高等代数试题2(附答案)
《高等代数》第二章习题及答案

习题2.11. 设m,n 是不同的正整数,A 是m ×n 矩阵,B 是n ×m 矩阵,下列运算式中有定义的有哪几个?A+B ,AB ,BA ,AB T ,A-B T 答 只有AB 和A-B T 有定义. 2. 计算①⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-322113075321134 ②⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-213075321134 ③()⎪⎪⎪⎭⎫ ⎝⎛213321 ④()321213⎪⎪⎪⎭⎫⎝⎛⑤()⎪⎪⎪⎭⎫ ⎝⎛-0713******** ⑥⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛c b a 321012100010501 ⑦()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x解①⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-322113075321134=⎪⎪⎪⎭⎫⎝⎛-922147117②⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-213075321134=⎪⎪⎪⎭⎫ ⎝⎛22717 ③()⎪⎪⎪⎭⎫⎝⎛213321=()11④()321213⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛642321963 ⑤()⎪⎪⎪⎭⎫⎝⎛-0713********=()111813⑥⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛c b a 321012100010501=⎪⎪⎪⎭⎫ ⎝⎛-+-c b a c b a 32155125 ⑦()⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x=233323321331322322221221311321122111x a x x a x x a x x a x a x x a x x a x x a x a ++++++++3. 设A=⎪⎪⎭⎫⎝⎛3121,B=⎪⎪⎭⎫⎝⎛3101,计算: ① (A+B)(A-B) ② A 2-B 2③ (AB)T ④ A T B T解 ① (A+B)(A-B)= ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛4040002062223101312131013121 ② A 2-B 2=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛20829401114833101310131213121③ (AB)T=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛9643946331013121TT④ A T B T=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛112413011321131013121TT 4. 求所有的与A=⎪⎪⎭⎫⎝⎛1011可交换的矩阵. 解 设矩阵B 与A 可交换,则B 必是2×2矩阵,设B=⎪⎪⎭⎫⎝⎛d c b a ,令AB=BA ,即 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛10111011d c b a d c b a 从而有 ⎪⎪⎭⎫⎝⎛++=⎪⎪⎭⎫⎝⎛++d c c b a a d cd b c a 由此得⎪⎪⎩⎪⎪⎨⎧+==+=+=+dc d c c b a d b ac a解得,c=0,a=d ,b 为任意数.即与A 可交换的矩阵B 可写成B=⎪⎪⎭⎫⎝⎛a b a 0. 5. 设A ,B 是n ×n 矩阵,并且A 是对称矩阵,证明:B T AB 也是对称矩阵.证 已知A 是对称矩阵,即A T =A ,从而 (B T AB)T =B T A T (B T ) T =B T AB ,所以B T AB 也是对称矩阵.6. 设A=⎪⎪⎭⎫ ⎝⎛b a b 0,求A 2,A 3,…,A k.解A 2=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛222000b ab b b a b b a bA 3=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛3232230020b ab b b a b b ab b …A k =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----k k k k k k b kabb b a b b ab k b 112100)1(0 7.