《高等代数》(上)题库

《高等代数》(上)题库
《高等代数》(上)题库

《高等代数》(上)题库

第一章多项式

填空题

(1.7)1、设用x-1除f(x)余数为5,用x+1除f(x)余数为7,则用x2-1除f(x)余数

是。

(1.5)2、当p(x)是多项式时,由p(x)| f(x)g(x)可推出p(x)|f(x)或

p(x)|g(x)。

(1.4)3、当f(x)与g(x) 时,由f(x)|g(x)h(x)可推出f(x)|h(x)。

(1.5)4、设f(x)=x3+3x2+ax+b 用x+1除余数为3,用x-1除余数为5,那么a= b

(1.7)5、设f(x)=x4+3x2-kx+2用x-1除余数为3,则k= 。

(1.7)6、如果(x2-1)2|x4-3x3+6x2+ax+b,则a= b= 。

(1.7)7、如果f(x)=x3-3x+k有重根,那么k= 。

(1.8)8、以l为二重根,2,1+i为单根的次数最低的实系数多项式为

f(x)= 。

(1.8)9、已知1-i是f(x)=x4-4x3+5x2-2x-2的一个根,则f(x)的全部根

是。

(1.4)10、如果(f(x),g(x))=1,(h(x),g(x))=1 则。

(1.5)11、设p(x)是不可约多项式,p(x)|f(x)g(x),则。

(1.3)12、如果f(x)|g(x),g(x)|h(x),则。

(1.5)13、设p(x)是不可约多项式,f(x)是任一多项式,则。

(1.3)14、若f(x)|g(x)+h(x),f(x)|g(x),则。

(1.3)15、若f(x)|g(x),f(x)| h(x),则。

(1.4)16、若g(x)|f(x),h(x)|f(x),且(g(x),h(x))=1,则。(1.5)17、若p(x) |g(x)h(x),且则p(x)|g(x)或p(x)|h(x)。

(1.4)18、若f(x)|g(x)+h(x)且f(x)|g(x)-h(x),则。

(1.7)19、α是f(x)的根的充分必要条件是。

(1.7)20、f(x)没有重根的充分必要条件是。

答案

1、-x+6

2、不可约

3、互素

4、a=0,b=1

5、k=3

6、a=3,b=-7

7、k=±2

8、x5-6x4+15x3-20x2+14x-4 9、1-i,1+i 1+2,1-2 10、(f(x)h(x),g(x))=1 11、p(x)|f(x)或p(x)|g(x) 12、f(x)|h(x) 13、p(x)|f(x)或(p(x),f(x))=1 14、

f(x)|h(x) 15、f(x)|g(x)+h(x) 16、g(x)h(x)|f(x) 17、p(x)是不可约

多项式 18、f(x)|g(x)且f(x)|h(x) 19、x-α|f(x) 20、(f(x),f’(x))=1

判断并说明理由

(1.1)1、数集}{1,,|2-=+i b a bi a 是有理数是数域( )

(1.1)2、数集}{1,,|2-=+i b a bi a 是整数是数域 ( )

(1.3)3、若f(x)|g(x)h(x),f(x)|g(x),则f(x)|h(x) ( ) (1.3)4、若f(x)|g(x)+h(x),f(x)|g(x),则f(x)|h(x) ( ) (1.4)5、若g(x)|f(x),h(x)|f(x),则g(x)h(x)|f(x) ( )

(1.4)6、若(f(x)g(x),h(x))=1,则(f(x),h(x))=1 (g(x),h(x))=1 ( )

7、若f(x)|g(x)h(x),且f(x)|g(x),则(f(x),h(x))=1 ( )

(1.6)8、设p(x)是数域p 上不可约多项式,那么如果p(x)是f(x)的k 重因式,则p(x)是f(x)的k-1重因式。 ( )

(1.9)9、如果f(x)在有理数域上是可约的,则f(x)必有有理根。( )

(1.9)10、f(x)=x 4-2x 3+8x-10在有理数域上不可约。( )

(1.1)11、数集}{

是有理数b a b a ,|2+是数域 ( ) (1.1)12、数集}{为整数n n |2是数域 ( )

(1.3)13、若f(x)|g(x)h(x),则f(x)|g(x)或f(x)|h(x) ( )

(1.3)14、若f(x)|g(x),f(x)|h(x),则f(x)|g(x)h(x) ( )

(1.3)15、若f(x)|g(x)+h(x),f(x)|g(x)-h(x),则f(x)|g(x)且f(x)|h(x)

( )

(1.4)16、若有d(x)=f(x)u(x)+g(x)v(x),则d(x)是f(x),g(x)的最大公因式 ( )

(1.6)17、若p(x)是f ’(x)的k 重因式,则p(x)是f(x)的k+1重因式( ) (1.7)18、如果f(x)没有有理根,则它在有理数域上不可约。( )

(1.8)19、奇次数的实系数多项式必有实根。( )

(1.9)20、 f(x)=x 6+x 3+1在有理数域上可约。( )

答案:1、√ 2、× 3、× 4、√ 5、× 6、√ 7、× 8、√ 9、× 10、√11、√ 12、× 除法不封闭 13、× 当f(x)是不可约时才成立 14、× 如f(x)=x 2,g(x)=h(x)=x 时 不成立 15、√ 16、× 17、×如f(x)=x k+1+1 18×、19、√虚根成对 20、× 变形后用判别法知 不可约

选择题

(1.1)1、以下数集不是数域的是( )

A 、{是有理数b a bi a ,|+,i 2= -1

} B 、 {是整数b a bi a ,|+,i 2= -1

} C 、{}是有理数

b a b a ,|2+

D 、{}全体有理数

(1.3)2、关于多项式的整除,以下命题正确的是 ( )

A 、若f(x)|g(x)h(x),且f(x)|g(x)则f(x)|h(x)

B 、若g(x)|f(x),h(x)|f(x),则g(x)h(x)|f(x)

C 、若f(x)|g(x)+h(x),且f(x)|g(x),则/ f(x)|h(x)

D 、若f(x)|g(x),f(x)|h(x),则f(x)|g(x)h(x)

(1.4)3、关于多项式的最大公因式,以下结论正确的是 ( )

A 、若f(x)|g(x)h(x) 且f(x)|g(x) ,则(f(x),h(x))=1

B 、若存在u(x),v(x),使得f(x)u(x)+g(x)v(x)=d(x),则d(x)是f(x)和g(x)的最大公因式

C 、若d(x)|f(x),且有f(x)u(x)+g(x)v(x) =d(x),则d(x)是f(x)和g(x)的最大公因式

D 、若(f(x)g(x),h(x))=1,则(f(x),h(x))=1且(g(x),h(x))=1( )

(1.7)4、关于多项式的根,以下结论正确的是 ( )

