8.3-分式的加减-同步练习(含答案)
八年级上册数学分式章节课时同步练习及答案

第十五章 分式单元检测课后训练1.式子①2x ;②5x y +;③12a -;④1x π-中,是分式的有( ). A .①② B .③④C .①③D .①②③④2.(新疆)若分式23x -有意义,则x 的取值范围是( ).A .x ≠3B .x =3C .x <3D .x >33.分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有().A .1个B .2个C .3个D .4个4.下列各式中,正确的是( ).A .a mab m b +=+ B .a ba b ++=0C .11ab ac --=11b c -- D .22x y x y --=1x y +5.分式22(1)x x --,323(1)x x --,51x -的最简公分母为( ).A .(x -1)2B .(x -1)3C .(x -1)D .(x -1)2(1-x )36.(广东茂名)若分式293a a -+的值为0,则a 的值为________.7.约分:(1)22699x x x ++-;(2)2232m m m m -+-.8.通分:(1)26xab ,29ya bc ;(2)2121a a a -++,261a -.能力提升9.下列各式中,可能取值为零的是( ).A .2211m m +- B .211m m -+C .211m m +-D .211m m ++ 10.使分式||1x x -无意义的x 的取值是( ). A .0B .1C .-1D .±111.不改变分式的值,使分式115101139x y x y -+的各项系数化为整数,分子、分母应乘以( ).A .10B .9C .45D .9012.不改变分式2323523x x x x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是( ).A .2332523x x x x +++- B .2332523x x x x -++- C .2332523x x x x +--+ D .2332523x x x x ---+ 13.当x =-2时,分式x n x m-+无意义,当x =4时,分式的值为0,求m +n 的值. 参考答案1.C 点拨:5x y +的分母中不含字母,所以5x y +不是分式;π1x -的分母中虽然含有π,但是π是常数,所以π1x -不是分式. 2.A 点拨:由分式分母3-x 不为0得不等式3-x ≠0,解这个不等式得x ≠3.故选择A.3.C 4.D 5.B6.3 点拨:由分式的值为零的条件得a 2-9=0,,a +3≠0,解得a =3.7.解:(1)22269(3)39(3)(3)3x x x x x x x x ++++==-+--; (2)2232(1)(2)2(1)m m m m m m m m m m-+---==--. 8.解:(1)22223366318x x ac acx ab ab ac a b c⋅==⋅, 29y a bc =2292y b a bc b ⋅⋅=22218by a b c;(2)2121a a a -++=21(1)a a -+=22(1)(1)(1)a a a -+-, 266(1)1(1)(1)(1)a a a a a +=-+-+ =26(1)(1)(1)a a a ++-. 9.B 10.D11.D 点拨:取分子、分母各分数系数分母的最小公倍数,即为所乘的数.故选D.12.D13.解:当分母x +m =0,即x =-m 时分式x n x m -+无意义,解得m =2. 当x -n =0,即x =n 时分式x n x m-+的值为0,即n =4, 故m +n =2+4=6.第十五章 分式单元测试(A )答题时间:90分钟 满分:100分班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.当x 时,分式15x -无意义、当m = 时,分式2(1)(2)32m m m m ---+的值为零. 2.各分式121,1,11222++---x x x x x x 的最简公分母是 . 3.若a =23,2223712a a a a ---+的值等于_______. 4.已知y x 11-=3,则分式yxy x y xy x ---+2232的值为_______. 5.已知:23(1)(2)12x A B x x x x -=+-+-+,则A =______,B =________. 6.科学家发现一种病毒的长度约为0.000043mm ,科学记数法表示0.000043的结果为 .7.不改变分式的值,使分式的分子、分母中各项系数都为整数,=---05.0012.02.0x x . 8.化简:3222222232a b a b a ab ab a ab b a b +--÷++-= . 9.如果方程5422436x x k x x -+=--有增根,则增根是_______________.10.已知x y =32;则x y x y -+= __________. 11.m≠±1时,方程m (mx-m+1)=x 的解是x =_____________.12.一根蜡烛在凸透镜下成一实像,物距u ,像距v 和凸透镜的焦距f 满足关系式:1u +1v =1f .若f =6厘米,v =8厘米,则物距u = 厘米.13.已知:15a a+=,则4221a a a ++=_____________. 14.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,那么代数式2222a b a b --的值是____________.二、选择题(共4小题,每题3分,共12分)15.若分式x -51与x322-的值互为相反数,则x = ( ) A .-2.4 B .125 C .-8 D .2.4 16.将()()1021,3,44-⎛⎫-- ⎪⎝⎭这三个数按从小到大的顺序排列,正确的结果是 ( ) A .()03-<114-⎛⎫ ⎪⎝⎭<()24- B .114-⎛⎫ ⎪⎝⎭<()03-<()24- C .()24-<()03-<114-⎛⎫ ⎪⎝⎭ D .()03-<()24-<114-⎛⎫ ⎪⎝⎭ 17.若22347x x ++的值为14,则21681x x +-的值为 ( ) A .1 B .-1 C .-17 D .1518.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5 天交货,设每天应多做x 件,则x 应满足的方程为 ( ) A .72072054848x -=+ B .72072054848x+=+ C .720720548x -= D .72072054848x -=+ 三、解答题(共60分)19.(4分)计算:(1)22225103721x y y y x x ÷g ;(2)2113()1244x x x x x x x -++-÷++++.20.(4分)先化简代数式222222()()()a b a b ab a b a b a b a b +--÷-+-+,然后请你任意先择一组你自己所喜欢的,a b 的值代入求值.21.(4分)有这样一道数学题:“己知:a =2009,求代数式a(1+a1)-112--a a 的值”,王东在计算时错把“a =2009”抄成了“a =2090”,但他的计算结果仍然正确,请你说说这是怎么回事.22.(6分)解方程:(1)21133x x x -+=--;(2)1617222-=-++x x x x x .23.(6分)已知下面一列等式.(1)请你按这些等式左边的结构特征写出它的一般性等式: 1×12=1-12;12×13=12-13;13×14=13-14;14×15=14-15;…… (2)验证一下你写出的等式是否成立.(3)利用等式计算:1111(1)(1)(2)(2)(3)(3)(4)x x x x x x x x ++++++++++.24.(6分)若方程122-=-+x a x 的解是正数,求a 的取值范围.关于这道题,有位同学做出如下解答:解 :去分母得,22x a x +=-+. 化简,得32x a =-.故23a x -=. 欲使方程的根为正数,必须23a ->0,得a <2. 