设B 是2×2矩阵.由B 2=02×2能推出B=0吗?试举反例.(提示:参见上题.) 解 不能.例如令B=⎪⎪⎭⎫⎝⎛000a ,当a ≠0时,B ≠0,但B 2=02×2. 8. 设A ,B 是n ×n 矩阵,证明:(A+2B)(A-5B)=A 2-3AB-10B 2的充分必要条件是A 与B 可交换.证 充分性:若A 与B 可交换,即AB=BA ,则(A+2B)(A-5B)=A 2-5AB+2BA-10B 2= A 2-5AB+2AB-10B 2= A 2-3AB-10B 2 必要性:若(A+2B)(A-5B)=A 2-3AB-10B 2 即 A 2-5AB+2BA-10B 2= A 2-3AB-10B 2 比较两边相同的项得 -2AB+2BA=0 故 AB=BA9. 设A ,B 是n ×n 对称矩阵,证明:AB 是对称矩阵的充分必要条件是A 与B 可交换. 证 因A ,B 是n ×n 对称矩阵,即A T =A ,B T =B .必要性:若AB 是对称矩阵,则(AB)T =AB ,有因 (AB)T =B T A T =BA ,从而AB= BA ,即A 与B 可交换.充分性:若A 与B 可交换,由必要性证明过程反图推,知AB 是对称矩阵.习题2.21.设A ,B ,C 是矩阵,且满足AB=AC ,证明:如果A 是可逆的,则B=C .证 已知AB=AC ,两边左乘矩阵A -1,有A -1(AB)= A -1(AC),根据结合律得(A -1A)B=( A -1A)C ,从而有EB=EC ,故B=C .2.设P 是可逆矩阵,证明:线性方程组AX=β与线性方程组PAX=P β同解.证 设X (1)是AX=β的任一解解,即有AX (1)=β成立,两边左乘矩阵P ,得PAX (1)=P β,说明X (1)也是PAX=P β的解.反之,设X (2)是PAX=P β的任一解,即有PAX (2)=P β成立,两边左乘矩阵P -1,得P -1 (PAX (2))= P -1 (P β),根据结合律得(P -1 P)AX (2)=(P -1 P)β,从而有AX (2)=β,这说明X (2)也是AX=β的解.综合以上可知,线性方程组AX=β与线性方程组PAX=P β同解.3.设P 是n ×n 可逆矩阵,C 是n ×m 矩阵.证明:矩阵方程PX=C 有唯一解.证 令X *=P -1C ,代入PX=C 中验证知X *是矩阵方程的一个解.反之,设X (1)是矩阵方程PX=C的任一解,即有PX (1)=C 成立,两边左乘P -1得,X (1)=P -1C=X *,所以矩阵方程PX=C 有唯一解.4. 设A 是n ×n 可逆矩阵,且存在一个整数m 使得A m=0.证明:(E-A)是可逆的,并且(E-A)-1=E+A+…+A m-1.证 由于(E-A)(E+A+…+A m-1)=E+A+…+A m-1-A-A 2-…-A m =E-A m=E-0=E显然交换(E-A)和(E+A+…+A m-1)的次序后相乘结果仍成立,根据逆阵的定义知(E-A)-1=E+A+…+A m-1.5.设P ,A 都是n ×n 矩阵,其中P 是可逆的,m 是正整数.证明:(P -1AP)m =P -1A mP .证 (P -1AP)m =(P -1AP)(P -1AP)(P -1AP)…(P -1AP)=P -1A(PP -1)A(PP -1)…AP=P -1AEAE …AP=P -1A m P6. 设A ,B 都是n ×n 可逆矩阵,(A+B)一定是可逆的吗?如果(A+B)是可逆的,是否有(A+B)-1=A -1+B -1?若不是,试举出反例.解 如果A ,B 都是n ×n 可逆矩阵,(A+B)不一定是可逆的.例如A=⎪⎪⎭⎫ ⎝⎛1001,B=⎪⎪⎭⎫⎝⎛--1001都是可逆的,但A+B=⎪⎪⎭⎫⎝⎛0000是不可逆的. 如果(A+B)是可逆的,也不能说(A+B)-1=A -1+B -1.例如A=⎪⎪⎭⎫ ⎝⎛1001,B=⎪⎪⎭⎫⎝⎛1001,则A ,B 可逆,A+B=⎪⎪⎭⎫⎝⎛2002可逆,且(A+B)-1=⎪⎪⎭⎫ ⎝⎛2/1002/1,但A -1+B -1=⎪⎪⎭⎫ ⎝⎛1001+⎪⎪⎭⎫ ⎝⎛1001=⎪⎪⎭⎫ ⎝⎛2002.显然(A+B)-1≠A -1+B -1.7*.设A ,B 都是n ×n 矩阵,满足ABA=A ,β是n ×1矩阵.证明:当且仅当AB β=β时,线性方程组AX=β有解.证 当AB β=β时,记X *=B β,即X *是AX=β的一个解.