A 、如果f(x)在有理数域上可约,则它必有理根。

B 、如果f(x)在实数域上可约,则它必有实根。

C 、如果f(x)没有有理根,则f(x)在有理数域上不可约。

D 、一个三次实系数多项式必有实根。

(1.6)5、关于多项式的重因式,以下结论正确的是( )

A 、若f(x)是f ’(x)的k 重因式,则p(x) 是f(x)的k+1重因式

B 、若p(x)是f(x)的k 重因式,则p(x) 是f(x),f ’(x)的公因式

C 、若p(x)是f ’(x)的因式,则p(x)是f(x)的重因式

D 、若p(x)是f(x)的重因式,则p(x)是))

(),(()(x f x f x f 的单因式 (1.7)6、关于多项式的根,以下结论不正确的是 ( )

A 、α是f(x)的根的充分必要条件是x-α|f(x)

B 、若f(x)没有有理根,则f(x)在有理数域上不可约

C 、每个次数≥1的复数系数多项式,在复数域中有根

D 、一个三次的实系数多项式必有实根

(1.7)7、设f(x)=x 3-3x+k 有重根,那么k=( )

A 、1

B 、-1

C 、±2

D 、0

(1.9)8、设f(x)=x 3-3x 2+tx-1是整系数多项式,当t=( )时,f(x)在有理数域上可约。

A 、1

B 、0

C 、-1

D 、3或-5

(1.9)9、设f(x)=x 3-tx 2+5x+1是整系数多项式,当t=( )时,f(x)在有理数域上可约。

A 、t=7或3

B 、1

C 、-1

D 、0

(1.9)10、设f(x)=x 3+tx 2+3x-1是整系数多项式,当t=( )时,f(x)在有理数域上可约。

A 、1

B 、-1

C 、0

D 、5或-3

(1.5)11、关于不可约多项式p(x),以下结论不正确的是( )

A 、若p(x)|f(x)g(x),则p(x)|f(x)或p(x)|g(x)

B 、若q(x)也是不可约多项式,则(p(x),q(x))=1或p(x)=cq(x) c ≠0

C 、p(x)是任何数域上的不可约多项式

D 、p(x)是有理数域上的不可约多项式

(1.9)12、设f(x)=x 5+5x+1,以下结论不正确的是( )

A 、f(x)在有理数域上 不可约

B 、f(x)在有理数域上 可约

C 、f(x)有一实根

D 、f(x)没有有理根

(1.9)13、设f(x)=x p +px+1,p 为奇素数,以下结论正确的是 ( )

A 、f(x)在有理数域上 不可约

B 、f(x)在有理数域上 可约

C 、f(x)在实数域上 不可约

D 、f(x)在复数域上 不可约

答案:

1、B

2、C

3、D

4、D

5、D

6、B

7、C

8、D

9、A 10、D 11、C

12、B 13、A

计算题

(1.3)1、求m ,p 的值使 x 2+3x+2|x 4-mx 2-px+2

解:用带余除法 求得r(x)=-(3m+p+15)x-(2m+12)令r(x)=0即???=+=++0

60153m p m

求得m= -6 p=3

(1.6)2、判断f(x)=x 4-6x 2+8x-3有无重因式,如果有,求其重数

解:f ’(x)=4x 3-12x+8 (f(x),f ’(x))=(x-1)2

x-1是f(x)的三重因式

(1.7)3、设f(x)=x 4-3x 3+6x 2-10x+16, C=3,求f(c)

解:用综合除法求得f(c)=40

(1.7)4、决是t 的值,使f(x)=x 3-3x 2+tx-1 有重根

解J :由辗转除法使(f(x),f ’(x))≠求得t=3 或t=4

15-当t=3时 f(x)有三重根1 当t=415-时,f(x)有二重根-2

1 (1.9)5、设f(x)=x 5+x 4-2x 3-x 2-x+2,求f(x)的有理根,并写出f(x)在实数域和复数域上

的标准分解式。

解:有理根是1(二重),2 实数域上分解式为f(x)=(x-1)2(x+2)(x 2+x+1)

复数域上分解式为f(x)=(x-1)2(x+2)(x+

21-23i)(x+)2321i + (1.9)6、求f(x)=4x 4-7x 2-5x+1的有理根,并写出f(x)在有理数域上的标准分解式。 解:有理根为2

1-(二重)分解式为f(x)=4(x+21)2(x 2-x-1) (1.9)7、求f(x)=x 5+x 4-6x 3-14x 2-11x-3的有理根,并写出f(x)在复数域上的标准分解式

解:有理根为-1(四重)3,分解式f(x)=(x+1)4(x-3)

(1.8)8、已知i, z-i 是f(x)=2x 5-7x 4+8x 3-2x 2+6x+5的两个根,求f(x)的全部根

解:全部根为 i,-i,2-i,2+i, 2

1- (1.8)9、求以1-i, i 为根的次数最低的复系数多项式f(x)

解:f(x)=x 2-x+(1+i)

(1.8)10、求以1为二重根,1=I 为单根的次数最低近的实系数多项式f(x).

解:f(x)=x 4-4x 3-x 2-6x+2

(1.8)11、已知1-i 是f(x)=x 4-4x 3-5x 2-2x-2的根,求f(x)的全部根。

解:全部根为1+i,1-i,1+2,1-2

证明题

(1.3)1、试证用x 2-1除f(x)所得余式为

2

)1()1(2)1(1-++--f f x f f )( 证明:设余式为ax+b ,则有f(x)=(x2-1)q(x)+ax+b

f(1)=a+b ,f(-1)=-a+b

求得a=2

)1()1(,2)1()1(-+=--f f b f f (1.3)2、证明,h(x)(f(x),g(x))=(f(x)h(x),g(x)h(x)),其中h(x)是首项系数为1的多项式。

证明:设(f(x),g(x))=d(x) ,则h(x)d(x)|h(x)f(x) h(x)d(x)|h(x)g(x),又存在u(x),v(x),使得f(x)u(x)+g(x)v(x)=d 有h(x)f(x)u(x)+h(x)g(x)v(x)=h(x)g(x)于是

h (x )d(x)=(h(x)f(x),h(x)g(x))

(1.4)3、证明,如果f(x)|g(x)h(x),且(f(x),g(x))=1,则f(x)|h(x)

证明:由(f(x),g(x))=1,存在u(x),v(x)使得f(x)u(x)+g(x)v(x)=1,从而

f(x)u(x)h(x)+g(x)v(x)h(x)=h(x),f(x)|g(x)h(x),f(x)h(x) 所以

f(x)|h(x)

(1.4)4、证明,(f(x)+g(x),f(x)-g(x))=(f(x),g(x))

证明:(f(x)+g(x))=d(x) 则d(x)|f(x)+g(x)d(x)|f(x)-g(x) 设d 1(x) 是

f(x)+g(x),f(x)-g(x)r 的任一公因式 则d 1(x)|f(x)+g(x)+f(x)-g(x)=zf(x)

d 1(x)|f(x)+g(x)-f(x)+g(x)=zg(x) 故d 1(x)|f(x),d 1(x)|g(x),从而

d 1(x)|d(x) 得证 (1.5)5、证明,g(x)|f(x)的充分必要条件是g 2(x)|f 2(x)