所以,当a <2时,方程122-=-+x a x 的解是正数. 上述解法是否有误?若有错误请说明错误的原因,并写出正确解答;若没有错误,请说出每一步解法的依据.25.(6分)用价值为100元的甲种涂料与价值为200元的乙种涂料配制成一种新涂料,其每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,求这种新涂料每千克售价是多少元?26.(8分)为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程.如果甲工程队单独施工,则刚好如期完成;如果乙工程队单独施工就要超过6个月才能完成.现在甲、乙两队先共同施工4个月,剩下的由乙队单独施工,则刚好如期完成.问原来规定修好这条公路需多长时间?27.(8分)为增强市民节水意识,某自来水公司水费计算办法如下:若每户每月用水不超过5m3,则每立方米收费1.5元;若每户每月用水超过5m3,则超过部分每立方米收取较高的定额费用.2月份,小王家用水量是小李家用水量的23,小王家当月水费是17.5元,•小李家当月水费是27.5元,求超过5m3的部分每立方米收费多少元?28.(8分)某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成.(1)求乙工程队单独做需要多少天完成?(2)将工程分两部分,甲做其中一部分用了x天,乙做另一部分用了y天,其中x、y 均为正整数,且x<15,y<70,求x、y.参考答案:一、填空题1.x =5,m =1 2.2(1)(1)x x x +- 3.12-4.355.A =1,B =1 6. 54.310-⨯ 7.100650025x x --- 8.2ab 9.x=2 10.15 11.x =1m m + 12.24 13.24 14.5二、选择题15.D 16.A 17.A 18.D 三、解答题19.(1)32x y;(2)21x x +-+ 20.a b +,(取值要求:a b ≠) 21.略 22.(1)2x =;(2)3x = 23.(1)1n ·11111n n n =-++;(2)成立;(3)244x x+ 24.略 25.9元 26.12个月 27.2元/吨 28.(1)100天;(2)x=14,y=65第十五章 分式单元测试(B )答题时间:90分钟 满分:100分班级 学号 姓名 得分一、填空题(共14小题,每题2分,共28分)1.当x = 时,分式127x -无意义;当x = 时,分式242x x -+的值为零.2.公式21P U R -=可以改写成P= 的形式.3.226()(1)x x A y =+,那么A =_____ ____.4.计算232()()y x y x y-÷-= .5.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.6.函数y =2(3)12x x-+--中,自变量x 的取值范围是___________.7.计算1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________.8.已知u =121s s t -- (u≠0),则t =___________. 9.当m =______时,方程233x mx x =---会产生增根. 10.用换元法解方程222026133x x x x+-=+ ,若设x 2+3x =y ,,则原方程可化为关于y 的整式方程为____________.11.计算(x +y )·2222x y x y y x+-- =____________.12.一个工人生产零件,计划30天完成,若每天多生产5个,则在26 天完成且多生产15个.求这个工人原计划每天生产多少个零件?若设原计划每天生产x 个,由题意可列方程为____________.13.小聪的妈妈每个月给她m 元零花钱,她计划每天用a 元(用于吃早点、乘车)刚好用完,而实际她每天节约b 元钱,则她实际可以比原计划多用 天才全部消费完.14.如果记22()1x y f x x ==+,并且f (1)表示当1x =时y 的值,即f (1)=2211112=+;f (12)表示当12x =时y 的值,即f (12)=221()12151()2=+.那么11(1)(2)()(3)()23f f f f f ++++ 1()()f n f n+++=L ___ ____(结果用含n 的代数式表示,n 为正整数). 二、选择题(共4小题,每题3分,共12分)15.小明通常上学时从家到学校要走一段上坡路,途中平均速度为m 千米/时,放学回家时,沿原路返回,通常的速度为n 千米/时,则小明上学和放学路上的平均速度为( )千米/时.A .2n m + B .2mn m n + C .mn m n + D .mn n m +16.已知1ab =,1111M a b =+++,11a b N a b=+++,则M 与N 的大小关系为 ( ) A .M =N B .M >N C .M <N D .不确定17.在正数范围内定义一种运算“※”,其规则为a※b=11a b+,如2※4113244=+=.根据这个规则,则方程x※(2x-)=1的解为()A.-1 B.1 C.16-D.1618.寒假到了,为了让同学们过一个充实而有意义的假期,老师推荐给大家一本好书.已知小芳每天比小荣多看5页书,并且小芳看80页书所用的天数与小荣看70页书所用的天数相等,若设小芳每天看书x页,则根据题意可列出方程为()A.80705x x=-B.80705x x=+C.80705x x=+D.80705x x=-三、解答题(共60分)19.(4分)当x的取值范围是多少时,(1)分式213xx+-有意义?(2)分式2361xx-+值为负数?20.(4分)计算:(1)2222()()64x xy y÷-;(2)21322()(2)a b ab----g;21.(4分)化简:(1)2221()111m m m m m m m -+÷---g ; (2)22224421yxy x y x y x y x ++-÷+--.22.(6分)先将分式121312-+÷⎪⎭⎫ ⎝⎛-+x x x 进行化简,然后请你给x 选择一个你认为合适的数值代入,求原式的值.23.(6分)分式)3)(1()2)(1(a a a a -+++的值可能等于41吗?为什么?24.(6分)解方程:(1)214111x x x +--=--; (2)0)1(213=-+--x x x x .25.(6分)为了更好适应和服务新农村下经济的快速发展,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成. (1)求乙工程队单独完成这项工程所需的天数; (2)求两队合做完成这项工程所需的天数.26.(8分)某校统考后,需将成绩录入电脑,为防止出现差错,全校2640名学生成绩数据安排甲、乙两位教务员分别录入计算机一遍,然后经过电脑比对输入成绩数据是否一致.已知甲的输入速度是乙的速度的2倍,结果甲比乙少用2小时输完.求这两位教务员每分钟各能录入多少名学生的考试成绩数据?27.(8分)请阅读某同学解下面分式方程的具体过程.解方程1423.4132x x x x +=+---- 解:13244231x x x x -=-----, ① 222102106843x x x x x x -+-+=-+-+, ② 22116843x x x x =-+-+, ③ ∴22684 3.x x x x -+=-+ ④∴52x =. 把52x =代入原方程检验知52x =是原方程的解.请你回答:(1)得到①式的做法是 ;得到②式的具体做法是 ;得到③式的具体做法是 ;得到④式的根据是 .(2)上述解答正确吗?如果不正确,从哪一步开始出现错误?答: .错误的原因是 (若第一格回答“正确”的,此空不填). (3)给出正确答案(不要求重新解答,只需把你认为应改正的进行修改或加上即可).28.(8分)如图,小刚家、王老师家,学校在同一条路上,小刚家到王老师家的路程为3千米,王老师家到学校的路程为0.5千米.由于小刚的父母战斗在抗震救灾第一线,为了使他能按时到校,王老师每天骑自行车接小刚上学.已知王老师骑自行车的速度是步行的3倍,每天比平时步行上班多用了20分钟,问王老师的步行速度及骑自行车的速度各是多少?