反之,若线性方程组AX=β有解,设X (1)是它的一个解,即有AX (1)=β,两边左乘(AB)得(ABA)X (1)=AB β用已知条件ABA=A 代到上式左边得AX (1)=AB β 由于X (1)是AX=β的一个解,即AX (1)=β,所以AB β=β.习题2.31.用行和列的初等变换将矩阵A 化成⎪⎪⎭⎫⎝⎛000E 的形式: A=⎪⎪⎪⎪⎪⎭⎫⎝⎛----10030116030242201211解 ⎪⎪⎪⎪⎪⎭⎫⎝⎛----10030116030242201211→⎪⎪⎪⎪⎪⎭⎫⎝⎛---10030140300400001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛---04000100301403001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛--00000040001403001211→⎪⎪⎪⎪⎪⎭⎫⎝⎛00000040000003000001→⎪⎪⎪⎪⎪⎭⎫⎝⎛000000010000010000012.用初等变换判定下列矩阵是否可逆,如可逆,求出它们的逆矩阵:①⎪⎪⎪⎭⎫ ⎝⎛-----134112112 ②⎪⎪⎪⎭⎫⎝⎛----153132543 解 ①⎪⎪⎪⎭⎫ ⎝⎛-----100134010112001112→⎪⎪⎪⎭⎫ ⎝⎛---102110011200001112→→⎪⎪⎪⎭⎫ ⎝⎛---011200102110001112→⎪⎪⎪⎭⎫ ⎝⎛--02/12/110012/12/301002/12/1012→ →⎪⎪⎪⎭⎫ ⎝⎛-02/12/110012/12/3010112002→⎪⎪⎪⎭⎫ ⎝⎛-02/12/110012/12/30102/12/11001 所给矩阵可逆,其逆阵为⎪⎪⎪⎭⎫ ⎝⎛-02/12/112/12/32/12/11②⎪⎪⎪⎭⎫ ⎝⎛----100153010132001543→⎪⎪⎪⎭⎫⎝⎛-------101610013/23/73/10001543→⎪⎪⎪⎭⎫ ⎝⎛---131100032710001543→⎪⎪⎪⎭⎫ ⎝⎛------13110071850105154043 →⎪⎪⎪⎭⎫ ⎝⎛-----1311007185010338724003→⎪⎪⎪⎭⎫ ⎝⎛-----131100718501011298001 所给矩阵可逆,其逆阵为⎪⎪⎪⎭⎫⎝⎛-----1317185112982.解下列矩阵方程:①⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛-11111152X ②⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--101111201021121101X ③⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--234311*********X解 ①⎪⎪⎭⎫⎝⎛---11111152→⎪⎪⎭⎫ ⎝⎛---11521111→⎪⎪⎭⎫⎝⎛---33701111 →⎪⎪⎭⎫⎝⎛--7/37/3107/47/401 由此得⎪⎪⎭⎫ ⎝⎛--=7/37/37/47/4X ②⎪⎪⎪⎭⎫ ⎝⎛---101021111121201101→⎪⎪⎪⎭⎫ ⎝⎛---302120112220201101 →⎪⎪⎪⎭⎫ ⎝⎛----414300112220201101→⎪⎪⎪⎭⎫ ⎝⎛--3/43/13/41006/56/13/10103/23/13/1001 由此得⎪⎪⎪⎭⎫⎝⎛--=3/43/13/46/56/13/13/23/13/1X ③对等式两端分别转置得⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--233141*********T X 因为⎪⎪⎪⎭⎫ ⎝⎛---231013111141122→⎪⎪⎪⎭⎫ ⎝⎛---231014112231111→⎪⎪⎪⎭⎫ ⎝⎛---520102330031111 →⎪⎪⎪⎭⎫ ⎝⎛---233005201031111→⎪⎪⎪⎭⎫ ⎝⎛-3/21100520103/70011→⎪⎪⎪⎭⎫⎝⎛---3/21100520103/82001 所以⎪⎪⎪⎭⎫⎝⎛---=3/21523/82TX⎪⎪⎭⎫ ⎝⎛---=3/253/8122X4.设⎪⎪⎪⎭⎫ ⎝⎛=011110001A ,⎪⎪⎪⎭⎫⎝⎛-=110020102B ,又X 是可逆矩阵,并且满足矩阵方程AX 2B=XB ,求矩阵X .解 (B,E)=⎪⎪⎪⎭⎫ ⎝⎛-100110010020001102→⎪⎪⎪⎭⎫⎝⎛-10011002/10010001102→⎪⎪⎪⎭⎫ ⎝⎛-12/1010002/10010001102→⎪⎪⎪⎭⎫ ⎝⎛---12/1010002/1001012/11002 →⎪⎪⎪⎭⎫ ⎝⎛---12/1010002/100102/14/12/1001 从以上看出B 可逆,对AX 2B=XB 两边右乘B -1得AX 2=X .