证明:设f(x)=g(x)h(x), 则f 2(x)=g 2(x)h 2(x)即g 2(x)|f(x) 反之,设g 2(x)|f 2(x),将f(x),g(x)分解f(x)= aP 1l1(x)…p s ls (x),g(x)=bp 1r1(x)…p s rs (x) 其中,li ri

为非负整数,p i (x)为互不相同的可约多项式那么f 2(x)=a 2p 12l1(x)…

p s 2ls (x),g 2(x)=b 2p 12r1(x)…p s 2rs (x) 由g 2(x)|f 2(x),必有2r i ≤2l i ,即ri ≤l i 于是

g(x)|f(x)。

(1.7)6、设f(x)=a n x n +a n-1x n-1…+a 1x+a 0有n 个非零根,α1α2αn ,证明

是n ααα1,,1,121 g (x )=a 0x n +a 1x n-1+…+a n-1x+a n 的n 个根。

证明:设α为f(x)的任非零根,则

f(α)=a n αn +a n-1αn-1+…+a 1α+a o =0

中国农业大学2021年601高等代数考试大纲

《高等代数》考试大纲 一、考试性质 《高等代数》课程是数学专业硕士研究生入学考试必考科目之一,有些对数学知识要求较高的理工类非数学专业也考此门课程,是由教育部授权各招生院校自行命题的选拔性考试。《高等代数》考试的目的是测试考生的高等代数相关基础知识和分析及运用能力。 二、评价目标 要求考生具有较全面的高等代数基础知识,并且具有应用高等代数知识解题、证明及分析问题的能力。 三、考试内容 (1)行列式的定义、性质及各种计算方法; (2)向量组的线性相关与无关、向量组的秩;线性方程组有解的充分必要条件及线性方程组求解的各种方法; (3)矩阵的各种运算(包括矩阵的逆运算);矩阵的分块,矩阵的初等变换,广义逆矩阵,矩阵的相抵(也叫等价)、相似和合同;矩阵的特征值与特征向量;矩阵可对角化的各种判别方法。 (4)二次型的标准型及其求法;正定二次型与正定矩阵及其判别。 (5)一元多项式的带余除法、最大公因式;不可约多项式与唯一因式分解定理; 重因式及其判定;有理数域上的不可约多项式及其判别方法; (6)线性空间的定义、线性空间的基和维数、线性空间的同构、商空间以及其子空间的交与直和;线性变换的核与象及矩阵表示;线性变换的特征值与特征向量,可对角化的条件,不变子空间;线性变换和矩阵的最小多项式; 线性变换和矩阵的约当标准形。-矩阵及其标准型和应用。 (7)欧几里得空间及性质,正交矩阵、正交变换与对称变换。 四、考试形式和试卷结构 (一)试卷满分及考试时间 本试卷满分为150分,考试时间为180分钟。 (二)答题方式

答题方式为闭卷、笔试。 试卷由试题和答题纸组成。答案必须写在答题纸相应的位置上。(三)试卷题型 本试卷以解答题为主,包括计算题和证明题两部分。同时,根据情况,也可能含有填空、选择题,但分值不超过总分的20%。

高等代数北大版课程教案-第5章二次型

第五章 二次型 §1 二次型的矩阵表示 一 授课内容:§1 二次型的矩阵表示 二 教学目的:通过本节的学习,掌握二次型的定义,矩阵表示,线性 替换和矩阵的合同. 三 教学重点:矩阵表示二次型 四 教学难点:二次型在非退化下的线性替换下的变化情况. 五 教学过程: 定义:设P 是一数域,一个系数在数域P 中的n x x x ,,,21 的二次齐次多项式 n n n x x a x x a x a x x x f 11211221112122),,,( n n x x a x a 2222222 (2) n nn x a (3) 称为数域P 上的一个n 元二次型,或者,简称为二次型. 例如:2 3 322231212 13423x x x x x x x x x 就是有理数域上的一个3元二次型. 定义1 设n x x x ,,,21 ,n y y y ,,,21 是两组文字,系数在数域P 中的一组关系式 n nn n n n n n n n y c y c y c x y c y c y c x y c y c y c x 22112222121212121111 (4) 称为n x x x ,,,21 到n y y y ,,,21 的一个线性替换,或则,简称为线性替换.如果系数行列式 0 ij c ,那么线性替换(4)就称为非退化的. 二次型的矩阵表示:

令 ji ij a a ,j i 由于 i j j i x x x x ,那么二次型(3)就可以写为 n n n x x a x x a x a x x x f 112112211121),,,( n n x x a x a x x a 2222221221 …+2 2211n nn n n n n x a x x a x x a n i n j j i ij x x a 11 (5) 把(5)的系数排成一个n n 矩阵 nn n n n n a a a a a a a a a A 21 22221 112 11 它称为二次型(5)的矩阵.因为ji ij a a ,n j i ,,2,1, ,所以 A A . 我们把这样的矩阵称为对称矩阵,因此,二次型(5)的矩阵都是对称的. 令 n x x x X 21,于是,二次型可以用矩阵的乘积表示出来, n x x x AX X 2 1 nn n n n n a a a a a a a a a 21 22221 11211 n x x x 21 n nn n n n n n n n x a x a x a x a x a x a x a x a x a x x x 221 122221 21121211121 n i n j j i ij x x a 11. 故 AX X x x x f n ),,,(21 .

2019年沈阳师范大大学初试625高等代数一考试大纲

2019年全国硕士研究生招生考试大纲 科目代码:625 科目名称:高等代数一 适用专业:基础数学、计算数学、应用数学、 运筹学与控制论 制订单位:沈阳师范大学 修订日期:2018年9月

《高等代数一》考试大纲 一、课程简介 高等代数是数学专业的基础课之一。主要内容包括:多项式理论;线性方程组;行列式;矩阵;二次型;线性变换;欧氏空间等。本课程不仅注重讲授代数学的基本知识,更强调对于学生的代数学基本思想和基本方法的训练、线性代数基本计算的训练以及综合运用分析、几何、代数方法处理问题的初步训练。既有较强的抽象性和概括性,又具有广泛的应用性。对于培养学生的逻辑推理能力、抽象思维能力和运算能力有着重要作用。 二、考查目标 主要考察考生对高等代数的基本理论和基本方法的理解和掌握情况及抽象思维能力、逻辑推理能力和运算能力。 三、考试内容及要求 第一章多项式 一、考核知识点 1、熟练掌握一元多项式整除的概念及性质。 2、熟练掌握最大公因式的求法、性质及多项式互素的充要条件。 3、熟悉因式分解定理的内容,了解标准分解式的概念。 4、熟悉重因式的概念,熟练掌握k重因式的判定方法。 5、熟悉有关多项式函数的概念、余数定理。 6、熟练掌握代数基本定理,复系数多项式、实系数多项式因式分解定理的内容。 7、掌握本原多项式的概念。熟练掌握有理系数多项式与整系数多项式因式分解的关系。熟练掌握整系数多项式有理根的性质和求法。熟练掌握Eisenstein判别法及应用。 二、考核要求 识记:数域的概念,一元多项式的概念和运算性质,次数定理, 整除的概念和常用性质,带余除法,最大公因式的概念和性质,不可约多项式的概念和性