学校参考答案:一、填空题1. 3.5,2 2.2U R 3.3(1)y + 4.2xy 5.()aA m m a - 6.x≥-12且x≠12,x≠3 7.-2 8.12u s s u +- 9.-3 10.2y 2-13y-20=0 11.x+y 12. 3015265x x +=+ 或26(x+5)-30x=15 13.()m m a b a -- 14.12n -二、选择题15.B 16.A 17.D 18.D 三、解答题19.(1)x ≠3±;(2)x <2 20.(1)2249x y ;(2)44a b 21.(1)11mm+-;(2)y x y -+22.1x +,(x ≠1,2±-) 23. 不可能,原式等于14时,1x =-,此时分式无意义 24.(1)3x =-;(2)无解 25.(1)60天;(2)24天 26. 甲每分钟输入22名,乙每分钟输入11名 27.(1)移项,方程两边分别通分,方程两边同除以210x -+,分式值相等,分子相等,则分母相等;(2)有错误.从第③步出现错误,原因:210x -+可能为零;(3)55,2x x == 28.王老师步行的速度是5千米/时,骑自行车的速度是15千米/时数学人教版八年级上第十五章 分式单元检测一、选择题(本大题共8小题,每小题4分,共32分.在每小题所给的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内)1.在2a b -,(3)x x x +,5πx +,a ba b+-中,是分式的有( ).A .1个B .2个C .3个D .4个2.如果把分式2xx y+中的x 和y 都扩大2倍,那么分式的值( ). A .不变B .扩大2倍C .扩大4倍D .缩小2倍3.分式22x yx y-+有意义的条件是( ). A .x ≠0B .y ≠0C .x ≠0或y ≠0D .x ≠0且y ≠04.下列分式中,计算正确的是( ).A .2()23()3b c a b c a +=+++B .222a b a b a b +=++C .22()1()a b a b -=-+ D .2212x y xy x y y x -=--- 5.化简211a a a a --÷的结果是( ). A .1a B .a C .a -1 D .11a - 6.化简21131x x x +⎛⎫- ⎪--⎝⎭·(x -3)的结果是( ). A .2B .21x -C .23x -D .41x x -- 7.化简1111x x -+-,可得( ). A .221x - B .221x -- C .221x x - D .221x x -- 8.甲、乙两班学生植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数相等,若设甲班每天植树x 棵,则根据题意列出的方程是( ).A .80705x x=- B .80705x x =+ C .80705x x =+ D .80705x x =- 二、填空题(本大题共8小题,每小题4分,共32分.把答案填在题中横线上)9.当x =__________时,分式13x -无意义. 10.化简:22x y x y x y---=__________. 11.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.000 000 7 mm 2,这个数用科学记数法表示为__________ mm 2.12.已知x =2 012,y =2 013,则(x +y )·2244x y x y+-=__________. 13.观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,…,根据你发现的规律计算:2222122334(1)n n +++⋅⋅⋅+⨯⨯⨯+=__________(n 为正整数). 14.甲计划用若干天完成某项工作,在甲独立工作两天后,乙加入此项工作,且甲、乙两人工效相同,结果提前两天完成任务,设甲计划完成此项工作的天数是x ,则x 的值是__________. 15.含有同种果蔬但浓度不同的A ,B 两种饮料,A 种饮料重40千克,B 种饮料重60千克,现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再将每种饮料所倒出的部分与另一种饮料余下的部分混合.如果混合后的两种饮料所含的果蔬浓度相同,那么从每种饮料中倒出的相同的重量是__________千克.16.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m 后,为了尽量减少施工对城市交通所造成的影响,后来每天铺设管道的长度比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设x m 管道,那么根据题意,可得方程__________.三、解答题(本大题共5小题,共36分)17.(本题满分6分)化简:32322222b b ab b a b a a b ab b a++÷--+-. 18.(本题满分6分)已知x -3y =0,求2222x y x xy y +-+·(x -y )的值. 19.(本题满分10分,每小题5分)解方程:(1)271326x x x +=++; (2)11222x x x -=---. 20.(本题满分7分)已知y =222693393x x x x x x x+++÷-+--.试说明不论x 为任何有意义的值,y 的值均不变.21.(本题满分7分)为抗旱救灾,某部队计划为驻地村民新修水渠3 600米,为了水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?参考答案1.B 点拨:(3)x x x +和a b a b +-是分式,故选B. 2.A3.C 点拨:若分式22x y x y-+有意义,则x 2+y 2≠0,所以x ≠0或y ≠0.故选C.4.D 点拨:2222212(2)()x y x y x y xy x y x xy y x y y x ---===----+---,故选D. 5.B 点拨:221111a a a a a a a a ---÷=⨯-=a .故选B. 6.B 点拨:21131x x x +⎛⎫- ⎪--⎝⎭·(x -3)=1-211x x +-·(x -3)=1-22223222111x x x x x x --+==---.故选B. 7.B 点拨:原式=2211112(1)(1)(1)(1)11x x x x x x x x x x -+----==-+-+---.故选B. 8.D9.3 点拨:当x =3时,分式的分母为0,分式无意义.10.x +y 点拨:2222()()x y x y x y x y x y x y x y x y-+--==----=x +y . 11.7×10-7 12.-1 点拨:(x +y )·2244x y x y +-=(x +y )·222222()()x y x y x y ++-=(x +y )·221x y -=(x +y )·11()()x y x y x y=+--, 当x =2 012,y =2 013时,原式=1120122013x y =--=-1. 13.21n n + 点拨:222122334++⨯⨯⨯+…+211112(1)122334(1)n n n n ⎡⎤=+++⋅⋅⋅+⎢⎥+⨯⨯⨯+⎣⎦=1111111121223341n n ⎛⎫-+-+-+⋅⋅⋅+- ⎪+⎝⎭=122111n n n ⎛⎫-= ⎪++⎝⎭. 14.6 点拨:由题意得24x x x x --+=1,解得x =6,检验知x =6是原分式方程的根且符合题意.15.24 点拨:设A 种饮料浓度为a ,B 种饮料浓度为b ,倒出的重量为x 千克,由题意得(40)(60)4060bx a x ax b x +-+-=,解得x =24. 16.12030012030(120%)x x -+=+(或1201801.2x x +=30) 点拨:根据题意可得题中的相等关系为前后两次铺设共用的时间等于30天,铺设120 m 后每天的工效为1.2x m ,铺设120 m 所用时间为120x 天,后来所用时间为3001201.2x -天,因此可列方程1206001201.2x x-+=30. 