已知X 可逆,对AX 2=X 两边右乘B -1得AX=E .又(A,E)=⎪⎪⎪⎭⎫ ⎝⎛100011010110001001→⎪⎪⎪⎭⎫ ⎝⎛-101010010110001001→⎪⎪⎪⎭⎫ ⎝⎛--101010111100001001→⎪⎪⎪⎭⎫ ⎝⎛--111100101010001001 所以 X=⎪⎪⎪⎭⎫⎝⎛--1111010015.①证明:B 与A 行等价⇔存在可逆矩阵P ,使B=PA .②证明:B 与A 等价⇔存在可逆矩阵P 与Q ,使B=PAQ .证 若B 与A 行等价,即A 可经有限次初等行变换得到B ,而对矩阵A 每做一次初等行变换,相当于对它左乘一个初等方阵,假设对A 依次左乘初等方阵P 1,P 2,…,P K ,使P k …P 2P 1A=B令P=P k …P 2P 1,则P 是可逆矩阵,且B=PA .反之,若存在可逆矩阵P ,使B=PA ,因为可逆矩阵P 可以写成一系列初等方阵P 1,P 2, …,P k的乘积,即P=P 1P 2…P k ,从而有B=P 1P 2…P k A ,说明A 可经有限次初等行变换得到B ,即B 与A 行等价.② 若B 与A 等价,即对A 经过有限次初等变换得到B .而对矩阵A 每做一次初等行变换,相当于对它左乘一个初等方阵;对矩阵A 每做一次初等列变换,相当于对它右乘一个初等方阵.假设对A 左乘的初等方阵依次为P 1,P 2,…,P s ,对A 右乘的初等方阵依次为Q 1,Q 2,…,Q t ,使P s …P 2P 1AQ 1Q 2…Q t =B令P=P s …P 2P 1,Q=Q 1Q 2…Q t ,则P ,Q 都是可逆矩阵,且B=PAQ .反之,若存在可逆矩阵P 和Q ,使B=PAQ ,因为可逆矩阵P 和Q 均可以写成一系列初等方阵的乘积,设P=P 1P 2 …P s ,Q=Q 1Q 2…Q t ,这里P i ,Q i 都是初等方阵,从而有B=P 1P 2…P k A Q 1Q 2…Q t ,说明A 可经有限次初等行变换和初等列变换得到B ,即B 与A 等价. 6*.设A 是s ×n 矩阵,B 是s ×m 矩阵,B 的第i 列构成的s ×1矩阵是βj (j=1,2,…,m ).证明:矩阵方程AX=B 有解的充分必要条件是:AX=βj (j=1,2,…,m )都有解.证 先证必要性.如果矩阵方程AX=B 有解,设X *是它的解,则X *是n ×m 矩阵,记X *的第j 列为X *j ,根据矩阵先相乘的规则知,A 与X *j 相乘的结果是βj ,即X *j 是AX=βj 的解(j=1,2,…,m ).再证充分性.若AX=βj (j=1,2,…,m )都有解,设X *j 是AX=βj 的解,这里X *j 是n ×1矩阵,令X *=(X *1, X *2,…,X *m ),则X *是n ×m 矩阵,且X *是矩阵方程AX=B 的解. 7*.设A=(a ij )是n ×n 矩阵.①证明:如果P n (h(2))A=AP n (h(2)),则a hj =0,j=1,2,…,h-1,h+1,…,n ;并且a ih =0,i=1,2,…,h-1,h+1,…,n .②设B=diag(b 1, b 2,…, b n )是一个对角矩阵,设l ≠k .证明:如果P n (l,k)B=BP n (l,k),b l =b k .③证明:如果矩阵A 与所有的n ×n 矩阵都可交换,则A 是一个数量矩阵.证 ①如果P n (h(2))A=AP n (h(2)),则A 是n ×n 矩阵,等式左边的P n (h(2))A 表示将矩阵A 的第h 行每个元素乘以2得到的矩阵;等式右端的AP n (h(2))表示将A 的第h 列每个元素乘以2得到的矩阵.从等式可知2a hj = a hj (j=1,2,…,h-1,h+1,…,n ),a ih =2a ih (i=1,2,…,h-1,h+1,…,n ),从而得a hj =0,j=1,2,…,h-1,h+1,…,n ;并且a ih =0,i=1,2,…,h-1,h+1,…,n .②如果P n (l,k)B=BP n (l,k),则B 是n ×n 矩阵,等式左边的P n (l,k)B 表示将矩阵B 的第l 行和第k 行交换位置;等式右端的BP n (l,k) 表示将矩阵B 的第l 列和第k 列交换位置.由于B=diag(b 1, b 2,…, b n )是一个对角矩阵,且l ≠k ,不妨设l<k ,则有P n (l,k)B=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n l k b b b b 001=BP n (l,k)=⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛n k lb b b b001比较对应元素,可知b l =b k .