第七章线性变换总结篇(高等代数)

第 7章 线性变换 7.1知识点归纳与要点解析 一.线性变换的概念与判别 1.线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就是其保持向量的加法与数量乘法的变换。 2.线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3.线性变换的性质 设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈。 性质1. ()()00,σσαα==-; 性质2. 若12s ,, ,ααα线性相关,那么()()()12s ,, ,σασασα也线性相关。 性质3. 设线性变换σ为单射,如果12s ,, ,ααα线性无关,那么()()()12s ,, ,σασασα 也线性无关。 注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=++ + 记:

()()112111222 2121212,,,,, ,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? 于是,若()dim V n =,12,, ,n ααα是V 的一组基,σ是V 的线性变换, 12,, ,m βββ是 V 中任意一组向量,如果: ()()()11111221221122221122n n n n m m m mn n b b b b b b b b b σβααασβααασβααα=+++=+++=++ + 记: ()()()()()1212,,,,m m σβββσβσβσβ= 那么: ()()1121 112222121212,,,,, ,m m m n n n mn b b c b b c b b c σβββααα?? ? ? = ? ??? 设112111222212m m n n mn b b c b b c B b b c ?? ? ? = ? ??? ,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是 12,, ,m ηηη的一个极大线性无关组,那么()()() 12 ,r i i i σβσβσβ就是 ()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的 秩等于秩()B 。 4. 线性变换举例 (1)设V 是数域P 上的任一线性空间。 零变换: ()00,V αα=?∈; 恒等变换:(),V εααα=?∈。 幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使 得σ =m 0,就称σ为幂零变换。

高等代数考试大纲

高等代数考试大纲 Ⅰ考查目标 高等代数课程是一门基础理论课.近年来,由于自然科学,社会科学和工程技术的迅速发展,特别是由于电子计算机的普遍应用,使得代数学得到日益广泛的应用.这就要求数学专业的本科学生不仅了解代数学的一些计算问题,还应具备代数学的基础理论知识,以便融会贯通的运用代数学的工具去解决理论上和实践上遇到的各种问题. 本课程包括一元多项式理论,线性代数,其中以线性代数为主,具有很强的抽象性与逻辑性.本课程的考查注重学生科学的思维方式,分析问题和解决问题的能力;同时渗透现代数学的观点和的思想.通过本课程的考查,能体现“学生掌握多项式理论的基本概念,线性方程组的基本理论,矩阵的基本运算和技巧,线性空间与欧几里得空间的基本性质,线性变换的基本概念和方法”的基本情况.考查学生的抽象思维能力,解决实际问题的方法,从而为学生的研究生阶段的学习打下必要的代数学基础. 难度以应届本科优秀学生能取得及格以上成绩为基准. Ⅱ考试形式和试卷结构 1填空题约占30% 2计算题约占40% 3证明题约占30%.可以根据需要将证明题分为基本证明题和综合证明题两大部分. 4、试卷总分150分. Ⅲ考查范围 第一部分多项式 一多项式代数与多项式函数 二最大公因式和互质(与数域扩充无关的性质) 三因式分解(与数域扩充有关的性质)及应用 第二部分行列式

一行列式的定义、性质及应用 二行列式的计算 第三部分矩阵初步 一矩阵代数 二矩阵的初等变换及应用 三方块矩阵的初等变换及应用 第四部分线性空间 一线性空间的定义 二向量的线性关系 三子空间与空间直和分解 第五部分线性变换 一线性映射 二线性变换 三同构对应及应用 第六部分线性方程组 一齐次线性方程组解的存在性、唯一性与表示 二非齐次线性方程组解的存在性、唯一性与表示三线性方程组的反问题和矩阵方程 第七部分矩阵的秩 一矩阵的秩的等价刻划 二关于矩阵秩的命题及应用 第八部分线性空间同构

(完整word版)高等代数教案北大版第六章.doc

授课内容教学时数教学目标教学重点教学难点 教学方法与 手段 教 学 过 程 第六章线性空间第一讲集合映射 2授课类型讲授通过本节的学习, 掌握集合映射的有关定义、运算, 求和号与乘积号的定义 集合映射的有关定义 集合映射的有关定义 讲授法启发式 1.集合的运算 , 集合的映射 ( 像与原像、单射、满射、双射 ) 的概念 定义 : ( 集合的交、并、差 ) 设S是集合 , A与B的公共元素所组成的集合 成为 A 与 B 的交集,记作A B ;把 A 和B中的元素合并在一起组成的集合成 为 A 与 B 的并集,记做 A B ;从集合 A中去掉属于 B 的那些元素之后剩下的元素组成的集合成为 A 与B的差集,记做A B . 定义 : ( 集合的映射 ) 设 A B 为集合 . 如果存在法则 f , 使得 A 中任意元素 、 a 在法则f下对应B中唯一确定的元素( 记做f (a) ), 则称f是A到B的一个映射 , 记为 f : A B, a f (a). 如果 f (a) b B , 则 b 称为a在 f 下的像,a称为 b 在 f 下的原像. A 的所有元素在 f 下的像构成的 B 的子集称为 A 在 f 下的像,记做 f ( A) ,即f ( A) f ( a) | a A . 若 a a' A, 都有 f (a) f (a'), 则称 f 为单射.若 b B, 都存在a A , 使得f (a) b ,则称 f 为满射 . 如果f既是单射又是满射, 则称f为双射 , 或称一一对应 . 2.求和号与求积号 (1)求和号与乘积号的定义

为了把加法和乘法表达得更简练 , 我们引进求和号和乘积号 . 设给定某个数域 K 上 n 个数 a 1, a 2 , , a n , 我们使用如下记号 : n n a 1 a 2 a n a i , a 1a 2 a n a i . i 1 i 1 当然也可以写成 a 1 a 2 a n a i , a 1 a 2 a n a i . 1 i n 1 i n (2) 求和号的性质 容易证明 , n n n n n n m m n a i a i , (a i b i ) a i b i , a ij a ij . i 1 i 1 i 1 i 1 i 1 i 1 j 1 j 1 i 1 事实上 , 最后一条性质的证明只需要把各个元素排成如下形状 : a 11 a 12 a 1 m a 21 a 22 a 2 m a n1 a n2 a nm 分别先按行和列求和 , 再求总和即可 . 讨论、练习与 作业 课后反思