17.解:原式=322()(2)()()b b b a b a b a a ab b a b a b ++÷--+-+-=32()()()()b b b a b a b a a b a b a b ++÷---+- =32()()()()b b a b a b a b a a b b a b -+-+⋅--+ =22()()()b b ab b a b a a b a a b a a b -=----- =2()ab b b a a b a-=-. 18.解:2222x y x xy y +-+·(x -y )=22()x y x y +-·(x -y )=2x y x y +-. 当x -3y =0时,x =3y .原式=677322y y y y y y +==-. 19.解:(1)去分母,得2x ×2+2(x +3)=7,解得,x =16, 经检验,x =16是原方程的解. (2)方程两边同乘(x -2)得,1-x =-1-2(x -2),解得,x =2.检验,当x =2时,x -2=0,所以x =2不是原方程的根,所以原分式方程无解.20.解:2269(3)393x x x x y x x x ++-=÷-+-+ =2(3)(3)3(3)(3)3x x x x x x x +-⨯-++-+ =x -x +3=3.所以不论x 为任何有意义的值,y 的值均不变,其值为3.21.解:设原计划每天修水渠x 米.根据题意得360036001.8x x-=20,解得x =80, 经检验:x =80是原分式方程的解.答:原计划每天修水渠80米.。
分式加减法专项练习60题含答案

分式加减法专项练习60题(有答案)1.2.a(a﹣1)+3.4..5. +.6..7.=_________.8..6yue289..10..11..12.13.14..15.16.(1);(2)17.18.1+ 19.﹣+20.21.+.22.23..24.,25.26.++.27.+﹣.28.29.(式中a,b,c两两不相等):30.31.(1);(2)….32.+﹣33.化简分式:.34..35.计算:﹣.36.计算:.37.计算:.38..39.计算化简:.40.计算:+++.41.计算.42.计算:.43.化简:.44..45.计算:.zuoguo46..55.化简:.47.化简:.48..49..50.计算:﹣.51.计算:.52.计算:1﹣•.53.计算:.54.化简56.先观察下列等式,然后用你发现的规律解答下列问题:由,,…(1)计算++++++=_________(n为正整数);(2)化简:+…+.57.化简:﹣.60.求和.58.请你阅读下列计算过程,再回答所提出的问题:题目计算:解:原式=(A)=(B)=a﹣3﹣6(C)=a﹣9(D)(1)上述计算过程中,从哪一步开始出现错误:_________.(2)从B到C是否正确,若不正确,错误的原因是_________.(3)请你把正确解答过程写下来.59.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=_________;(2)证明你猜想的结论;(3)求和:+++…+.参考答案:1.原式===1+1=2.2.原式=a2﹣a+=a2﹣a+a=a2.3.==.4.原式===.5.原式=+==.6.原式===.7.==.8.原式===a﹣1.9.原式==.10.+=+=+==1.11.原式=﹣==.12.原式=﹣=﹣=.13.原式=+===14.原式=+==.15.=﹣=﹣==﹣1.16.(1)原式=;(2)原式=17.====.18.原式=1﹣====.19.原式=﹣•==.20.===0.21.原式=+==.22.原式=﹣==.23.原式=====1.24.原式====;x的取值范围是x≠﹣2且x≠1的实数.25.原式==.26.====027.原式=﹣﹣==28.=.29.原式=++=+++++=0.30.原式=+﹣==.31.(1),=,=;(2)+…+=﹣+﹣+…+﹣=﹣=.32.==﹣2 33.=(2a+1)+﹣(a﹣3)﹣﹣(3a+2)++(2a﹣2)﹣=[(2a+1)﹣(a﹣3)﹣(3a+2)+(2a﹣2)]+(﹣+﹣)=﹣+﹣=﹣=.34.原式=﹣=﹣===35.原式====﹣36.原式====37.原式==38.原式=+﹣==39.原式=++=+﹣==== 40.原式=+++=++ =++=+=+=.41.设2x2+3x=y,则原式=﹣+===.42.原式=﹣a+2=a+1﹣a+2=3.43. 原式====.44.原式===,===45.=﹣===46.=== ==47.原式=,=﹣+,=+﹣﹣++,=048.原式=2a﹣a﹣1+a+1=2a.49.原式====.50.原式====.51.原式===.52.原式=1﹣×=1﹣==﹣.53.原式=+﹣====54.原式=++=+++++=﹣+﹣+﹣=0+0+0=055.原式===156.(1)原式=1﹣+﹣+…+﹣=1﹣=;(2)原式=﹣+…+﹣=﹣=57.原式=﹣=﹣=158.(1)A(2)不正确,不能去分母(3)原式===59.(1)=﹣;(2)﹣=﹣==;(3)+++…+=1﹣+﹣+﹣+…+﹣=1﹣=60.原式=++++…+﹣=+++…+﹣=+﹣=﹣=.。
分式混合运算专项练习158题(有答案)ok

分式混合运算专项练习158题(有答案)(1)(2) +﹣(3)(4)(5) (﹣)•÷(+)(6) 3.(7) (8)(9)(10) .(11) ;(12) .(13) •÷;(14) (﹣)÷.(15)(16)(17)(1+)÷(18)(19)(20) ()2•+÷(21) ;(22)(23)(24)(25)(26)(27) ;(28) .(29) ;(30) .(31) ;(32) ÷•.(33) ()÷.(34)(35) (36) ;(37) ;(38) ;(39)(40) .(41)(42)(43)(44) (﹣)÷(45)(46)(47) +(48) ;(49) .(50) .(51)(52).(53);(54).(55)÷•;(56)1﹣÷.(57)(58)(59)÷(60);(61).(62);(63).(64)(+1)÷(1﹣)(65)(66)•﹣÷(67);(68).(69)(70)[﹣(﹣x﹣y)]÷(71)﹣÷x.(72);(73);(74)÷(x+3)•;(75)(a ﹣)÷•(76)()÷•(2﹣x)2;(77)•(﹣)2(78)(79);(80)(81);(82);(83);(84)(85)(86)(87)(88).(89)(90).(91);(92).(93)[+÷(+)2]•(94)(95);(96)(97);(98)(99)x ﹣(100)(101)(102).(103).(104);(105).(106)(x2﹣y2)•÷;(107)+﹣(108).(109)÷﹣.(110)(111).(112).(113)(114).(115).(116)(117)(118)(119)(120)(x2y﹣1)﹣3•(﹣x﹣2)﹣3÷(xy)﹣1.(121);(122)(﹣)•.(123)(124).(125).(126).(127).(128).(129)﹣(130)(131)1﹣÷.(132)(﹣)3÷•(﹣)2;(133).(134)(135).(136).(137)(138).(139)(140).(141).(142);(143).(144).(145).(146).(147)(148);(149).(150)(151)(152)(153).(154)(155)(156).(157);(158).参考答案:(1)=﹣=;(2)+﹣=++==;(3)=﹣=2x+6﹣x+3=x+9;(4)=÷(﹣)=•(﹣)=﹣.(5)原式===.(6)原式===(7)原式==x+y(8)原式==a﹣1(9)原式==y﹣3(10)==3(x+2)﹣(x﹣2)=3x+6﹣x+2=2x+8.(11)原式==;(12)原式==(﹣1)==(13)解:原式==;(14)解:原式==(15)原式=÷•=••=.(16)原式=•=﹣=﹣=.(17)原式= = =.(18)===﹣y.(19)原式==1﹣==(20)原式===.(21)原式=××=.