③如果矩阵A 与所有的n ×n 矩阵都可交换,在①中分别令h=1,2,…,n ,可知A 除对角线上元素以外其它元素都是零,即A 可写成diag(b 1, b 2,…, b n );在②可令l=1,分别令k=2,…,n ,可知A 的对角线上元素都相等.习题2.41.设A=⎪⎪⎭⎫ ⎝⎛421A A A ,其中A 1是s ×s 矩阵,A 2是s ×t 矩阵,A 4是t ×t 矩阵.求A 3. 解 A 2=⎪⎪⎭⎫ ⎝⎛421A A A ⎪⎪⎭⎫ ⎝⎛4210A A A =⎪⎪⎭⎫⎝⎛+244221210A A A A A A A 3=⎪⎪⎭⎫ ⎝⎛4210A A A ⎪⎪⎭⎫ ⎝⎛+244221210A A A A A A =⎪⎪⎭⎫ ⎝⎛++34242421221310A A A A A A A A A2.①设G=⎪⎪⎭⎫⎝⎛000rE 是m ×n 矩阵,证明:存在矩阵B ,使得GBG=G . ②设A 是m ×n 矩阵,证明:存在矩阵B ,使得ABA=A .证 ①构造n ×m 矩阵B 为B=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r m r n rr n r m r rE ,则GBG=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r m r n r r n r m r rE ⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE=⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE =G②设矩阵A 的秩为r ,则可经过有限次初等变换使A 变为⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE 的形式,即存在可逆的n ×n 矩阵P 和可逆的m ×m 矩阵Q 使PAQ=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m r r m r n r r E =D ,即A=P -1DQ -1.定义n ×m 矩阵B 如下:B=QCP ,其中C=⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r m r n rr n r m r rE .则有ABA=(P -1DQ -1)(QCP)(P -1DQ -1)= P -1DCDQ -1=P -1⎪⎪⎭⎫⎝⎛-⨯-⨯--⨯)()()()(000r n r m r r m r n r r E ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r m r n r r n r m r rE ⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE Q -1= P -1⎪⎪⎭⎫ ⎝⎛-⨯-⨯--⨯)()()()(000r n r m rr m r n r rE Q -1=A3*.设A=⎪⎪⎭⎫⎝⎛4210A A A ,其中A 1是s ×s 矩阵,A 2是s ×t 矩阵,A 4是t ×t 矩阵.证明:如果A 1,A 4都是可逆的,则A 也是可逆的,进一步,求A 的逆矩阵.证 如果A 1,A 4都是可逆的,令B=⎪⎪⎭⎫ ⎝⎛--142110A B A ,其中A 1-1,A 4-1分别是A 1,A 4的逆阵,B 2是s ×t 矩阵.令AB=E ,即有⎪⎪⎭⎫ ⎝⎛421A A A ⎪⎪⎭⎫ ⎝⎛--142110A B A =⎪⎪⎭⎫ ⎝⎛+-t s E A A B A E 014221=⎪⎪⎭⎫⎝⎛t s E E 00, 从而 A 1B 2+ A 2A 4-1=0,由此得B 2=-A 1-1A 2A 4-1.说明A 也是可逆的,且A -1=⎪⎪⎭⎫⎝⎛-----1414211110A A A A A。
高代2期末考试试题及答案

高代2期末考试试题及答案# 高代2期末考试试题及答案一、选择题(每题2分,共10分)1. 线性空间中,向量组的线性相关性意味着:- A. 向量组中至少有一个向量可以由其他向量线性表示- B. 向量组中所有向量都是零向量- C. 向量组中任意向量都可以由其他向量线性表示- D. 向量组中存在非零向量可以由其他向量线性表示答案:A2. 设矩阵A是n阶方阵,如果存在一个非零向量x,使得Ax=0,则称x为矩阵A的:- A. 特征向量- B. 零空间向量- C. 特征值- D. 逆矩阵答案:B3. 矩阵的秩是指:- A. 矩阵中非零行的最大数目- B. 矩阵中非零列的最大数目- C. 矩阵的行向量组的秩- D. 矩阵的列向量组的秩答案:D4. 对于线性变换T: V → W,如果存在矩阵P,使得P^(-1)AP=B,则称矩阵A和B是:- A. 相似矩阵- B. 等价矩阵- C. 合同矩阵- D. 正交矩阵答案:B5. 线性变换的核是指:- A. 线性变换的值域- B. 线性变换的零空间- C. 线性变换的逆映射- D. 线性变换的映射集合答案:B二、填空题(每题2分,共10分)1. 线性空间V的基是一组向量,使得V中任意向量都可以唯一地表示为这组向量的________。