7.《高等代数》考试大纲

《高等代数》考试大纲 一、课程简介 高等代数是数学专业的基础课之一。主要内容包括:多项式理论;线性方程组;行列式;矩阵;二次型;线性变换;欧氏空间等。本课程不仅注重讲授代数学的基本知识,更强调对于学生的代数学基本思想和基本方法的训练、线性代数基本计算的训练以及综合运用分析、儿何、代数方法处理问题的初步训练。既有较强的抽象性和概括性,乂具有广泛的应用性。对于培养学生的逻辑推理能力、抽象思维能力和运算能力有着重要作用。 二、考查目标 主要考察考生对高等代数的基本理论和基本方法的理解和掌握情况及抽象思维能力、逻辑推理能力和运算能力。 三、考试内容及要求 第一章多项式 一、考核知识点 1、熟练掌握一元多项式整除的概念及性质。 2、熟练掌握最大公因式的求法、性质及多项式互素的充要条件。 3、熟悉因式分解定理的内容,了解标准分解式的概念。 4、熟悉重因式的概念,熟练掌握k重因式的判定方法。 5、熟悉有关多项式函数的概念、余数定理。 6、熟练掌握代数基本定理,复系数多项式、实系数多项式因式分解定理的内容。 7、掌握本原多项式的概念。熟练掌握有理系数多项式与整系数多项式因式分解的关系。熟练掌握整系数多项式有理根的性质和求法。熟练掌握EiSenStein 判别法及应用。 二、考核要求 识记:数域的概念,一元多项式的概念和运算性质,次数定理,整除的概念和常用性质,带余除法,最大公因式的概念和性质,不可约多项式的概念和性质,因式分解及唯一性定理,标准分解式的概念,重因式的概念、性质,多项式函数的概念、性质及根,代数基本定理,复系数与实系数多项式的因式分解定理,本原多项式的概念、性质,EiSenStein判别法。

高等代数北大版教案-第6章线性空间

第六章 线性空间 §1 集合映射 一 授课内容:§1 集合映射 二 教学目的:通过本节的学习,掌握集合映射的有关定义、运算,求和号 与乘积号的定义. 三 教学重点:集合映射的有关定义. 四 教学难点:集合映射的有关定义. 五 教学过程: 1.集合的运算,集合的映射(像与原像、单射、满射、双射)的概念 定义:(集合的交、并、差) 设S 是集合,A 与B 的公共元素所组成的集合成为A 与B 的交集,记作B A ?;把A 和B 中的元素合并在一起组成的集合成为A 与B 的并集,记做B A ?;从集合A 中去掉属于B 的那些元素之后剩下的元素组成的集合成为A 与B 的差集,记做B A \. 定义:(集合的映射) 设A 、B 为集合.如果存在法则f ,使得A 中任意元素a 在法则f 下对应B 中唯一确定的元素(记做)(a f ),则称f 是A 到B 的一个映射,记为 ).(,:a f a B A f → 如果B b a f ∈=)(,则b 称为a 在f 下的像,a 称为b 在f 下的原像.A 的所有元素在f 下的像构成的B 的子集称为A 在f 下的像,记做)(A f ,即 {}A a a f A f ∈=|)()(. 若,'A a a ∈≠?都有),'()(a f a f ≠ 则称f 为单射.若 ,B b ∈?都存在 A a ∈,使得b a f =)(,则称f 为满射.如果f 既是单射又是满射,则称f 为 双射,或称一一对应. 2.求和号与求积号 (1)求和号与乘积号的定义 为了把加法和乘法表达得更简练,我们引进求和号和乘积号. 设给定某个数域K 上n 个数n a a a ,,,21 ,我们使用如下记号:

高等代数 第四章 线性变换

第四章 线性变换 习题精解 1. 判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3) 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4) 在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f 6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ= 8) 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是. 2)当0=α时,是;当0≠α时,不是. 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α. 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β A =)(αk A ),,(321kx kx kx ),,2() ,,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α 故A 是P 3 上的线性变换. 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f 故A 为][x P 上的线性变换. 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ) A 0())((x kf x kf =k =)A ))((x f 7)不是.例如取a=1,k=I,则

高等代数考研大纲

《高等代数》考试大纲 本《高等代数》考试大纲适用于宁波大学数学相关专业硕士研究生入学考试。 本课程考核内容包括多项式理论、行列式、线性方程组、矩阵理论、二次型、线性空间、线性变换、λ-矩阵、欧氏空间九个部分. 一、多项式理论:多项式的整除,最大公因式,多项式的互素,不可约多项式与因式分解,重因式重根的判别,多项式函数与多项式的根. 重点掌握:重要定理的证明,如多项式的整除性质,Eisenstein判别法,不可约多项式的性质, 整系数多项式的因式分解定理等. 运用多项式理论证明有关问题,如与多项式的互素和不可约多项式的性质有关问题的证明与应用以及用多项函数方法证明有关的问题. 二、行列式:行列式的定义、性质和常用计算方法(如:三角形法、加边法、降阶法、递推法、按一行一列展开法、Laplace展开法、范得蒙行列式法)。 重点掌握:n阶行列式的计算及应用. 三、线性方程组:向量组线性相(无)关的判别(相应齐次线性方程组有无非零解、性质判别法、行列式判别法、矩阵秩判别法)。向量组极大线性无关组的性质、向量组之间秩的大小关系(向量组(Ι)可由向量组(Π)线性表示,则(Ι)的秩小于等于(Π)的秩)定理2及三个推论、矩阵的秩(行秩和列秩、矩阵秩的行列式判别法、矩阵秩的计算)、Cramer法则,线性方程组有(无)解的判别定理、齐次线性方程组有非零解条件(用系数矩阵的秩进行判别、用行列式判别、用方程个数判别)、基础解系的计算及其性质、齐次线性方程组通解的求法,非齐次线性方程组的解法和解的结构. 重点掌握:向量组线性相(无)关的判别、向量组之间秩与矩阵的秩、齐次线性方程组有非零解条件及基础解系的性质、非齐次线性方程组解的结构与其导出组的基础解系的性质. 四、矩阵理论:矩阵的运算,矩阵的初等变换与初等矩阵的关系及其应用(求解线性方程组、求逆矩阵、求向量组的秩)、矩阵的等价标准形、矩阵可逆的条件(与行列式、矩阵的秩、初等矩阵的关系)、伴随矩阵及其性质、分块矩阵(包括矩阵乘法的常用分块方法并证明与矩阵相关的问题)、矩阵的常用分解(如:等价分解,满秩分解,实可逆阵的正交三角分解,Jordan分解),几种特殊矩阵的常用性质(如:准对角阵,对称矩阵与反对称矩阵,伴随矩阵、幂等矩阵,幂零矩阵,正交矩阵等)。 重点掌握:利用分块矩阵的初等变换证明有关矩阵秩的等式与不等式,矩阵的逆与伴随矩阵的性质与求法,应用矩阵理论解决一些相关问题. 1