(22)原式==(23)原式==﹣1(24)原式===(25)=+﹣=,===;(26)=﹣••=﹣;(27)=﹣•, =﹣==﹣;(28),=(﹣)•,=﹣,=,=,=﹣.(29)原式==(a+1)﹣(a﹣1)=2;(30)原式=(31)原式==;(32)原式==.(33)()÷=•=(34)原式===.(35)原式=•(a﹣1)2=a﹣1.(36)原式=×=;(37)原式=×=;(38)原式=×==;(39)原式==a4b;(40)原式==(41)=×=2(m﹣3)﹣(m+3)=m﹣9.(42)原式==﹣.(43)原式=﹣+=1﹣x+x2=x2﹣x+1.(44)原式=(﹣)×=×=.(45)原式===3(1+x);(46)原式==.(47)原式=×+=+=.(48)原式=﹣==;(49)原式=••=.(50)原式=====.(51)原式=====;(52)原式===.(53)原式==;(54)原式=×=(55)原式=•=;(56)原式=1﹣=1﹣==.(57)原式=﹣÷(58)原式=×=.(59)原式=÷(﹣)=÷=×=.(60)原式=﹣===﹣;(61)原式=﹣•=﹣==.(62)原式=;(63)原式=××(m+n)(m﹣n)=(m+n)2.(64)原式=÷=×=.(65)原式=﹣×=﹣=.(66)原式=×﹣×=﹣==.(67)原式==0;(68)原式=+=(69)原式=(×=.(70)=.(71)===.(72)原式===;(73)原式=﹣+====;(74)原式=××=;(75)原式=××=;(76)原式=[﹣]ו(2﹣x)2=ו(2﹣x)2=;(77)原式=××=(78)原式===.(79)=﹣+,==;(80),=÷=•=﹣(81)原式==;(82)原式==;(83)原式=×=(84)原式=+﹣==.(85)原式=(x+1)(x﹣1)(﹣﹣),=x+1﹣x+1﹣(x+1)(x﹣1)=﹣x2+3.(86)原式=﹣×=﹣=0.(87)原式=÷(﹣)=.(88)原式=(﹣)÷=×=.(89)原式=﹣×(m ﹣1)=﹣=﹣2m . (90)===(91)原式=;(92)原式=.(93)原式=[+×]×=[+]×=(94) 原式==.(95)原式=(x+y )•﹣==x+y ;(96)原式==;(97)原式=••=;(98)原式=•+•=+==;(99)原式==(100)原式===.(101)原式=﹣===;(102)原式=•=•=.(103)原式=1﹣×=1﹣=﹣.(104)=×=;(105)=××=x.(106)原式=(x+y)(x﹣y)××=y;(107)原式=﹣﹣=﹣﹣==(108)=••==.(109)原式=•﹣=﹣==(110)=+=+﹣==;(111)=﹣+=﹣+1=1.(112)原式=+•=+==1.(113)原式=﹣==;(114)原式=•=•=•=y+9 (115)原式=1﹣•=1﹣===﹣(116)原式==x﹣y.(117)原式==;(118)原式===;(119)原式====﹣;(120)原式=x﹣6y3•(﹣x6)÷x﹣1y﹣1=﹣y3÷x﹣1y﹣1=﹣xy4(121)原式=++==﹣;(122)原式=(﹣)•=3(x+2)﹣(x﹣2)=3x+6﹣x+2=2x+8(123)原式=•=•=x﹣2;(124)原式=1﹣÷[﹣]=1﹣÷=1﹣•=1﹣==﹣.(125)原式=﹣×=﹣==.(126)原式=[﹣]÷=[﹣]×x=×x=﹣.(127)原式=[]÷=[﹣]÷=×=(128)原式=[]•=•=y+9.(129)原式==;(130)原式==0;(131)原式=1﹣=.(132)原式=﹣••=﹣;(133)原式=•﹣=﹣=(134)原式=••=(135)原式=[﹣]•=[﹣]•=•=(136)原式==﹣=(137)=;(138)=,==.(139)=•=(x+y)(x﹣y)=x2﹣y2;(140)=++===(141)原式=====(142)原式====2;(143)原式=÷=•=.(144)原式=÷=•=.(145)原式=4a﹣1﹣+=﹣==(146)原式=×+=+==1.(147)==﹣(148)原式=+•=+=﹣=﹣;(149)原式===0(150)原式=•=;(151)原式=•=;(152)原式=﹣===﹣;(153)原式=[﹣]•=•=•=(154)原式===;(155)原式=•=;(156)原式=﹣a2b6••=﹣b5(157)原式===﹣(x+y)=﹣x﹣y;(158)原式=÷=•=.。
八年级数学上册分式加减运算计算题练习(含答案)(最新整理)

八年级数学上册 分式加减运算 计算题练习1、化简:.2、化简:. 2(2222abb a b a b a ++÷--421444122++--+-x x x x x 3、化简:. 4、化简:.a a a a 21222-÷-+a a ---1115、化简:.6、化简:. 2222)2(nm mnm m n mn m --⋅++1224422-+÷--x x x x 7、化简:. 8、化简:.)111(111(2+-÷-+a a 1)12111(2-÷+-+-+x xx x x x 9、化简:. 10、化简:.a a a a a -+-÷--2244)111(14414(2-+-÷---x x x x x x 11、化简:. 12、化简:.962966322--+++⋅+a a a a a a 112222+---x xx x x 13、化简:. 14、化简:.1231621222+-+÷-+-+x x x x x x x 12)121(22+-+÷-+x x xx x 15、化简:. 16、化简:.)111(12+-÷-x x x 44211(22+++÷+-x x xx x 17、化简:. 18、化简:.11221(223+-+--÷--x xx x x x x x x 24)2122(--÷--+x x x x 19、化简:. 20、化简:.1112221222-++++÷--x x x x x x 11131332+-+÷--x x x x x 21、化简:. 22、化简:.9)3132(2-÷-++x x x x 12242(2++÷-+-x x x x x23、化简:. 24、化简:.x x x x x x x x -⋅+----+444122(22344)3392(2--+-÷+-+-x x x x x x 25、化简:. 25、化简:. 121441222+-÷-+-+-a a a a a a 2422(2+÷---m m m m m m 27、化简:. 28、化简:.222a b ab b a a b a b --++-x x x x x x -+⋅+÷++-21)2(1242229、化简:. 30、化简:12412122++-÷+--x x x x x )111(1222+-+÷+-x x x x x 31、化简:. 32、化简:.1221122+-+÷--+a a a a a a ba ba b a b b a b a +-÷--+-2)2(33、化简:. 34、化简:.121)121(2+-+÷-+x x x x 11211222---+--⨯+-x aax a a a a a a 35、化简:. 36、化简:. 41)2212(216822+++-+÷++-x x x x x x x xa x x a 221(-÷-37、化简:. 38、化简:.1)11(22-÷---x xx x x 1)112(2-÷+--a a a a a a 39、化简:421211(2--÷-+x x x参考答案1、原式=.2、原式=.3、原式=a 2+2a.4、原式=.5、原式=m+n.b a ab +2)2(24--x x 122--a a6、原式=.7、原式=.8、原式=.9、原式=. 10、原式=.x x -1a a 1+1-x x 2-a a 22-+x x 11、原式=. 12、原式=. 13、原式=3x-7. 14、原式=. 15、原式=.a 21+x x x x 1-11-x 16、原式=1+. 17、原式=. 18、原式=-x-4. 19、原式=.2x x +-2122-x x20、原式=. 21、原式=. 22、原式=x+1. 24、原式=. x x +21x x 9-2)2(1--x 25、原式=. 26、原式=. 27、原式=. 28、原式=. 2-x x 1-a a 2-m m b a ba -+29、原式=. 30、原式=. 31、原式=. 32、原式=.11+-x 21+x 11-x 21+a 33、原式=. 34、原式=x ﹣1. 35、原式=0. 36、原式=.b a a -2x x 442+37、原式=. 38、原式=. 39、原式=a+3. 40、原式=.a x +1x x 1+12+x。