答案:线性组合2. 设A是m×n矩阵,B是n×p矩阵,则矩阵乘积AB的秩r(AB)满足:________。
答案:r(AB) ≤ min(r(A), r(B))3. 矩阵的特征值是指使得方程________的λ的值。
答案:det(A - λI) = 04. 线性变换的线性组合可以表示为________。
答案:T1 + λT25. 对于线性空间的子空间U和W,它们的和U+W是________。
答案:U和W中所有向量的集合三、简答题(每题5分,共15分)1. 解释什么是线性空间的基,并给出一个例子。
答案:线性空间的基是一组向量,它们线性无关且能生成整个线性空间。
高等代数二练习题答案

高等代数二练习题答案一、多项式运算1. 给定多项式 \( p(x) = x^3 - 3x^2 + 2x - 1 \) 和 \( q(x) =x^2 + 1 \),求 \( p(x) \) 除以 \( q(x) \) 的商和余数。
2. 计算多项式 \( r(x) = 2x^3 - 5x^2 + 7x - 3 \) 和 \( s(x) =x - 2 \) 的乘积。
3. 证明多项式 \( t(x) = x^4 - 5x^3 + 6x^2 + 8x - 9 \) 可以分解为两个二次多项式的乘积。
二、矩阵运算1. 给定矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix} \) 和 \( B = \begin{bmatrix} 5 & 6 \\ 7 & 8\end{bmatrix} \),求矩阵 \( A \) 与 \( B \) 的乘积。
2. 若矩阵 \( C = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \),求 \( C \) 的逆矩阵。
3. 判断矩阵 \( D = \begin{bmatrix} 2 & 1 \\ 1 & 2\end{bmatrix} \) 是否可对角化,并给出相应的对角矩阵。
三、线性方程组1. 解线性方程组:\[\begin{align*}x + 2y - z &= 1 \\3x - y + 2z &= 0 \\2x + y + z &= -1\end{align*}\]2. 判断下列线性方程组是否有唯一解:\[\begin{align*}x + y &= 3 \\2x + 2y &= 6\end{align*}\]3. 用克拉默法则解线性方程组:\[\begin{align*}x - y + z &= 2 \\2x + y - z &= 1 \\-x + 2y + z &= 3\end{align*}\]四、特征值与特征向量1. 求矩阵 \( E = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} \) 的特征值和对应的特征向量。
(24)--13-14学年高等代数(II)试卷及参考答案

得分 五、(10 分) 设 V 是数域 Ω 上的 n 维向量空间, σ 是 V 上线性变换. 证明: 存
在 V 上线性变换 τ , 使得 kerσ = τ (V ), kerτ = σ(V ).
第 5 页 (共 6 页)来自得分 六、(10 分) 设 A1, A2, . . . , Ak 均为 n 阶实对称矩阵, 并且对任意的 i, j 均有
¯ Ý:˦ ÈÙ u, v ∈ V , Þ
(σ + τ )(u)v = u(σ − τ )(v),
(1)
(σ + 2τ )(u)v = uσ(v).
Ý ¦ ÈÙ Þ (2) − (1)
u, v ∈ V ,
τ (u)v = uτ (v).
À τ Ï ©¦». Á Ý (1) ¸ (3) ¦ ÈÙ u, v ∈ V , Þ
b
a + 3b
0
1
下对应的矩阵为
.
5. 设 V 是数域 Ω 上的有限维向量空间, 若 V 上线性变换 σ 的特征多项式
为 f (λ) = nk=1(λ − k)k, 则 dim ker(σ − k∗)k =
, 其中 k = 1, 2, . . . , n.
6. 设 V 是 2014 维欧氏空间, 若 V 上线性变换 σ 既是正交变换, 又是反对称
变换, 则 σ 的特征多项式为
.
7. 设 1, 2 都是 30 阶方阵 A 的特征根, 1 的代数重数为 29, 几何重数为 27,
则满足此条件且互不相似的 A 的总个数为
.