高等代数 线性变换自测题

线性变换自测题 一、填空题(每小题3分,共18分) 1.σ是22?F 上的线性变换,若??? ? ??=100 71 )(A σ,则=-)3(A σ . 2.σ:22R R →,)0,2(),(y x y x +-=σ;τ:22R R →,) ,3(),(y x y y x + -=τ, 则=+),)((y x τσ .=),)((y x τσ .=-),)(2(y x σ . 3.设???? ? ?=2231 A ,则向量???? ??11是A 的属于特征值 的特征向量. 4.若???? ? ??--=10 0001 011 A 与???? ? ? ?--10101 01k k B 相似,则k = . 5.设三阶方阵A 的特征多项式为322)(2 3 +--=λλλλf ,则=||A . 6.n 阶方阵A 满足A A =2,则A 的特征值为 . 二、判断说明题(每小题5分,共20分) 1.n 阶方阵A 至少有一特征值为零的充分必要条件是0||=A . 2.已知1 -=PBP A ,其中P 为n 阶可逆矩阵,B 为一个对角矩阵.则A 的特 征向量与P 有关. 3.σ为V 上线性变换,n ααα,,,21 为V 的基,则)(,),(),(21n ασασασ 线性无关. 4.α为V 上的非零向量,σ为V 上的线性变换,则} )(|{)(1 αησηασ==-是 V 的子空间. 三、计算题(每小题14分,共42分) 1.设??? ? ? ? ?----=a A 3 3242 111 与??? ? ? ??=b B 0 0020 002 相似. (1)求b a ,的值; (2)求可逆矩阵,使B AP P =-1.

高等代数考试科目大纲

高等代数考试科目大纲 一、考试性质 高等代数是硕士研究生入学考试科目之一,是硕士研究生招生院校自行命题的选拔性考试。本考试大纲的制定力求反映招生类型的特点,科学、公平、准确、规范地测评考生的相关基础知识掌握水平,考生分析问题和解决问题及综合知识运用能力。应考人员应根据本大纲的内容和要求自行组织学习内容和掌握有关知识。 二、评价目标 1、要求考生理解该课程的基本概念和基本理论,掌握该课程的基本方法。 2、要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力。 3、要求考生具有综合运用所学的知识分析问题和解决问题的能力。 三、考试范围及其基本要求 1、行列式 考试范围:n阶行列式的定义,n阶行列式的性质与计算。 基本要求: (1)理解排列及其逆序数,理解n阶行列式的定义,能利用定义计算行列式的值。 (2)熟练掌握行列式的性质,能熟练计算低阶行列式的值,能计算较简单的n阶行列式的值。 2、矩阵 考试范围:矩阵及其运算,分块矩阵与矩阵的初等变换,矩阵的秩,可逆矩阵。 基本要求: (1)理解矩阵、单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵、方阵的幂及矩阵的转置等概念,熟练掌握矩阵的线性运算、乘法运算、转置及其运算规律。 (2)理解分块矩阵、准对角矩阵、初等变换和初等矩阵的概念,熟练掌握分块矩阵的运算。 (3)理解初等变换与初等矩阵的概念及基本作用,了解矩阵等价的概念及性质,能用矩阵的初等变换化矩阵为标准形。 (4)理解矩阵的子式、矩阵的秩的定义,熟练掌握矩阵的秩的性质,能求矩阵的秩。 (5)理解满秩矩阵的概念,掌握满秩矩阵的性质。 (6)掌握两个方阵与其乘积的秩的关系式,能熟练运用方阵乘积的行列式的公式。 (7)理解可逆矩阵的概念,掌握可逆矩阵的性质,掌握矩阵可逆的充分必要条件。 (8)理解伴随矩阵的概念,掌握伴随矩阵的性质,会用伴随矩阵法求可逆矩阵的逆矩阵,能熟练运用矩阵的初等变换求可逆矩阵的逆矩阵,能解矩阵方程。 3、线性方程组 考试范围:向量及其线性运算,向量组的线性相关性,向量组的秩,线性方程组解的判定定理,齐次线性方程组解的结构,非齐次线性方程组解的结构。 基本要求: (1)理解n维向量的概念,熟练掌握n维向量的线性运算及其运算规律。 (2)理解向量组的线性组合的概念,能将向量表示成向量组的线性组合。 (3)理解向量组的线性相关与线性无关的定义,熟练掌握向量组线性相关、线性无关的判别法,掌握向量组线性相关、线性无关的有关重要结论。 (4)理解向量组等价、向量组的极大线性无关组和向量组秩的概念,理解向量组的秩

高等代数《高等代数》教学大纲

《高等代数》课程教学大纲 Advanced Algebra 执笔人:颜昌元编写日期:2012.7 一、课程基本信息 1.课程编号: 07010112,07010113 2.课程性质/类别:专业基础课/ 必修课 3.学时/学分:160 学时/ 10 学分 4.适用专业:数学与应用数学、信息与计算科学、统计学 二、课程教学目标及学生应达到的能力 《高等代数》是大学数学专业三门重要基础课程之一。因其内容的抽象性和理论的结构化及应用之广泛,既是数学在其它学科应用的必需基础课程,又是数学修养的核心课程。 该课程的教学目标是使学生掌握代数基本知识和理论,逐步培养学生的抽象思维能力和逻辑推理能力,使学生获得较熟练的演算技能与初步的应用能力,为后续专业课程的学习打下基础,适当了解代数的一些历史与背景。 该课程应突出传授数学思想和数学方法,突出高等代数中等价分类、结构分解、同构对应的思想,揭示课程内部本质的有机联系。 在教学过程中根据具体教学内容,帮助学生体会人类认识客观世界的一般规律:从具体个例提升到抽象本质再应用到一般情形,及本课程中体现的唯物主义辩证法;帮助学生体会本课程统一性、简单性、对称性、整齐性、不变性、奇异性等数学的内在美。 三、课程教学内容与基本要求 本课程开课时间:第一学年(共两学期),共160 学时;其中,第一学期,每周5学时,共80学时;第二学期,每周5学时,共 80学时。 (一)多项式 (20 学时) 1.主要内容: (1)数域 (2)一元多项式 (3)整除的概念 (4)最大公因式 (5)因式分解定理 (6)重因式 (7)多项式函数 (8)复系数与实系数多项式的因式分解 (9)有理系数多项式

636数学教育综合(含数学教学论、数学分析、高等代数)考试大纲

硕士研究生入学考试 《数学教育综合(含数学教学论、数学分析、高等代数)》考试大纲 (科目代码:) 学院名称(盖章):教育学院 学院负责人(签字): 编制时间:2012年9月5日