分式运算加减法练习题

分式运算加减法练习题分式运算是代数中的一个重要部分,掌握分式加减法对于解决更复杂的代数问题至关重要。
以下是一些分式加减法的练习题,帮助学生巩固和提高他们的计算能力。
1. 计算下列分式的和:\(\frac{3}{4} + \frac{1}{6}\)2. 求出以下分式的差:\(\frac{5}{8} - \frac{3}{10}\)3. 计算并简化以下表达式:\(\frac{2}{5} + \frac{1}{3} - \frac{3}{10}\)4. 解决以下问题:如果 \(\frac{a}{b} + \frac{c}{d} = \frac{e}{f}\),且 \(a = 6\),\(b = 9\),\(c = 4\),\(d = 7\),求 \(e\) 和 \(f\) 的值。
5. 计算以下分式的和,并简化结果:\(\frac{2x}{3y} + \frac{3x}{4y}\)6. 求出以下分式的差,并简化:\(\frac{5}{x+1} - \frac{3}{x-1}\)7. 计算以下表达式的值:\(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}\)8. 解决以下问题:如果 \(\frac{m}{n} - \frac{p}{q} = \frac{r}{s}\),且 \(m = 12\),\(n = 15\),\(p = 8\),\(q = 10\),求 \(r\) 和 \(s\) 的值。
9. 计算以下分式的和,并简化结果:\(\frac{3}{x} + \frac{2}{x-1}\)10. 求出以下分式的差,并简化:\(\frac{4}{y+2} - \frac{1}{y-2}\)解决这些练习题的关键是找到分母的最小公倍数,然后将分子相加减,最后简化结果。
通过这些练习,学生可以提高他们对分式运算的理解和应用能力。
请注意,这些练习题的答案需要根据具体的数学规则来计算,例如找到公共分母,进行分数的加减运算,以及简化结果。
初二分式练习题及答案

分式练习题1、(1)当x 为何值时,分式2122---x x x 有意义?(2)当x 为何值时,分式2122---x x x 的值为零?2、计算:(1)()212242-⨯-÷+-a a a a (2)222---x x x (3)x x x x x x 2421212-+÷⎪⎭⎫⎝⎛-+-+(4)x y x y x xy x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232 (5)4214121111x x x x ++++++-3、计算(1)已知211222-=-x x ,求⎪⎭⎫⎝⎛+-÷⎪⎭⎫ ⎝⎛+--x x x x x 111112的值。
(2)当()00130sin 4--=x 、060tan =y 时,求y x y xy x y x x 3322122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xy x -++ 的值。
(3)已知02322=-+y xy x (x ≠0,y ≠0),求xyy x x y y x 22+--的值。
(4)已知0132=+-a a ,求142+a a 的值。
4、已知a 、b 、c 为实数,且满足()()02)3(432222=---+-+-c b c b a ,求cb b a -+-11的值。
5、解下列分式方程:(1)xx x x --=-+222; (2)41)1(31122=+++++x x x x(3)1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x (4)3124122=---x x x x6、解方程组:⎪⎪⎩⎪⎪⎨⎧==-92113111y x y x7、已知方程11122-+=---x x x m x x ,是否存在m 的值使得方程无解?若存在,求出满足条件的m 的值;若不存在,请说明理由。
8、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒 按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售 价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.9、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本, 并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批 发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按 定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两 次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若 赚钱,赚多少?10、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:11、 建筑学要求,家用住宅房间窗户的面积m 必须小于房间地面的面积n ,但窗户的面积与地面面积的比值越大,采光条件越好。
人教版数学八年级下册同步练习(含答案)
16.1 分式同步测试题1、式子①x 2 ②5y x + ③a -21 ④1-πx 中,是分式的有( ) A .①② B. ③④ C. ①③ D.①②③④2、分式13-+x a x 中,当a x -=时,下列结论正确的是( ) A .分式的值为零 B.分式无意义 C. 若31-≠a 时,分式的值为零 D. 若31≠a 时,分式的值为零 3. 若分式1-x x 无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±4. (2008年山西省太原市)化简222m n m mn-+的结果是( ) A .2m n m - B .m n m - C .m n m + D .m n m n-+ 5.使分式x++1111有意义的条件是( ) A.0≠x B.21-≠-≠x x 且 C.1-≠x D. 1-≠x 且0≠x6.当_____时,分式4312-+x x 无意义. 7.当______时,分式68-x x 有意义. 8.当_______时,分式534-+x x 的值为1. 9.当______时,分式51+-x 的值为正. 10.当______时分式142+-x 的值为负. 11.要使分式221y x x -+的值为零,x 和y 的取值范围是什么?12.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)有意义? (3)值为零?13.2005-2007年某地的森林面积(单位:公顷)分别是321,,S S S ,2005年与2007年相比,森林面积增长率提高了多少?(用式子表示)14.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?15.用水清洗蔬菜上残留的农药.设用x (1≥x )单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为x+11. 现有a (2≥a )单位量的水,可以一次清洗,也可以把水平均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.16.1 分式第1课时课前自主练1.________________________统称为整式.2.23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3.甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.