:自由携带者(][t f )——身上携带病毒并均匀散布在人群中的患者,根据基本假设自由携带者在潜伏期内不具有传染力,日增患者(][t x )——每天被医疗部门发现并加以隔离的感病者被隔离者(][t y )——因曾与自由携带者接触而被怀疑携带SARS 病毒的人 有效接触者(][1t z )——每日与自由携带者接触并感染上病毒的人无效接触者(][2t z )——每日与自由携带者接触但未染上病毒的人并作出如下假设:1、由于传染性SARS 最初(1~2天)的症状通常为发热(o 38>),发热通常为高热[1]。
症状明显,易于辨认,故可认为自由携带者发病后当天或第二天就立即入院治疗,入院后不会再参与疾病的传播。
2、根据实际情况,假设SARS 病人被发现的三天内,有关部门将采取措施,将部分与病源有效接触者隔离,这部分人即使发病后也不会参与疾病的传播。
3、与病源有效接触者必然发病。
根据基本假设,潜伏期一般为2至7天,这里取为5天。
(这一假设在改进模型中有进一步的讨论。
)另外,对模拟模型中出现的符号变量说明如下:1k ——有效接触率,表示一个自由携带者平均每天有效接触的人数。
2k ——无效接触率,表示一个自由携带者平均每天无效接触的人数。
β——与自由携带者接触后(包括有效接触和无效接触)的人群中可以控制的人数所占的百分比。