高等代数3章习题

合集下载

高等代数答案-第三章

高等代数答案-第三章

第三章 线性方程组1. 用消元法解下列线性方程组:123412345123451234512345354132211)234321x x x x x x x x x x x x x x x x x x x x x x x x ++-=ìï++-+=-ïï-+--=íï-++-=ïï++-+=-î 124512345123451234523213322)23452799616225x x x x x x x x x x x x x x x x x x x +-+=ìï--+-=ïí-+-+=ïï-+-+=î 1234234124234234433)31733x x x x x x x x x x x x x -+-=ìï-+=-ïí+++=ïï-++=-î 123412341234123434570233204)411131607230x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=ïï-++=-î 123412341234123421322325)521234x x x x x x x x x x x x x x x x +-+=ìï-+-=ïí+-+=-ïï-+-=î 12341234123412341232313216)23122215522x x x x x x x x x x x x x x x x x x x ++-=ìï++-=ïï+++=íï++-=ïï++=î解 1)对方程组得增广矩阵作行初等变换,有135401135401132211003212121113054312141113074512121111014812--éùéùêúêú----êúêúêúêú®------êúêú-----êúêúêúêú-----ëûëû102101100101003212000212002000002000000000000000011100010000--éùéùêúêú---êúêúêúêú®®--êúêúêúêúêúêú---ëûëû因为()()45rank A rank B ==<所以方程组有无穷多解,其同解方程组为1415324122200x x x x x x x -=ìï+=-ïí-=ïï-+=î 解得123451022x k x k x x k x k=+ìï=ïï=íï=ïï=--î 其中k 为任意常数.2)对方程组德增广矩阵作行初等变换,有120321120321113132033451234527074125996162250276111616--éùéùêúêú------êúêú®êúêú----êúêú---ëûëû 120321120321033451033451252982529800110011333333003325297000001--éùéùêúêú------êúêú®®êúêú--êúêúêúêú--êúêúëûëû因为()4()3rank A rank A =>=所以原方程无解.3)对方程组德增广矩阵作行初等变换,有1234412344011130111313011053530731307313----éùéùêúêú----êúêú®êúêú--êúêú----ëûëû1012210008011130100300201200201200482400080---éùéùêúêú--êúêú®®êúêúêúêú--ëûëû因为(()4rank A rank A ==所以方程组有惟一解,且其解为12348360x x x x =-ìï=ïí=ïï=î 4)对方程组的增广矩阵作行初等变换,有34571789233223324111316411131672137213--éùéùêúêú----êúêú®êúêú--êúêú--ëûëû 17891789017192001719200171920000003438400000--éùéùêúêú----êúêú®®êúêú-êúêú--ëûëû即原方程组德同解方程组为123423478901719200x x x x x x x +-+=ìí-+-=î由此可解得1122123142313171719201717x k k x k k x k x k ì=-ïïï=-íï=ïï=î 其中12,k k 是任意常数g5)对方程组的增广矩阵作行初等变换,有2111121111322327001451121300122113440025--éùéùêúêú---êúêú®êúêú---êúêú---ëûëû 21111211117001470014100002100002100300001--éùéùêúêú--êúêú®®êúêúêúêú---ëûëû 因为()4()3rank A rank A =¹=所以原方程组无解.6)对方程组的增广矩阵作行初等变换,有12311354023211125202231112311122211453025520255202éùéùêúêú-êúêúêúêú®êúêú-êúêúêúêúëûëû2020000000552020570211611010015555101001010000000-éùéùêúêúêúêúêúêú®®-----êúêúêúêú--êúêúêúêúëûëû即原方程组的同解方程组为23341357261550x x x x x x +=ìïï-+=-íï-+=ïî 解之得123427551655x k x k x k x k =ìïï=-ïí=ïï=-+ïî其中k 是任意常数.2.把向量b 表成1234,,,a a a a 的线性组合.12341)(1,2,1,1)(1,1,1,1),(1,1,1,1)(1,1,1,1),(1,1,1,1)b a a a a ===--=--=--12342)(0,0,0,1)(1,1,0,1),(2,1,3,1)(1,1,0,0),(0,1,1,1)b a a a a =====--解 1)设有线性关系11223344k k k k b a a a a =+++代入所给向量,可得线性方程组12341234123412341211k k k k k k k k k k k k k k k k +++=ìï+--=ïí-+-=ïï--+=î 解之,得15,4k = 21,4k = 31,4k =- 414k =-因此123451114444b a a a a =+--2)同理可得13b a a =-3.证明:如果向量组12,,,r a a a L 线性无关,而12,,,,r a a a b L 线性相关,则向量可由12,,,r a a a L 线性表出.证 由题设,可以找到不全为零的数121,,,r k k k +L 使112210r r r k k k k a a a b +++++=L显然10r k +¹.事实上,若10r k +=,而12,,,r k k k L 不全为零,使11220r r k k k a a a +++=L成立,这与12,,,r a a a L 线性无关的假设矛盾,即证10r k +¹.故11rii i r k k b a =+=-å即向量b 可由12,,,r a a a L 线性表出.4.12(,,,)(1,2,,)i i i in i n a a a a ==L L ,证明:如果0ij a ¹,那么12,,,n a a a L 线性无关.证 设有线性关系11220n n k k k a a a +++=L代入分量,可得方程组111212112122221122000n n n nn n nn n k k k k k k k k k a a a a a a a a a +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L L 由于0ij a ¹,故齐次线性方程组只有零解,从而12,,,n a a a L 线性无关.5.设12,,,r t t t L 是互不相同的数,r n £.证明:1(1,,,)(1,2,,)n i i i t t i r a -==L L是线性无关的.证 设有线性关系11220r r k k k a a a +++=L则1211221111122000r r rn n n r rk k k t k t k t k t k t k t k ---+++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 1)当r n =时,方程组中的未知量个数与方程个数相同,且系数行列式为一个范德蒙行列式,即122221211112111()0nn j i i jn n n nt t t t t t t t t t t <---=-¹ÕL LL M M O M L所以方程组有惟一的零解,这就是说12,,,r a a a L 线性无关.2)当r n <时,令21111121222221(1,,,,)(1,,,,)(1,,,,)r r r r r r rt t t t t t t t t b b b ---ì=ï=ïíïï=îL L L L L L L L L L L 则由上面1)的证明可知12,,,r b b b L 是线性无关的.而12,,,r a a a L 是12,,,r b b b L 延长的向量,所以12,,,r a a a L 也线性无关.6.设123,,a a a 线性无关,证明122331,,a a a a a a +++也线性无关. 证 设由线性关系112223331()()()0k k k a a a a a a +++++=则131122233()()()0k k k k k k a a a +++++=再由题设知123,,a a a 线性无关,所以13122300k k k k k k +=ìï+=íï+=î 解得1230k k k ===所以122331,,a a a a a a +++线性无关.7.已知12,,,s a a a L 的秩为r ,证明:12,,,s a a a L 中任意r 个线性无关的向量都构成它的一个极大线性无关组.证 设12,,,i i ir a a a L 是12,,,s a a a L 中任意r 个线性无关向量组,如果能够证明任意一个向量(1,2,,)j j s a =L 都可由12,,,i i ir a a a L 线性表出就可以了.