课中合作练题型1:分式、有理式概念的理解应用 22是有理式的有_________.题型2:分式有无意义的条件的应用5.(探究题)下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.6.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x + D .2221x x + 7.(探究题)当x______时,分式2134x x +-无意义. 题型3:分式值为零的条件的应用8.(探究题)当x_______时,分式2212x x x -+-的值为零. 题型4:分式值为±1的条件的应用9.(探究题)当x______时,分式435x x +-的值为1; 当x_______时,分式435x x +-的值为-1. 课后系统练 基础能力题10.分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 11.有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④12.分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零 13.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 14.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +- D .211m m ++ 15.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±116.(学科综合题)已知y=123x x--,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.17.(跨学科综合题)若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.18.(数学与生活)李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.19.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a 天完成,若甲组单独完成需要b 天,乙组单独完成需_______天.20.(探究题)若分式22x x +-1的值是正数、负数、0时,求x 的取值范围.21.(妙法巧解题)已知1x -1y =3,求5352x xy y x xy y +---的值.22.(2005.杭州市)当m=________时,分式2(1)(3)32m m m m ---+的值为零.16.1分式第2课时课前自主练1.分数的基本性质为:______________________________________________________.2.把下列分数化为最简分数:(1)812=________;(2)12545=_______;(3)2613=________. 3.把下列各组分数化为同分母分数:(1)12,23,14; (2)15,49,715.4.分式的基本性质为:______________________________________________________.用字母表示为:______________________.课中合作练题型1:分式基本性质的理解应用5.(辨析题)不改变分式的值,使分式115101139x y x y-+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .906.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-abc +; ④m nm --=-m nm -中,成立的是( )A .①②B .③④C .①③D .②④7.(探究题)不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+题型2:分式的约分8.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个9.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m -+-.题型3:分式的通分10.(技能题)通分:(1)26xab ,29ya bc ; (2)2121a a a -++,261a -.课后系统练基础能力题11.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 12.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 13.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b++=0 C .1111ab b ac c --=-- D .221x y x y x y -=-+ 14.(2005·天津市)若a=23,则2223712a a a a ---+的值等于_______. 15.(2005·广州市)计算222a ab a b +-=_________. 16.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )317.21?11x x x -=+-,则?处应填上_________,其中条件是__________. 拓展创新题 18.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.19.(巧解题)已知x 2+3x+1=0,求x 2+21x的值.20.(妙法求解题)已知x+1x=3,求2421x x x ++的值.16.1分式同步测试题A一、选择题(每题分,共分)1、把分式y x x +中的、都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小9倍2、把分式xy y x +中的、都扩大2倍,那么分式的值 ( ) A 、扩大2倍 B 、扩大4倍 C 、缩小2倍 D 不变3、下列等式中成立的是 ( )A 、B 、C 、D 、4、(2008年株洲市)若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≠- C .2x >- D .2x <5、已知,则 ( )A 、B 、C 、D 、A 、①③④B 、①②⑤C 、③⑤D 、①④二、填空题(每题分,共分) 1、分式392--x x 当x __________时分式的值为零. 2、当x __________时分式x x 2121-+有意义.当________________x 时,分式8x 32x +-无意义. 3、①())0(,10 53≠=a axy xy a ②()1422=-+a a . 4、约分:①=ba ab 2205__________,②=+--96922x x x __________. 5、已知P=999999,Q=911909,那么P 、Q 的大小关系是_______。
(完整版)八年级数学上册分式加减运算计算题练习(含答案)