第 1 页 (共 6 页)
得分 二、(15 分) 设 A, B 均是 n 阶实对称矩阵. 证明: A, B 都是半正定矩阵, 当且
高等代数考试题和答案

高等代数考试题和答案一、单项选择题(每题3分,共30分)1. 向量空间中,线性无关的定义是()。
A. 向量空间中的任意向量不能表示为其他向量的线性组合B. 向量空间中的任意向量可以表示为其他向量的线性组合C. 向量空间中的所有向量可以表示为其他向量的线性组合D. 向量空间中的部分向量可以表示为其他向量的线性组合答案:A2. 矩阵A的行列式为0,则矩阵A()。
A. 可逆B. 不可逆C. 可逆或不可逆D. 不能确定答案:B3. 对于实数域上的多项式f(x),其根的个数()。
A. 等于其次数B. 小于其次数C. 大于其次数D. 不确定答案:D4. 线性变换T:V→W,若对于V中的任意向量v,都有T(v)=0,则称T为()。
A. 可逆变换B. 非奇异变换C. 零变换D. 恒等变换答案:C5. 矩阵A与矩阵B相似,则()。
A. A和B具有相同的秩B. A和B具有相同的行列式C. A和B具有相同的特征值D. A和B具有相同的迹答案:C6. 向量组α1, α2, ..., αs在向量空间V中张成V,则称向量组()。
A. 线性相关B. 线性无关C. 基D. 零向量组答案:C7. 矩阵A的转置记作()。
A. A'B. A^TC. A^HD. A*答案:B8. 矩阵A的特征多项式为f(λ)=det(A-λI),则f(λ)的根称为矩阵A的()。
A. 特征值B. 特征向量C. 特征多项式D. 特征函数答案:A9. 向量空间V的维数等于V的任意一组基的向量个数,这称为()。
A. 基定理B. 维数定理C. 线性空间定理D. 向量空间定理答案:B10. 矩阵A和B可以进行矩阵乘法,则()。
A. A的列数等于B的行数B. A的行数等于B的列数C. A的行数等于B的行数D. A的列数等于B的列数答案:A二、填空题(每题4分,共20分)11. 矩阵A的秩是指矩阵A中线性无关的行(或列)向量的最大个数,记作rank(A)。
12. 矩阵A和B的乘积记作AB,其中A的列数必须等于B的行数。
2020-2021《高等代数二》期末课程考试试卷(含答案)

2020-2021《高等代数二》期末课程考试试卷专业:信计 考试日期: 所需时间:120分钟 总分:100分 闭卷一、填空(5分×10)1在4P 中,向量(1,2,1,1)ξ=在12(1,1,1,1),(1,1,1,1),εε==--3(1,1,1,1)ε=--,4(1,1,1,1),ε=--下的坐标____.2 在[]P x 中定义0()()f x f x ψ=,其中0x 是一个固定的数,判断ψ是不是线性变换____.3 线性空间V 的两组基的过渡矩阵为A ,则这两组基的对偶基的过渡矩阵为____.4设矩阵2323ab ⎛⎝为正交矩阵,则a = ____,b = ____. 5 欧氏空间V 上的线性变换f 称之为正交变换,如果对任意的,V αβ∈____. 6已知三阶矩阵A 的特征值为1,-1,2,设矩阵325B A A =-,则____B .(提示:行列式的值等于它所有特征值的乘积.)7试写出线性空间V 上线性变换ψ核的表达式______.8 属于不同特征值的特征向量线性无关是否正确?______. 9 设A 是n 阶矩阵,满足2A A =,则矩阵A 的特征值______.二、计算与解答题 (10分×3)10在空间3P 中设线性变换()()12312231,,2,,A x x x x x x x x =-+.求A 在基()()()0231,0,0,1,1,0,0,0,1εεε===下的矩阵.11设B 是秩为2的54⨯矩阵,()()()1231,1,2,3,1,1,4,1,5,1,8,9T T Tααα==--=--是齐次方程组0Bx =的解向量,求0Bx =的解空间的一个规范正交基.12已知1122A ⎛⎫= ⎪⎝⎭,求nA .三、证明题 (10分×2)13设12,,,,n ααα是欧氏空间V 的一组基,证明:如果V γ∈满足(),0,1,2,,i i n γα==,则0γ=.14证明: 设123,,εεε是线性空间V 的一组基,123,,f f f 是它的对偶基,1132123323,,αεεαεεεαεε=-=++=+, 试证:123,,ααα是V 的一组基并求它的对偶基.2020-2021《高等代数二》期末课程考试试卷答案专业:信计 考试日期: 所需时间:120分钟 总分:100分 闭卷一、填空(5分×10)1在4P 中,向量(1,2,1,1)ξ=在12(1,1,1,1),(1,1,1,1),εε==--3(1,1,1,1)ε=--,4(1,1,1,1),ε=--下的坐标____.5111,,,4444--2 在[]P x 中定义0()()f x f x ψ=,其中0x 是一个固定的数,判断ψ是不是线性变换____.是3 线性空间V 的两组基的过渡矩阵为A ,则这两组基的对偶基的过渡矩阵为____. ()1'A -4设矩阵2323ab ⎛⎝为正交矩阵,则a = ____,b = ____.1,03. 