事实上,向量组12,,,,i i ir j a a a a L 是线性相关的,否则原向量组的秩大于r ,矛盾.这说明j a 可由12,,,i i ir a a a L 线性表出,再由j a 的任意性,即证.8.设12,,,s a a a L 的秩为r ,12,,,r i i i a a a L 是12,,,s a a a L 中的r 个向量,使得12,,,s a a a L 中每个向量都可被它们线性表出,证明:12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.证 由题设知12,,,r i i i a a a L 与12,,,s a a a L 等价,所以12,,,r i i i a a a L 的秩与12,,,s a a a L 的秩相等,且等于r .又因为12,,,r i i i a a a L 线性无关,故而12,,,r i i i a a a L 是12,,,s a a a L 的一个极大线性无关组.9.证明:一个向量组的任何一个线性无关组都可以扩充成一线性无关组.证 将所给向量组用(Ⅰ)表示,它的一个线性无关向量组用(Ⅱ)表示.若向量组(Ⅰ)中每一个向量都可由向量组(Ⅱ)线性表出,那么向量组(Ⅱ)就是向量组(Ⅰ)的极大线性无关组.否则,向量组(Ⅰ)至少有一个向量a 不能由向量组(Ⅱ)线性表出,此时将a 添加到向量组(Ⅱ)中去,得到向量组(Ⅲ),且向量组(Ⅲ)是线性无关的.进而,再检查向量组(Ⅰ)中向量是否皆可由向量组(Ⅲ)线性表出.若还不能,再把不能由向量组(Ⅲ)线性表出的向量添加到向量组(Ⅲ)中去,得到向量组(Ⅳ).继续这样下去,因为向量组(Ⅰ)的秩有限,所以只需经过有限步后,即可得到向量组(Ⅰ)的一个极大线性无关组.10.设向量组为1(1,1,2,4)a =-,2(0,3,1,2)a =,3(3,0,7,14)a =4(1,1,2,0)a =-,5(2,1,5,6)a =1) 证明:12,a a 线性无关.2) 把12,a a 扩充成一极大线性无关组.证 1)由于12,a a 的对应分量不成比例,因而12,a a 线性无关. 2)因为3123a a a =+,且由1122440k k k a a a ++=可解得1240k k k ===所以124,,a a a 线性无关.再令112244550k k k k a a a a +++=代入已知向量后,由于相应的齐次线性方程组的系数行列式为0,因而该齐次线性方程组存在非零解,即1245,,,a a a a 线性相关,所以5a 可由124,,a a a 线性表出.这意味着124,,a a a 就是原向量组的一个极大线性无关组.注 此题也可将1245,,,a a a a 排成54´的矩阵,再通过列初等变换化为行阶梯形或行最简形,然后得到相应结论.11.用消元法求下列向量组的极大线性无关组与秩:12341)(6,4,1,2),(1,0,2,3,4)(1,4,9,16,22),(7,1,0,1,3)a a a a =-=-=--=-,123452)(1,1,2,4),(0,3,1,2)(3,0,7,14),(1,1,2,0)(2,1,5,6)a a a a a =-===-=解 1)设12346411210234149162271013A a a a a -éùéùêúêú-êúêú==êúêú--êúêú-êúëûëû 对矩阵A 作行初等变换,可得0411192600102341023404111926004569980114223101142231A --éùéùêúêú-êúêú®®êúêú---êúêú----ëûëû 所以1234,,,a a a a 的秩为3,且234,,a a a 即为所求极大线性无关组.3) 同理可得124,,a a a 为所求极大线性无关组,且向量组的秩为3. 12.证明:如果向量组(Ⅰ)可以由向量组(Ⅱ)线性表出,那么(Ⅰ) 的秩不超过(Ⅱ)的秩.证 由题设,向量组(Ⅰ)的极大线性无关组也可由向量组(Ⅱ)的极大线性无关组线性表出,即证向量组(Ⅰ)的秩不超过向量组(Ⅱ)的秩.13.设12,,,n a a a L 是一组维向量,已知单位向量12,,,n e e e L 可被它们线性表出,证明:12,,,n a a a L 线性无关.证 设12,,,n a a a L 的秩为r n £,而12,,,n e e e L 的秩为n . 由题设及上题结果知n r £从而r n =.故12,,,n a a a L 线性无关.14.设12,,,n a a a L 是一组n 维向量,证明:12,,,n a a a L 线性无关的充分必要条件是任一n 维向量都可被它们线性表出.证 必要性.设12,,,n a a a L 线性无关,但是1n +个n 维向量12,,,,n a a a b L 必线性相关,于是对任意n 维向量b ,它必可由12,,,n a a a L 线性表出.充分性.任意n 维向量可由12,,,n a a a L 线性表出,特别单位向量12,,,n e e e L 可由12,,,n a a a L 线性表出,于是由上题结果,即证12,,,n a a a L 线性无关.15.证明:方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=ìï+++=ïíïï+++=îL L L L L L L L L L L L L 对任何12,,,n b b b L 都有解的充分必要条件是系数行列式0ij a ¹.证 充分性.由克拉默来姆法则即证.下证必要性.记1212(,,,)(1,2,,)(,,,)i i i ni n i n b b b a a a a b ===L L L则原方程组可表示为1122n n x x x b a a a =+++L由题设知,任意向量b 都可由线性12,,,n a a a L 表出,因此由上题结果可知12,,,n a a a L 线性无关.进而,下述线性关系12220n n k k k a a a +++=L仅有惟一零解,故必须有0ij A a =¹,即证.16.已知12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,证明: 与121,,,,,,r r s a a a a a +L L 等价.证 由于12,,,r a a a L 与121,,,,,,r r s a a a a a +L L 有相同的秩,因此它们的极大线性无关组所含向量个数必定相等.这样12,,,r a a a L 的极大线性无关组也必为121,,,,,,r r s a a a a a +L L 的极大线性无关组,从而它们有相同的极大线性无关组.另一方面,因为它们分别与极大线性无关组等价,所以它们一定等价. 17.设123213,,,r r b a a a b a a a =+++=+++L L L 121r r b a a a -=+++L证明:12,,,r b b b L 与12,,,r a a a L 具有相同的秩.证 只要证明两向量组等价即可.由题设,知12,,,r b b b L 可由12,,,r a a a L 线性表出.现在把这些等式统统加起来,可得12121()1r r r b b b a a a +++=+++-L L 于是121111(1)1111i i r r r r r a b b b b =+++-++----L L (1,2,,)i r =L即证12,,,r a a a L 也可由12,,,r b b b L 线性表出,从而向量组12,,,r b b b L 与12,,,r a a a L 等价.18.计算下列矩阵的秩:1)01112022200111111011-éùêú--êúêú--êú-ëû 2)11210224203061103001-éùêú--êúêú-êúëû3)141268261042191776341353015205éùêúêúêúêúëû 4)10014010250013612314324563277éùêúêúêúêúêúêúëû5)1010011000011000011001011éùêúêúêúêúêúêúëû解 1)秩为4.2)秩为3. 3)秩为2. 4)秩为3. 5)秩为5.19.讨论,,a b l 取什么值时,下列方程有解,并求解.1)12212321231x x x x x x x x x l l l l lì++=ï++=íï++=î 2)122123123(3)(1)23(1)(3)3x x x x x x x x x l l l l l l l l +++=ìï+-+=íï++++=î3)1221231234324ax x x x bx x x bx x ++=ìï++=íï++=î解 1)因为方程组的系数行列式21111(1)(2)11D l l l l l==-+所以当1l =时,原方程组与方程1221x x x ++=同解,故原方程组有无穷多解,且其解为11221321x k k x k x k=--ìï=íï=î 其中12,k k 为任意常数.当2l =-时,原方程组无解.当1l ¹且2l ¹-时,原方程组有惟一解.且12231212(1)2x x x l l l l l +ì=-ï+ïï=í+ïï+=ï=î2)因为方程组的系数行列式231211(1)333D l l l l l l l l +=-=-++所以当0l =时,原方程组的系数矩阵A 与增广矩阵A 的秩分别为2与3,所以无解.当1l =时,A 的秩为2,A 的秩为3,故原方程组也无解. 当0l ¹,且1l ¹时,方程组有唯一解321232232323159(1)129(1)43129(1)x x x l l l l l l l l l l l l l l ì+-+=ï-ïï-+ï=í-ïï--+=ï-ïî3) 因为方程组的系数行列式1111(1)121a Db b a b ==--所以当0D ¹时,即1a ¹且0b ¹时,方程组有惟一解,且为12321(1)1124(1)b x b a x b ab b x b a -ì=ï-ïï=íï+-ï=ï-î当0D =时1o若0b =,这时系数矩阵A 的秩为2,而它的增广矩阵A 的秩为3,故原方程组无解。