八年级数学上册 分式加减运算 计算题练习1、化简:)2(2222ab b a b a b a ++÷--.2、化简:421444122++--+-x x x x x . 3、化简:a a a a 21222-÷-+. 4、化简:a a ---111.5、化简:2222)2(n m mn m m n mn m --⋅++.6、化简:1224422-+÷--x xx x .7、化简:)111()111(2+-÷-+a a . 8、化简:1)12111(2-÷+-+-+x xx x x x .9、化简:a a a a a -+-÷--2244)111(. 10、化简:144)14(2-+-÷---x x x x x x .11、化简:962966322--+++⋅+a a a a a a . 12、化简:112222+---x x x x x .13、化简:1231621222+-+÷-+-+x x x x x x x . 14、化简:12)121(22+-+÷-+x x x x x .15、化简:)111(12+-÷-x x x . 16、化简:44)211(22+++÷+-x x x x x .17、化简:1122)1(223+-+--÷--x x x x x x x x x . 18、化简:24)2122(--÷--+x xx x .19、化简:1112221222-++++÷--x x x x x x . 20、化简:11131332+-+÷--x x x x x .21、化简:9)3132(2-÷-++x xx x . 22、化简:12)242(2++÷-+-x x x x x .23、化简:xxx x x x x x -⋅+----+4)44122(22. 24、化简:344)3392(2--+-÷+-+-x x x x x x .25、化简:121441222+-÷-+-+-a a a a a a . 25、化简:2)422(2+÷---m mm m m m . 27、化简:222a b abb a a b a b --++-. 28、化简:x x x x x x -+⋅+÷++-21)2(12422. 29、化简:12412122++-÷+--x x x x x . 30、化简:)111(1222+-+÷+-x x x x x31、化简:1221122+-+÷--+a a a a a a . 32、化简:ba ba b a b b a b a +-÷--+-2)2(.33、化简:121)121(2+-+÷-+x x x x . 34、化简:11211222---+--⨯+-x a ax a a a a a a .35、化简:41)2212(216822+++-+÷++-x x x x x x x . 36、化简:xa x x a 22)1(-÷-.37、化简:1)11(22-÷---x x x x x . 38、化简:1)112(2-÷+--a a a a a a .39、化简:421)211(2--÷-+x x x参考答案1、原式=ba ab +. 2、原式=2)2(24--x x . 3、原式=a 2+2a. 4、原式=122--a a . 5、原式=m+n.6、原式=x x -1.7、原式=a a 1+.8、原式=1-x x .9、原式=2-a a . 10、原式=22-+x x . 11、原式=a 2. 12、原式=1+x x . 13、原式=3x-7. 14、原式=x x 1-. 15、原式=11-x .16、原式=1+2. 17、原式=x x +-21. 18、原式=-x-4. 19、原式=22-x x.20、原式=x x +21. 21、原式=xx 9-. 22、原式=x+1. 24、原式=2)2(1--x . 25、原式=2-x x . 26、原式=1-a a . 27、原式=2-m m . 28、原式=b a ba -+. 29、原式=11+-x . 30、原式=21+x . 31、原式=11-x . 32、原式=21+a .33、原式=b a a -2. 34、原式=x ﹣1. 35、原式=0. 36、原式=x x 442+.37、原式=a x +1. 38、原式=x x 1+. 39、原式=a+3. 40、原式=12+x .。
分式加减法专项练习60题(有答案)
分式加减法专项练习60题(有答案)1.2.a(a﹣1)+3.4..5. +.6..7.=_________.8..9..10..11..12.13.14..15.16.(1);(2).17.18.1+19.﹣+ 20.21.+.22.23..24.,25.26.++.27.+﹣.28.29.(式中a,b,c两两不相等):30.31.(1);(2)….32.+﹣33.化简分式:.34..35.计算:﹣.36.计算:.37.计算:.38..39.计算化简:.40.计算:+++.41.计算.42.计算:.43.化简:.44..45.计算:.46..47.化简:.48..49..50.计算:﹣.51.计算:.52.计算:1﹣•.53.计算:.54.化简.55.化简:.56.先观察下列等式,然后用你发现的规律解答下列问题:由,,…(1)计算++++++=_________(n为正整数);(2)化简:+…+.57.化简:﹣.58.请你阅读下列计算过程,再回答所提出的问题:题目计算:解:原式=(A)=(B)=a﹣3﹣6(C)=a﹣9(D)(1)上述计算过程中,从哪一步开始出现错误:_________.(2)从B到C是否正确,若不正确,错误的原因是_________.(3)请你把正确解答过程写下来.59.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=_________;(2)证明你猜想的结论;(3)求和:+++…+.60.求和.参考答案:1.原式===1+1=2.2.原式=a2﹣a+=a2﹣a+a=a2.3.==.4.原式===.5.原式=+==.6.原式===.7.==.8.原式===a﹣1.9.原式==.10.+=+=+==1.11.原式=﹣==.12.原式=﹣=﹣=.13.原式=+===14.原式=+==.15.=﹣=﹣==﹣1.16.(1)原式=;(2)原式=17.====.18.原式=1﹣====.19.原式=﹣•==.20.===0.21.原式=+==.22.原式=﹣==.23.原式=====1.24.原式====;x的取值范围是x≠﹣2且x≠1的实数.25.原式==.26.====027.原式=﹣﹣==28.=.29.原式=++=+++++=0.30.原式=+﹣==.31.(1),=,=;(2)+…+=﹣+﹣+…+﹣=﹣=.32.==﹣2 33.=(2a+1)+﹣(a﹣3)﹣﹣(3a+2)++(2a﹣2)﹣=[(2a+1)﹣(a﹣3)﹣(3a+2)+(2a﹣2)]+(﹣+﹣)=﹣+﹣=﹣=.34.原式=﹣=﹣===35.原式====﹣36.原式====37.原式==38.原式=+﹣==39.原式=++=+﹣==== 40.原式=+++=++ =++=+=+=.41.设2x2+3x=y,则原式=﹣+===.42.原式=﹣a+2=a+1﹣a+2=3.43. 原式====.44.原式===,===45.=﹣===46.=== ==47.原式=,=﹣+,=+﹣﹣++,=048.原式=2a﹣a﹣1+a+1=2a.49.原式====.50.原式====.51.原式===.52.原式=1﹣×=1﹣==﹣.53.原式=+﹣====54.原式=++=+++++=﹣+﹣+﹣=0+0+0=055.原式===156.(1)原式=1﹣+﹣+…+﹣=1﹣=;(2)原式=﹣+…+﹣=﹣=57.原式=﹣=﹣=158.(1)A(2)不正确,不能去分母(3)原式===59.(1)=﹣;(2)﹣=﹣==;(3)+++…+=1﹣+﹣+﹣+…+﹣=1﹣=60.原式=++++…+﹣=+++…+﹣=+﹣=﹣=.。
8.3 分式的加减
探索1
(1)同分母的分数如何加减?
1 2 ? 3 3
1 2 ? 3 3
1 2 (2)你认为 应该等于什么? a a
(3) 同分母的分式应该如何加减?
同分母分式相加减的法则:
同分母的分式相加减: 分母不变,把分子相加减.
b c bc a a a
例1:计算
练习1:计算
3x x y (1) 2x y 2x y
x y ( 2) x y yx
2 2
探索2
(1) 异分母的分数如何加减?
1 1 1 1 ? ? 2 3 2 3 3 1 (2)你认为 应该等于什么? a 4a
(3)异分母的分式应该如何加减
3 a 15 ( 2) a 5a
异分母分式加减法法则:
异分母的分式相加减,先通分,化为同 分母分式相加减,再按同分母分式的 加减法法则进行计算。
b d bc ad bc ad a c ac ac ac
例3 计算
2 1 (1) 2 x 4 2x 4
2a 1 (2) 2 a 4 a2
2 2 2 2
1 1 2 4 2. 2 1 x 1 x 1 x 1 x4
y x 3.如果 x y 4、xy 3;求 的值 x y
课堂小结
1.同分母分式加减法法则 2.异分母分式加减法法则
a 1 a 1 (3) a 1 a 1
x y (4) x y yx
2 2
总结提高:
m n ( 2) mn mn
2 2
拓展提升1 4 (1) 2 a 2a
对于整式和分式之间的加减运算,则把 整式看成分母为1的一个整体,以便通 分。