《数学教育综合(含数学教学论、数学分析、高等代数)》 考试大纲 (科目代码:) 一、考核要求 《数学教育综合(含数学教学论、数学分析、高等代数)》是为全日制学术型硕士研究生课程与教学论专业数学教学论方向研究生而设置的一门复方式考试科目。其目的是科学、公平、有效地测试考生掌握《数学教育综合(含数学教学论、数学分析、高等代数)》课程的基础知识、基本理论、基本方法的水平和分析问题、解决问题的能力,为了择优录取,确保教育硕士研究生的入学质量。 在考试形式和和试卷结构等方面有如下的基本要求: (一)试卷满分及考试时间 试卷满分为300分,考试时间为180分钟. (二)考试方式 考试方式为闭卷、笔试. (三)试卷内容结构 数学教学论100分 数学分析100分 高等代数100分 (四)试卷题型结构 简答题4小题,每题20分,共80分 论述题3小题,每题20分,共60分 分析题2小题,每题20分,共40分 解答题(包括证明题)6小题,每题20分,共120分 二、考核评价目标 《数学教育综合(含数学教学论、数学分析、高等代数)》是一门重要的专业基础课程。要求考生系统掌握数学教学理论知识与数学分析、高等代数中的核心思想、知识和方法,能够运用所学的基本理论、基本知识和基本方法分析、判断和解决有关问题。 考核的主要目标是检测考生对数学教学理论知识的掌握与理解及应用情况,了解考生高等数学的基本功底及对现代数学思想方法的掌握情况,同时检测考应用数学教学、数学理论分析与解决实际问题的能力。

第九章 欧氏空间

第八章 欧氏空间练习题 1.证明:在一个欧氏空间里,对于任意向量ηξ,,以下等式成立: (1)2222||2||2||||ηξηξηξ+=-++; (2).||4 1 ||41,22ηξηξηξ--+= 在解析几何里,等式(1)的几何意义是什么? 2.在区氏空间n R 里,求向量)1,,1,1( =α与每一向量 )0,,0,1,0,,0() ( i i =ε,n i ,,2,1 = 的夹角. 3.在欧氏空间4R 里找出两个单位向量,使它们同时与向量 ) 4,5,2,3()2,2,1,1() 0,4,1,2(=--=-=γβα 中每一个正交. 4.利用内积的性质证明,一个三角形如果有一边是它的外接圆的直径,那么这个三角形一定是直角三角形. 5.设ηξ,是一个欧氏空间里彼此正交的向量.证明: 222||||||ηξηξ+=+(勾股定理) 6.设βααα,,,,21n 都是一个欧氏空间的向量,且β是n ααα,,,21 的线性组合.证明:如果β与i α正交,n i ,,2,1 =,那么0=β. 7.设n ααα,,,21 是欧氏空间的n 个向量. 行列式 > <><><> <><><> <><> <= n n n n n n n G ααααααααααααααααααααα,,,,,,,,,),,,(21222121211121 叫做n ααα,,,21 的格拉姆(Gram)行列式.证明),,,(21n G ααα =0,必要且只要

n ααα,,,21 线性相关. 8.设βα,是欧氏空间两个线性无关的向量,满足以下条件: ><><ααβα,,2和> <> <βββα,,2都是0≤的整数. 证明: βα,的夹角只可能是 6 54 3,32,2π π ππ或 . 9.证明:对于任意实数n a a a ,,,21 , 2 3322211 (||n n i i a a a a n a ++++≤∑= ). 10.已知 )0,1,2,0(1=α,)0,0,1,1(2-=α, )1,0,2,1(3-=α,)1,0,0,1(4=α 是4R 的一个基.对这个基施行正交化方法,求出4R 的一个规范正交基. 11.在欧氏空间]1,1[-C 里,对于线性无关的向量级{1,x ,2x ,3x }施行正交化方法,求出一个规范正交组. 12.令},,,{21n ααα 是欧氏空间V 的一组线性无关的向量,},,,{21n βββ 是由这组向量通过正交化方法所得的正交组.证明,这两个向量组的格拉姆行列式相等,即 ><>><=<=n n n n G G βββββββββααα,,,),,,(),,,(22112121 13.令n γγγ,,,21 是n 维欧氏空间V 的一个规范正交基,又令 },2,1,10,|{1n i x x V K n i i i i =≤≤=∈=∑=γξξ K 叫做一个n -方体.如果每一i x 都等于0或1,ξ就叫做K 的一个项点.K 的顶点间一切可能的距离是多少? 14.设},,,{21m ααα 是欧氏空间V 的一个规范正交组.证明,对于任意V ∈ξ,以下等式成立:

《高等代数》课程教学大纲

《高等代数》课程教学大纲 课程编号:090085、090022 总学时:162 学分:8 适用专业:数学与应用数学、信息与计算科学 课程类型:专业必修课 开课单位: 一、课程的性质、目的与任务 通过本课程的教学,使学生对高等代数乃至代数学的思想和方法有较深刻的认识, 提高他们的抽象思维、逻辑推理和运算的能力;使学生初步地掌握基本的、系统的代数知识和抽象的、严格的代数方法,进而加深对中学代数的理解;使学生能应用代数思想和方法去理解与处理有关的问题, 培养与提高代数的理论分析问题与解决问题的能力;使学生学习数学学科后续课程(如近世代数、离散数学、计算方法、偏微分方程、泛函分析等)提供一些所需要的基础理论和知识;使学生在智能开发、创新能力培养等方面获得重要的平台。 《高等代数》是数学与应用数学、信息与计算科学本科专业最重要的基础课程之一,是数学各专业报考研究生的必考课程之一,也是理论性、应用性很强的一门数学基础课。讲授本课程的目的主要在于培养学生的代数基础理论和思想素质,基本掌握代数中的论证方法, 获得较熟练的演算技能和初步应用的技巧, 提高分析问题、解决问题的能力,为进一步学习其它数学知识打下坚实的基础。 本课程的主要任务是通过教学的主要环节(课堂讲授与讨论、习题课、作业、辅导答疑等),使学生学习和掌握多项式理论、线性代数的代数理论(行列式、线性方程组、矩阵、λ矩阵)及线性代数的几何理论(线性空间、线性变换、欧氏空间)。 二次型、- 二、课程教学内容和基础要求 (1)理解多项式的定义,掌握最大公因式,互素,不可约多项式, 因式分解等有关的一系列性质。 (2)理解行列式的定义, 掌握行列式的基本运算性质和行列式的行(列)展开性质;理解向量组的线性相关性,掌握线性方程组的通解求法;理解矩阵的概念和运算,掌握矩阵的可逆、矩阵的分块、矩阵的等价关系的性质及应用;理解二次型的定义,掌握二次型的标准形的求法及正定二次型的一系列性质。 (3)理解线性空间的定义,掌握交空间、和空间及直和的判定及性质;理解线性变换的定义及简单性质,掌握线性变换在不同基下的矩阵的性质、线性变换的值域与核的应用问