(完整版)高等代数(北大版第三版)习题答案II

(完整版)高等代数(北大版第三版)习题答案II

证 1)作变换 ,即



因为 是正定矩阵,所以 是负定二次型。
2) 为正定矩阵,故 对应的 阶矩阵也是正定矩阵,由1)知
或 ,
从而





由于 是正定的,因此它的 级顺序主子式 ,从而 的秩为 。
即证 。
3.设

其中 是 的一次齐次式,证明: 的正惯性指数 ,负惯性指数 。
证 设 ,
的正惯性指数为 ,秩为 ,则存在非退化线性替换

使得

下面证明 。采用反证法。设 ,考虑线性方程组

该方程组含 个方程,小于未知量的个数 ,故它必有非零解 ,于是

上式要成立,必有
, ,
这就是说,对于 这组非零数,有
, ,
这与线性替换 的系数矩阵非退化的条件矛盾。所以

同理可证负惯性指数 ,即证。
4.设
是一对称矩阵,且 ,证明:存在 使 ,其中 表示一个级数与 相同的矩阵。
证 只要令 ,则 ,
注意到
, ,
则有

即证。
5.设 是反对称矩阵,证明: 合同于矩阵

设 的秩为 ,作非退化线性替换 将原二次型化为标准型

其中 为1或-1。由已知,必存在两个向量 使
和 ,
故标准型中的系数 不可能全为1,也不可能全为-1。不妨设有 个1, 个-1,
且 ,即

这时 与 存在三种可能:
, ,
下面仅讨论 的情形,其他类似可证。
令 , , ,
则由 可求得非零向量 使

即证。
证 采用归纳法。当 时, 合同于 ,结论成立。下面设 为非零反对称矩阵。

北京大学数学系《高等代数》(第3版)课后习题-第一章至第三章(上册)【圣才出品】

北京大学数学系《高等代数》(第3版)课后习题-第一章至第三章(上册)【圣才出品】
所以 q(x)=2x4-6x3+13x2-39x+109,r(x)=-327. (2)q(x)=x2-2ix-(5+2i),r(x)=-9+8i.
4.把 f(x)表成 x-x0 的方幂和,即表成 c0+c1(x-x0)+c2(x-x0)2+…的形式. (1)f(x)=x5,x0=1;
2 / 108
圣才电子书 十万种考研考证电子书、题库视频学习平台
6.求 u(x),v(x)使 u(x)f(x)+v(x)g(x)=(f(x),g(x)): (1)f(x)=x4+2x3-x2-4x-2,g(x)=x4+x3-x2-2x-2. (2)f(x)=4x4-2x3-16x2+5x+9,g(x)=2x3-x2-5x+4. (3)f(x)=x4-x3-4x2+4x+1,g(x)=x2-x-1. 解:(1)用辗转相除法进行计算.
所以 x5=(x-1)5+5(x-1)4+10(x-1)3+10(x-1)2+5(x-1)+1.
3 / 108
圣才电子书

(2)应用综合除法
十万种考研考证电子书、题库视频学习平台
所以 f(x)=(x+2)4-8(x+2)3+22(x+2)2-24(x+2)+11. (3)f(x)=(x+i)4-2i(x+i)3-(1+i)(x+i)2-5(x+i)+7+5i. 5.求 f(x)与 g(x)的最大公因式: (1)f(x)=x4+x3-3x2-4x-1,g(x)=x3+x2-x-1. (2)f(x)=x4-4x3+1,g(x)=x3-3x2+1.
圣才电子书

十万种考研考证电子书、题库视频学习平台
第二部分 课后习题
第 1 章 多项式
1.用 g(x)除 f(x),求商 q(x)与余式 r(x): (1)f(x)=x3-3x2-x-1,g(x)=3x2-2x+1; (2)f(x)=x4-2x+5,g(x)=x2-x+2. 解:(1)用分离系数的竖式进行计算

高等代数(北大版第三版)习题答案II

高等代数(北大版第三版)习题答案II

高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章—矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A为一个n级实对称矩阵,且,证明:必存在实n维向量,使。

证因为,于是,所以,且A不是正定矩阵。

故必存在非退化线性替换使,且在规范形中必含带负号的平方项。

于是只要在中,令则可得一线性方程组,由于,故可得唯一组非零解使,Xs即证存在,使。

13.如果A,B都是n阶正定矩阵,证明:也是正定矩阵。

证因为A,B为正定矩阵,所以BX为正定二次型,且,,因此,于是必为正定二次型,从而为正定矩阵。

14.证明:二次型是半正定的充分必要条件是它的正惯性指数与秩相等。

证必要性。

采用反证法。

若正惯性指数秩r,则。

即,22222 若令,y,则可得非零解使。

这与所给条件矛盾,故。

充分性。

由,知,222故有,即证二次型半正定。

.证明:是半正定的。

证()可见:。

21)当不全相等时2)当时f。

2故原二次型是半正定的。

AX是一实二次型,若有实n维向量X1,X2使16.设,。

X1。

证明:必存在实n维向量使X0设A的秩为r,作非退化线性替换将原二次型化为标准型,其中dr为1或-1。

由已知,必存在两个向量X1,X2使222和,X1故标准型中的系数不可能全为1,也不可能全为-1。

不妨设有p个1,q 个-1,且,即,这时p与q存在三种可能:,,下面仅讨论的情形,其他类似可证。

令,,,则由可求得非零向量X0使2222,X0即证。

17.A是一个实矩阵,证明:。

证由于的充分条件是与为同解方程组,故只要证明与同解即可。

事实上,即证与同解,故。

注该结论的另一证法详见本章第三部分(补充题精解)第2题的证明,此处略。

一、补充题参考解答1.用非退化线性替换化下列二次型为标准型,并用矩阵验算所得结果:1);2);3);4),其中。

n解1)作非退化线性替换,即,则原二次型的标准形为,且替换矩阵222222使,,其中2)若则。

高等代数第三章答案

高等代数第三章答案

第三章 线性方程组习题解答1.用消元法解下列方程组:⑴⎪⎪⎪⎩⎪⎪⎪⎨⎧-=+-++=-++-=--+--=+-++=-++12343212231453543215432154321543214321x x x x x x x x x x x x x x x x x x x x x x x x ⑵⎪⎪⎩⎪⎪⎨⎧=+-+-=+-+-=-+--=+-+2521669972543223312325432154321543215421x x x x x x x x x x x x x x x x x x x⑶⎪⎪⎩⎪⎪⎨⎧-=++-=++-=+-=-+-33713344324324214324321x x x x x x x x x x x x x ⑷⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x ⑸⎪⎪⎩⎪⎪⎨⎧=-+--=+-+=-+-=+++43212523223124321432143214321x x x x x x x x x x x x x x x x ⑹⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=-++=+++=-++=-++225512221321231323214321432143214321x x x x x x x x x x x x x x x x x x x 解:⑴对它的增广矩阵作初等行变换:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------------→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----------00101000000000020*********1001001110000000000200212300101201001110007770005750212300104531213410215470213450212300104531111121311141311121112231104531即⎪⎪⎩⎪⎪⎨⎧=+-=--=+=-0022214235441x x x x x x x ,得⎪⎪⎩⎪⎪⎨⎧--====+=k x x k x x k x 220153421 k 为任意常数 ⑵无解⑶0,6,3,84321===-=x x x x⑷任意43432431,,17201719,1713173x x x x x x x x -=-=⑸无解 ⑹651,671,651434241x x x x x x +=-=+=2.把向量β表成4321αααα,,,的线性组合:⑴()()()()()1,1-1-11-1,1-11-1-,1,11,1,1,111,2,14321,,,,,,,,,,=====ααααβ ⑵()()()()()1-1-1,00,0,1,11,3,1,21,0,1,11,0,0,04321,,,,,,=====ααααβ 解:⑴令44332211ααααβk k k k +++=得方程组⎪⎪⎩⎪⎪⎨⎧=+--=-+-=--+=+++,1,1,2,14321432143214321k k k k k k k k k k k k k k k k 解得,41,41,41,454321-=-===k k k k 所以432141414145ααααβ--+=⑵仿上,可得31-ααβ=3.证明:如果向量组r ααα,,, 21线性无关,而βααα,21r ,,, 线性相关,则向量β可由r ααα,,, 21线性表出。

高等代数 习题及参考答案

高等代数 习题及参考答案
17.求 值,使 有重根。
解易知 有三重根 时, 。若令
,比较两端系数,得
由(1),(3)得 ,解得 的三个根为 ,将 的三个根分别代入(1),得 。再将它们代入(2),得 的三个根 。
当 时 有3重根 ;当 时, 有2重根 。
18.求多项式 有重根的条件。
解令 ,则 ,显然当 时,只有当 才有三重根。
3) 。
解利用剩余除法试根,可得
1)有一个有理根2。
2)有两个有理根 (即有2重有理根 )。
3)有五个有理根 (即一个单有理根3和一个4重有理根 )。
28.下列多项式在有理数域上是否可约?
1) ;
2) ;
3) ;
4) 为奇素数;
5) 为整数。
解1)因为 都不是它的根,所以 在有理数域里不可约。
2)利用艾森斯坦判别法,取 ,则此多项式在有理数域上不可约。
指数组
对应 的方幂乘积
4 2 0
4 1 1
3 3 0
3 2 1
2 2 2
原式= (1)
只要令 ,则原式左边 。另一方面,有 ,
代入(1)式,得 。再令 ,得 。
令 ,得
(2)
令 得
(3)
由(2),(3)解得 。因此
原式 。
4)原式=
指数组
对应 的方幂乘积
2 2 0 0
2 1 1 0
1 1 1 1
设原式
高等代数
第一章多项式
1.用 除 ,求商 与余式 :
1) ;
2) 。
解1)由带余除法,可得 ;
2)同理可得 。
2. 适合什么条件时,有
1) ,
2) 。
解1)由假设,所得余式为0,即 ,