高等代数-第四章-线性变换

第四章 线性变换 习题精解 1. 判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量; 2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量; 3) 在P 3 中,A ),,(),,(2 33221321x x x x x x x +=; 4) 在P 3 中,A ),,2(),,(13221321x x x x x x x x +-=; 5) 在P[x ]中,A )1()(+=x f x f 6) 在P[x ]中,A ),()(0x f x f =其中0x ∈P 是一固定的数; 7) 把复数域上看作复数域上的线性空间, A ξξ= 8) 在P n n ?中,A X=BXC 其中B,C ∈P n n ?是两个固定的矩阵. 解 1)当0=α时,是;当0≠α时,不是. 2)当0=α时,是;当0≠α时,不是. 3)不是.例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α, A )0,0,4()(=αk , A ≠)(αk k A()α. 4)是.因取),,(),,,(321321y y y x x x ==βα,有 A )(βα+= A ),,(332211y x y x y x +++ =),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++- = A α+ A β A =)(αk A ),,(321kx kx kx ),,2() ,,2(1322113221kx kx kx kx kx kx kx kx kx kx +-=+-= = k A )(α 故A 是P 3 上的线性变换. 5) 是.因任取][)(],[)(x P x g x P x f ∈∈,并令 )()()(x g x f x u +=则 A ))()((x g x f += A )(x u =)1(+x u =)1()1(+++x g x f =A )(x f + A ))((x g 再令)()(x kf x v =则A =))((x kf A k x kf x v x v =+=+=)1()1())((A ))((x f 故A 为][x P 上的线性变换. 6)是.因任取][)(],[)(x P x g x P x f ∈∈则. A ))()((x g x f +=0(x f 0()x g +=)A +))((x f A )((x g ) A 0())((x kf x kf =k =)A ))((x f 7)不是.例如取a=1,k=I,则 A (ka)=-i , k(A a)=i, A (ka )≠k A (a)

609 数学专业基础课考试大纲(2015版)

609 数学专业基础课考试大纲 请考生注意: 1、数学专业基础课试题含数学分析、高等代数二门课程的内容。 2、每门课试题满分75分。 数学分析考试大纲 一、基本内容与要求 (一)极限论 1、透彻理解和掌握数列极限,函数极限的概念。掌握并能运用ε-N,ε-X,ε-δ语言处理极限问题。 2、掌握收敛数列的性质及运算。掌握数列极限的存在条件(单调有界准则,迫敛性法则,柯西准则);掌握函数极限的性质和归结原则;熟练掌握利用两个重要极限处理极限问题。 3、理解无穷小量和无穷大量的定义、性质和关系,掌握无穷小量阶的比较和方法。 4、理解与掌握一元函数连续性的定义(点,区间),间断点及其分类,连续函数的局部性质;理解单侧连续的概念。 5、掌握和应用闭区间上连续函数的性质(最大最小值性、有界性、介值性、一致连续性);掌握初等函数的连续性,理解复合函数的连续性,反函数的连续性。 6、掌握实数连续性定理:闭区间套定理、单调有界定理、柯西收敛准则、确界存在定理、聚点定理、有限覆盖定理。 7、理解平面点集的基本概念,二元函数的极限,累次极限,连续性概念;了解闭区间的套定理,有限覆盖定理,多元连续函数的性质。 (二) 微分学 1、理解和掌握导数与微分概念及其几何意义;能熟练地运用导数的运算性质和求导法则求函数的导数(特别是复合函数)。 2、理解单侧导数、可导性与连续性的关系;掌握高阶导数的求法,导数的几何应用,微分在近似计算中的应用。 3、熟练掌握中值定理的内容、证明及其应用;熟练掌握泰勒公式及在近似计算中的应用,能够把某些函数按泰勒公式展开。 4、能熟练地运用罗必达法则求不定式的极限;掌握函数的某些基本特性(单调性、极值与最值、凹凸性、拐点及渐近线),能较正确地作出某些函数的图象。 5、掌握偏导数、全微分、方向导数、高阶偏导数、极值等概念;搞清全微分、偏导数、连续之间的关系;掌握多元函数泰勒公式;会求多元函数的极值。 6、掌握隐函数的概念及隐函数的存在定理;会求隐函数的导数;会求曲线的切线方程,法平面方程,曲面的切平面方程和法线方程;掌握条件极值概念及求法。 (三)积分学 1、掌握原函数和不定积分概念;熟练掌握换元积分法、分部积分法、有理式积分法和三角有理式积分法,并能利用它们来求函数的积分;会计算简单的无理函数的积分。 2、掌握定积分概念及函数可积的条件;熟悉一些可积分函数类;掌握定积分与可变上限积分的性质;能熟练地运用牛顿-莱布尼兹公式,换元积分法,分部积分法计算一些定积分。

《高等代数》考试大纲

《高等代数》考试大纲 一、考试的性质 高等代数是大学数学系本科学生的最基本课程之一,也是大多数理工科专业学生的重要基础课程。为帮助考生明确考试范围和有关要求,特制订出本考试大纲。 本考试大纲主要根据XX大学数学与应用数学本科《高等代数》教学大纲编制而成,适用于报考XX大学数学学科各专业(基础数学、概率论与数理统计、计算数学、应用数学)硕士学位研究生的考生。 二、考试内容和基本要求 1.多项式 (1)多项式及其运算 (2)整除性理论 (3)最大公因式 (4)因式分解定理 (5)重因式 (6)复系数与实系数多项式的因式分解 (7)有理系数多项式 要求:理解数域上一元多项式的概念、多项式整除的概念和性质、最大公因式的概念和性质。掌握多项 式的加法和乘法,会作带余除法,会求最大公因式;了解多项式互素、不可约多项式、多项式的导数及重因式分解的概念。理解因式分解唯一性定理.会判别重因式;了解多项式函数和多项式根的概念,会求有理系数多项式的有理根。 2 .行列式 (1)n阶行列式的定义 (2)行列式的性质 (3)列式按行(列)展开公式 (4)行列式的计算 (5)矩阵的初等变换,阶梯形矩阵和行简化阶梯形矩阵 (6)克莱姆法则 要求:理解n阶行列式的概念与性质,掌握矩阵的初等变换;掌握行列式的计算,会运用行列式的性质,通过降阶法和消去法及其综合使用去计算行列式;熟悉克莱姆法则,会运用它解线性方程组。 3.线性方程组 (1)线性方程组的初等变换 (2)n维向量空间 (3)线性相关性 (4)向量组的极大线性无关组和秩,矩阵的秩 (5)线性方程组的有解判别定理与解的结构 要求:理解消元法和矩阵初等变换的关系,掌握用矩阵初等变换解线性方程组的方法;理解线性相关、线性无关、线性表岀的概念及其与线性方程组的关系,会判别向量组是否线形相关;理解向量组的秩和极大线性

相关文档
最新文档