第三章习题与复习题(线性方程组)---高等代数

第三章习题与复习题(线性方程组)---高等代数

习题3.11.用消元法解下列线性方程组(1)123131232312 264257x x x x x x x x -+=⎧⎪+=⎨⎪++=⎩ (2)⎪⎪⎩⎪⎪⎨⎧=+--=+-=+-=+-115361424524132321321321321x x x x x x x x x x x x(3)⎪⎩⎪⎨⎧=-++=-+-=--+8222635363432143214321x x x x x x x x x x x x (4) ⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++233453622032315432154325432154321x x x x x x x x x x x x x x x x x x x 2.设线性方程组1232123123424x x tx x tx x t x x x ++=⎧⎪-++=⎨⎪-+=-⎩ t 为何值时方程组无解? t 为何值时方程组有解?有解时,求其解. 3.设线性方程组1234123412341234231363315351012x x x x x x x x x x ax x x x x x b+++=⎧⎪+++=⎪⎨--+=⎪⎪--+=⎩ (1) a , b 为何值时方程组有唯一解? (2) a, b 为何值时方程组无解?(3) a , b 为何值时方程组有无穷多解?并求其一般解.习题3.21.设()()()1231,1,1,22,1,0,11,2,0,2ααα=--=-=--,, ,求 (1) 321ααα++ (2) 321532ααα+- 1211222. (1,0,,0) (0,1,,0)(0,0,,1),.n n n n a a a εεεεεε===+++设 维向量 , ,, 求()()3. 2 02,1 3 1,124αβγαγβ=-=-+=设2,,,4,2, ,,,求向量 ,使.4.设()()122,0,13,1,1αα==-, 满足 12234βαβα+=+ ,求 β .5.342112231231,.αβαβαβ+=+=-设(,,,), (,,,),求习题3.31. 判断向量 β 能否由向量1α,2α,3α,4α 线性表示,若可以,求出表达式. ()()()()()1234(1) 1,1,1,1 ,1,1,1,11,1,1,11,1,1,11,1,3,1βαααα=--==--=--=-,,, ()()()()()1,1,1,11,1,1,11,1,1,11,1,1,1,1,1,2,1 )2(4321--=--=--===ααααβ,,, ()()()()()3,0,1,37,1,1,40,1,0,17,3,1,23,1,3,4 )3(4321---==-==--=ααααβ,,, 1231231232. 120347110,,,011234(1) , , ,,;(2) , , ,,,;(3) , b a a b a b a b αααββαααβααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭设取何值时不能由线性表示取何值时能由唯一线性表示写出该表达式取何值123, ,,,βααα时能由线性表示且表达式不唯一写出全体表达式.3.判断下列向量组的线性相关性.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=70241202152101014 )1(4321αααα,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=2131012021013312 )2(4321αααα,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=652111113211 )3(321ααα,,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=14044121302101130112 )4(4321αααα,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=7932 ,4354327697656324 )5(54321ααααα,,,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=7023120233631121 )6(4321αααα,,,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=431003801053001 )7(321ααα,,12344. 12341234 12341234a a a a αααα+⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭设向量组,,, 12341234(1) , ,,,;2 , ,,,.a a αααααααα为何值时线性相关()为何值时线性无关5.讨论向量组12310112,,21425111a b ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭的线性相关性. 6.已知向量组1,,,,i n ααα线性无关,证明1,,,,(0)i n k k ααα≠线性无关.7.已知向量组12,,,n ααα线性无关, 1121212,,,,n n βαβααβααα==+=+++证明: 12,,,n βββ线性无关.8.设12,,,n ααα线性无关,nnn n n n nn n n a a a a a a a a a αααβαααβαααβ+++=+++=+++=22112222121212121111证明:n βββ,,,21 线性无关的充要条件是行列式D = n n n n nna a a a a a a a a 111212122212≠ 09.已知向量组m ααα,,,21 线性无关,设111322211,,,,ααβααβααβααβ+=+=+=+=--m m m m m证明:(1) 当m 为偶数时, m βββ,,,21 线性相关;(2)当m 为奇数时, m βββ,,,21 线性无关.习题3.41.求下列向量组的秩与一个极大线性无关组.(1)12344212 312101308αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,, (2)1234511005 2112, 153223ααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,,,(3)123450********* , 0111111011ααααα-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,,, 2.求下列向量组的秩与一个极大无关组并将其余向量用求出的极大无关组线性表示.(1)12342104113410100124αααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,(2)123452313712024 , 3283023743ααααα--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,,, (3)123452183723075, 3258010320ααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪ ⎪===== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,,,3.求向量组123411312000121135a b αααα⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭,,,的秩和一个极大无关组.4.设A 、B 均为m × n 阶矩阵,证明:R (A + B )≤ R (A )+ R (B ) 5.设向量组m ααα,,,21 ( m > 1 )的秩为r ,m m m m βαααβαααβααα-=+++=+++=+++,,,123213121证明:向量组m βββ,,,21 的秩为r .6.设A 为n × m 阶矩阵,B 为m × n 阶矩阵,且n > m ,证明 AB = 0 .习题3.51.求下列齐次线性方程组的一个基础解系并用它表出通解. (1) 123413412313424303 07 730x x x x x x x x x x x x x -+-=⎧⎪+-=⎪⎨++=⎪⎪+-=⎩ (2) 12345123451234512345202 +230322025220x x x x x x x x x x x x x x x x x x x x -+-+=⎧⎪-+-=⎪⎨--+-=⎪⎪-+-+=⎩2.设线性方程组123123123232082021430x x x x x x x x x λλλ---=⎧⎪-+--=⎨⎪+++=⎩()()()问λ为何值时, 该方程组有非零解?并求出它的全部解.3.设n 阶方阵A 的每行元素之和都为零,且R (A )= n -1 ,求方程组A X = 0的通解. 4.已知3阶非零矩阵B 的每个列向量都是线性方程组1231231232202030x x x x x x x x x λ+-=⎧⎪-+=⎨⎪+-=⎩ 的解, 求λ的值. 5.已知线性方程组12342341242200 0x x x x x cx cx x cx x +++=⎧⎪++=⎨⎪++=⎩ 的基础解系由两个解向量构成,求c 的值与该方程组的通解. 6.设12313221211A t ⎛⎫⎪-⎪= ⎪⎪--⎝⎭B 是3阶非零矩阵,且AB=O , 求t 的值.习题3.61.解下列线性方程组(在有无穷多解时求出其结构式通解). (1)12312312312323424538213496x x x x x x x x x x x x ++=⎧⎪-+=-⎪⎨+-=⎪⎪-+=-⎩(2)1234124123401 222461x x x x x x x x x x x --+=⎧⎪⎪--=⎨⎪--+=-⎪⎩2.已知线性方程组1231231232123(2)320x x x x x a x x ax x ++=⎧⎪+++=⎨⎪+-=⎩ 无解,求a 的值.3.参数λμ,取何值时,线性方程组123412341234230327162x x x x x x x x x x x x λμ+-+=⎧⎪+++=⎨⎪---=⎩ 有解、无解?4. 参数a , b 为何值时,线性方程组12345123452345123451323 22635433x x x x x x x x x x a x x x x x x x x x b ++++=⎧⎪+++-=⎪⎨+++=⎪⎪+++-=⎩有解、无解?在有解时,求其解.5. 参数a , b 为何值时,线性方程组1231231234324ax x x x bx x x bx x ++=⎧⎪++=⎨⎪++=⎩ 无解、有唯一解、有无穷多解?在有解时,求其解.6.向量123,,γγγ是四元非齐次线性方程组AX β=的解向量,()2R A =且 121321γγ⎛⎫ ⎪ ⎪+= ⎪ ⎪⎝⎭ ,231102γγ⎛⎫ ⎪ ⎪+= ⎪ ⎪-⎝⎭,132110γγ⎛⎫⎪ ⎪+= ⎪ ⎪⎝⎭求线性方程组AX β=的通解. 7.设线性方程组23112131231222322313233323142434x a x a x a x a x a x a x a x a x a x a x a x a ⎧++=⎪++=⎪⎨++=⎪⎪++=⎩ (1)若1234,,,a a a a 互不相同,证明方程组无解;(2)若1324,(0)a a k a a k k ====-≠,证明方程组有解,并求其通解.8.证明线性方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=-=-=-=-515454343232121a x x ax x a x x a x x a x x 有解的充分必要条件是∑=51i i a = 0 ,并在有解时求其通解.9.设非齐次线性方程组A X = β 的解向量12,,,s γγγ,证明(1) 线性组合1122s s k k k γγγ+++是A X = β 的解的充分必要条件是k 1 + k 2 + … + k s = 1;(2)线性组合1122s s k k k γγγ+++是A X = 0 的解的充分必要条件是k 1 + k 2 + … + k s = 0.习题三 (A)一、填空题1.设123111111λααλαλ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,当λ满足 时, 123ααα,,线性相关; 当λ满足 时, 123ααα,,线性无关. 2.已知向量组123411110112,23243519t t αααα⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭,, 线性相关, 则t 满足 .3.设向量组123ααα,,线性无关,则当参数l, m 满足 时,213213l m αααααα---,,也线性无关.4. 已知123ααα,,线性无关,若12123123242m m αααααααα+-++-,,也线性无关, 则m .5.设向量组123(, 0, )(, ,0)(0, , )a c b c a b ααα===,,线性无关, 则a , b , c 满足 . 6. 设向量组1234(2,1,1,1)(2,1,,)(3,2,1,),(4,3,2,1)a a a αααα====,,线性相关,且1a ≠, 则 a = .7. 当k = 时, 向量 ()Tk k 2,,0=β 可由向量组()T k 1,1,11+=α ,()()T T k k +=+=1,1,11,1,132αα, 线性表示且表示方法不唯一.()()()1231,2,1,1,2,0,,0,0,4,5,22, t t ααα=-==--=8.已知的秩为 则 .9. 设A = ⎪⎪⎪⎭⎫ ⎝⎛--11334221t , B 为3阶非零矩阵, 且A B = O , 则t = .10. 设B 为3阶非零矩阵,且B 的每个列向量都是方程组 ⎪⎩⎪⎨⎧=-+=+-=++030202321321321x x x x x x kx x x 的解,则k= ,B = .11. 设123,,ααα是齐次线性方程组AX = 0 的一个基础解系, 则当参数a 满足 时,122331a αααααα+++,,也是该方程组的基础解系.12. 已知向量组1234,,,αααα的秩为3, 且1234,,,αααα可由向量组123,,βββ线性表示, 则向量组123,,βββ必线性 .二、单项选择题1. 已知1143α⎛⎫ ⎪= ⎪ ⎪⎝⎭,221t α⎛⎫ ⎪= ⎪ ⎪-⎝⎭,3231α-⎛⎫⎪= ⎪ ⎪⎝⎭线性相关, 则t =( ) .(A ) 2 (B) -2 (C ) 3 (D ) –3 2.已知向量组1234αααα,,,线性无关, 则向量组( )线性无关.12233441122334411223344112233441A αααααααααααααααααααααααααααααααα+++++++-----++--() ,,,(B ) ,,,(C ) ,,,(D ) ,,,3. 对任意实数a , b , c 下列向量组线性无关的是( ).(A) (a , 1, 2), (2, b , 3), (0, 0, 0)(B) (b , 1, 1), (1, a , 3), (2, 3, c ), (a , 0, c ) (C) (1, a , 1, 1), (1, b , 1, 0), (1, c , 0, 0) (D) (1, 1, 1, a ), (2, 2, 2, b ), (0, 0, 0, c )4.若向量组 α , β , γ 线性无关, α , β , δ 线性相关, 则( ).(A ) α 必可由 β , γ , δ 线性表示 (B ) β 必不可由 α , γ , δ 线性表示 (C ) δ 必可由 α , β , γ 线性表示 (D ) δ 必不可由 α , β , γ 线性表示 5. 设同维向量组12121::,rr r mA B αααααααα+,,,,,,,,则下列说法正确的是( ). (A) A 组与B 组的线性相关性相同 (B) 当A 组线性无关时, B 组也线性无关 (C) 当B 组线性相关时, A 组也线性相关 (D) 当A 组线性相关时, B 组也线性相关 6. 下列说法正确的是( ). (A) 若1α,2α线性相关,1β ,2β线性相关, 则11βα+,22βα+一定线性相关(B) 若1α,2α 线性无关, β为任一向量, 则βα+1,βα+2一定线性无关(C) 若1α,2α ,…,m α( m ≥ 2 )线性相关, 则其中任何一个向量都可由其余向量线性表示 (D) 若n 维向量组1α,2α,… ,m α( m ≥ 2 )线性无关,则对于任意不全为零的数k 1, k 2 ,… , k m 一定有 θααα≠+++m m k k k 22117.已知向量组123ααα,,线性无关, 向量β可由123ααα,,线性表示, 向量γ不能由123ααα,,线性表示, 则对任意常数k , 必有( ).(A) 123,,, k αααβγ+线性无关 (B) 123,,, k αααβγ+线性相关 (C) 123,,, k αααβγ+线性无关 (D) 123,,, k αααβγ+线性相关8. 一个向量组的极大线性无关组( ). (A ) 个数唯一 (B) 个数不唯一(C ) 所含向量个数唯一 (D ) 所含向量个数不唯一9.已知任一n 维向量均可由n ααα,,,21 线性表示, 则n ααα,,,21 ( ).(A) 线性相关 (B) 秩等于n(C) 秩小于n (D) 秩不能确定10. 已知21346639A t ⎛⎫ ⎪= ⎪ ⎪⎝⎭, B 为三阶非零矩阵且AB =O ,则( ).(A)当t = 2时,B 的秩必为1 (B)当t = 2时,B 的秩必为2 (C)当t ≠2时,B 的秩必为1 (D)当t ≠ 2时,B 的秩必为211.设非齐次线性方程组A X = B 中未知量个数为n , 方程个数为m , 系数矩阵A 的秩为r ,则 ( ) .(A ) r = m 时,方程组A X = B 有解 (B) r = n 时,方程组A X = B 有唯一解 (C ) m = n 时,方程组A X = B 有唯一解 (D ) r < n 时,方程组A X = B 有无穷多解12.n 元线性方程组AX=B 有唯一解的充分必要条件是( ).(A ) 导出组AX=0仅有零解 (B ) A 为方阵,且∣A ∣≠0(C ) R(A) = n(D ) 系数矩阵A 的列向量组线性无关,且常数项向量B 可由A 的列向量组线性表示13.设A 是n 阶矩阵, α 是n 维列向量,若R ⎪⎪⎭⎫⎝⎛0TAαα = R (A ) ,则线性方程组 ( ).(A ) A X = α 必有无穷多解(B ) A X = α 必有唯一解 (C ) ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛y X A T0αα = 0仅有零解 (D ) ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛y X A T0αα = 0必有非零解 14.将齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213221x x x x x x x x x λλλλ的系数矩阵记为A , 若存在3阶矩阵B ≠ O使得AB =O , 则 ( ) .(A ) λ = -2且 B = 0 (B ) λ = -2且 B ≠ 0 (C ) λ = 1且 B = 0 (D ) λ = 1且 B ≠ 0 15. 已知123,,ααα是非齐次线性方程组AX=b 的3个解, 则下列( )不是导出组 AX = 0的解.(A) 1232ααα+- (B) 121()3αα- (C) 132αα- (D)311()2αα- 16. 已知123,,ααα是非齐次线性方程组AX=b 的3个解,则下列( )是AX = b 的解. (A) 1232ααα+- (B) 123ααα+- (C) 132αα- (D)311()2αα- 17. 已知123ααα,,是4元非齐次线性方程组AX=b 的3个不同的解且R (A ) =3,则下列( )是导出组AX = 0的基础解系.(A) 12312,ααααα+-- (B) 12αα- (C) 13αα+ (D) 3121,αααα--(B)1.设12312300111a b αααβββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1011=,=,010012011=,=,1221求a , b 的值,使向量组123ααα,,与向量组123βββ,,等价.122.,,,.r t t t r n ≤设是互不相同的数,21(1,,,,) (1,2,,)n i i i i t t t i r α-==证明:线性无关.3. ,, , 0. , , , a b c a b c abc αβγαβγθαβαγβγ++=≠设向量,,及数满足且证明和均与等价.4.设向量组123411321326,1511031p p αααα--⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,(1)p 为何值时,1234,αααα,,线性无关, 并在此时将向量()4,1,6,10Tβ=用该向量组线性表示;(2)p 为何值时,1234,αααα,,线性相关,并在此时求出该向量组的秩和一个极大无关组. 5.求向量组1231111121111k k ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,的秩和一个极大无关组.6.,,A m n B n m m n AB E B ⨯⨯<=设为矩阵,为矩阵,且若证明的列向量组线性无关. 7.已知向量组123967ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭13=2,=0,-31与1232110a b βββ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0=1,=,-1具有相同的秩且3β可由123ααα,,线性表示,求a , b 的值. 8.已知3阶矩阵B O ≠且B 的列向量都是线性方程组12312312320200x x x x x x ax x x +-=⎧⎪-+=⎨⎪+-=⎩ 的解.(1) 求a 的值; (2) 证明0B =. 9. 已知线性方程组⎪⎩⎪⎨⎧=++=++=++000322212321321x c x b x a cx bx ax x x x ,(1) 当a , b , c 满足何种关系时,方程组仅有零解?(2)当a , b , c 满足何种关系时,方程组有无穷多组解?求出其通解. 10. 两个齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=++=++=++⎪⎪⎩⎪⎪⎨⎧=++=++=++00000011212111111121211111n tn t n n n n n mn m n n n n x b x b x b x b x b x b x a x a x a x a x a x a 与 的系数矩阵A 与B 的秩都小于n /2. 证明:这两个方程组必有相同的非零解. 11. 设12s ααα,,,为某齐次线性方程组的一个基础解系, 11122,t t βαα=+21223,t t βαα=+ 12112,,,s s t t t t βαα=+其中为任意常数. 问当12,t t 满足什么条件时, 12s βββ,,,也为该方程组的一个基础解系.12.设四元齐次线性方程组(Ⅰ)为 ⎩⎨⎧=-++=-+020324321321x x x x x x x , 且已知另一四元齐次线性方程组(Ⅱ)的一个基础解系为 T T a a )(,)(8,4,2,11,2,1,221+-=+-=αα(1) 求方程组(Ⅰ)的一个基础解系; (2) a 为何值时,(Ⅰ)与(Ⅱ)有非零公共解?在有非零公共解时, 求出全部非零公共解.13.设 r n -γγγγ,,,,210 为非齐次线性方程组A X = β 的n - r +1个线性无关的解向量,其中r = R (A ).证明:00201,,,γγγγγγ----r n 是其导出组AX = 0的一个基础解系. 14.若线性方程组n n n n n nn n n a x a x b a x a x b a x a x b ++=⎧⎪++=⎪⎨⎪⎪++=⎩111112112211 的系数矩阵的秩等于矩阵B =1111110n n nnn na ab a a b b b ⎛⎫⎪⎪ ⎪ ⎪ ⎪⎝⎭的秩. 证明此方程组有解.12312315. 4, ()3, ,,,2200,20028.AX B R A αααααα==⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设元非齐次线性方程组已知为方程组的解其中求该方程组的通解16. 设线性方程组Ⅰ: 123123212302040x x x x x ax x x a x ++=⎧⎪++=⎨⎪++=⎩Ⅱ: 123 21x x x a ++=-有公共解, 求a 的值及所有公共解.。

《高等代数》课程习题 .doc

《高等代数》课程习题 .doc

《高等代数》课程习题第1章行列式习 题 1.11. 计算下列二阶行列式:(1)2345 (2)2163- (3)x x x x cos sin sin cos - (4)11123++-x x x x (5)2232ab b a a (6)ββααcos sin cos sin (7)3log log 1a b b a2. 计算下列三阶行列式:(1)341123312-- (2)00000d c b a (3)d c e ba 0000 (4)zy y x x 00002121(5)369528741 (6)01110111-- 3. 用定义计算行列式:(1)4106705330200100 (2)114300211321221---(3)500000000400030020001000 (4) dc b a 100110011001---. 4.用方程组求解公式解下列方程组:(1) ⎪⎩⎪⎨⎧=-+=--=--0520322321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=+-=-+=++232120321321321x x x x x x x x x习 题 1.21. 计算下列行列式:(1)123112101 (2)15810644372---- (3)3610285140 (4)655565556 2.计算行列式(1)2341341241231234(2)12114351212734201----- (3)524222425-----a a a(4)322131399298203123- (5)0532004140013202527102135---- 3.用行列式的性质证明:(1)322)(11122b a b b a ab aba -=+(2)3332221113333332222221111112c b a c b a c b a a c c b b a a c c b b a a c c b b a =+++++++++ 4.试求下列方程的根:(1)022223356=-+--λλλ(2)0913251323221321122=--x x5.计算下列行列式(1)8364213131524273------ (2)efcfbfde cd bdae ac ab---(3)2123548677595133634424355---------- (4)111110000000002211n n a a a a a a ---谢谢观赏(5)xaaa x a a a x(6)abb a b a b a 000000000000习 题 1.31. 解下列方程组(1)⎪⎩⎪⎨⎧-=++=+--=++1024305222325321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x2. k 取何值时,下列齐次线性方程组可能有非零:(1) ⎪⎩⎪⎨⎧=+-=++-=++0200321321321x x x x kx x kx x x (2)⎪⎩⎪⎨⎧=+-=++=++0300321321321x x x x kx x x x kx 习 题 五1.41.计算下列行列式(1)3010002113005004, (2)113352063410201-- (3)222111c b a c b a(4)3351110243152113------, (5)nn n n n b a a a a a b a a a a D ++=+212112111112.用克莱姆法则解线性方程(1)⎪⎩⎪⎨⎧=+-=-+=--114231124342321321321x x x x x x x x x (2)⎪⎪⎩⎪⎪⎨⎧=++=+-+=+-+=++3322212543143214321321x x x x x x x x x x x x x x3.当λ为何值时,方程组⎪⎩⎪⎨⎧=+-=+-=++0020321321321x x x x x x x x x λλ可能存在非零解?4.证明下列各等式(1) 222)(11122b a b b a a b ab a -=+(2) ))()((4)2()1()2()1()2()1(222222222c b a c a b c c c b b ba a a ---=++++++ (3) ))()()()()()((111144442222d c b a d c d b c b d a c a b a d c b a d c b a d c b a+++------=5.试求一个2次多项式)(x f ,满足1)2(,1)1(,0)1(-==-=f f f .第2章矩阵 习 题 2.21.设 ⎥⎦⎤⎢⎣⎡=530142A , ⎥⎦⎤⎢⎣⎡-=502131B , ⎥⎦⎤⎢⎣⎡--=313210C , 求3A -2B +C 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 线性方程组 自我检测题
一.判断题
1.含零向量的向量组线性相关.
2.若一向量组的一个部分组线性相关,则它也线性相关.
3.线性无关向量组的任何一个部分组均线性无关.
4. 任一向量组都有极大线性无关向量组.
5. 一向量组的极大线性无关组是唯一的.
6.方程个数小于未知数个数的齐次线性方程组必有非零解.
7. 向量组线性相关的充要条件是该向量组的秩小于它所含向量的个数.
8.若向量组123,,ααα线性相关,则3α可由12,αα线性表出.
9. 若向量12,αα线性相关, 12,ββ线性相关, 1122,αβαβ++线性相关.
10. 若向量组123,,ααα线性无关,则12αα+,23αα+,31αα+也线性无关.
11. 如果向量组12,,,n ααα 线性相关,则12αα+,23αα+,...…,
1n n αα-+,1n αα+线性相关。

12.若向量12,αα线性无关, 3α不能由12,αα线性表出,则向量组123,,ααα线性无关.
13.若n 阶矩阵A 的秩r <n ,则A 的任意r 个列向量都线性无关.
14.线性方程组的解的线性组合仍是它的解。

15. 线性方程组有解的充要条件是系数矩阵与增广矩阵的秩相同。

16.齐次线性方程组系数矩阵秩r <n ,则它的n-r 个解构成一基础解系。

17.任意n+1个n 维向量必线性相关。

18. 矩阵A 的秩大于等于r 的充要条件是A 有一个r 级子式不为0.
19. 一向量组线性无关的充要条件是其中任意两个向量不成比例。

20. 一向量组线性无关的充要条件是其中任意两个向量线性无关.
二.计算与证明
1.已知123123(,,)(,,)r r αααβββ=,1(1,2,3)'α=-,2(3,0,1)'α=,3(9,6,7)'α=-,1(0,1,1)'β=-,2(,2,1)'a β=,3(,1,0)'b β=,且3β可由123,,ααα线性表示,求a,b 。

2. R 是实数域,对任意正整数m n ≥,证明:在n R 中存在m 个向量12,,,m ααα ,使其
中任意n 个向量线性无关。

3.a 取何值时,齐次线性方程组 1231231
23102(2)2033(3)0a x x x x a x x x x a x ++=⎧⎪+++=⎨⎪+++=⎩(+) 有非零解?并求通解。

4.设线性方程组⎪⎩⎪⎨⎧-=++-=++-=++223321
321321ax x x x ax x a x x ax ,讨论a 的值,使(1)方程组有唯一解;(2)方
程组无解;(3)方程组有无穷多组解,并求其一般解。

5.将军点兵,三三数之剩二,五五数之剩三,七七数之剩二,问兵几何?(求在500至1000范围内的解)
6.百鸡术:母鸡每只5钱,公鸡每只3钱,小鸡3只1钱,百钱买百鸡,各买几何?。

相关文档
最新文档