5 欧氏空间V 上的线性变换f 称之为正交变换,如果对任意的,V αβ∈____.()(),,f f αβαβ=6已知三阶矩阵A 的特征值为1,-1,2,设矩阵325B A A =-,则____B .(提示:行列式的值等于它所有特征值的乘积.)【解】设()325f x x x =-,则B 的特征值为()()()14,16,212f f f =--=-=-.于是()()()4612288B =-⋅-⋅-=-.7试写出线性空间V 上线性变换ψ核的表达式______.(){}10|0x V x ψψ-=∈= 8 属于不同特征值的特征向量线性无关是否正确?______. 是 9 设A 是n 阶矩阵,满足2A A =,则矩阵A 的特征值______.【解】设λ是A 的特征值,α是其对应的特征向量,则,0A αλαα=≠,22A A αλαλα==,又由2A A =得到2A A ααλα==,所以2λαλα=.20,0,1λλλ-==.二、计算与解答题 (10分×3)10在空间3P 中设线性变换()()12312231,,2,,A x x x x x x x x =-+.求A 在基()()()0231,0,0,1,1,0,0,0,1εεε===下的矩阵.【解】略.11设B 是秩为2的54⨯矩阵,()()()1231,1,2,3,1,1,4,1,5,1,8,9TTTααα==--=--是齐次方程组0Bx =的解向量,求0Bx =的解空间的一个规范正交基.【解】既然B 是秩为2,解空间的维数为2,又12,αα线性无关,所以12,αα是解空间的一个基,()()()()1121221111,1,2,3,,14,2,10,6.,3TTβααββαβββ===-=-- 再单位化,))1121,1,2,3,2,1,5,3.TTηαη===--12已知1122A ⎛⎫=⎪⎝⎭,求nA . 【解】(1) 求A 的特征值,2300,3E A λλλλλ-=-=⇒==.(2) 求A 的特征向量,当3λ=时,112α⎛⎫= ⎪⎝⎭,当0λ=时,211α⎛⎫=⎪-⎝⎭.令()12,P αα=,则13000A P P -⎛⎫= ⎪⎝⎭,于是11111130303300002323nn n n nn n A P P P P ------⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪⋅⋅⎝⎭⎝⎭⎝⎭. 三、证明题 (10分×2)13设12,,,,n ααα是欧氏空间V 的一组基,证明:如果V γ∈满足(),0,1,2,,i i n γα==,则0γ=.【证明】根据(),0γγ=.14证明: 设123,,εεε是线性空间V 的一组基,123,,f f f 是它的对偶基,1132123323,,αεεαεεεαεε=-=++=+,试证123,,ααα是V 的一组基并求它的对偶基.证明:()()123123011,,,,112111g g g f f f -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭。
(完整word版)高等代数(二)期末考试样卷

《高等代数(二)》期末考试样卷一、选择题(本大题有一项是符合题目要求的)1. 若σ是F 上向量空间V 的一个线性变换,则下列说法∙∙误错的是( )A.)()()(,,βσασβασβα+=+∈∀VB.0)0(=σC.)()(,,ασασαk k F k V =∈∈∀D.0)0(≠σ2.若},,{21s ααα 和},,{21t βββ 是两个等价的线性无关的向量组,则( ) A.t s > B. t s < C. t s = D.以上说法都不对 3.向量空间2F [x]的维数是( )A. 0B. 1C. 2D. 3 4.一个线性变换关于两个基的矩阵是( )A.正定的B.相似的C.合同的D.对称的 5.如果两个向量βα与正交,则下列说法正确的是( ) A. ><βα, > 0 B. ><βα, < 0 C. ><βα, = 0 D. ><βα, ≠ 06.设σ是欧氏空间V 的正交变换, 任意α,β∈V, 下列正确的是( ) A.<α,β > = <σ(α),β> B.<α,β> = <α,σ(β)> C.<α,β> = <σ(α), σ(β)> D. <α,β> = -<σ(α),σ(β)>7.如果n 元齐次线性方程组AX =0的系数矩阵的秩为r,那么它的解空间的 维数为( )A 、n-rB 、nC 、rD 、n+r 8.设21,W W 是向量空间V 的两个子空间,则下列说法正确的是( ) ①21W W +是向量空间V 的子空间 ②21W W +不是向量空间V 的子空间③21W W 是向量空间V 的子空间 ④21W W 不是向量空间V 的子空间 ⑤21W W 是向量空间V 的子空间 ⑥21W W 不一定是向量空间V 的子空间 A. ①③⑤ B. ②④⑥ C. ①③⑥ D. ②④⑤ 9.设σ是数域F 上向量空间V 的线性变换,W 是V 的子空间,如果对于W 中的任意向量ξ,有W ∈)(ξσ,则称W 是σ的 ( )A.非平凡子空间B.核子空间C.不变子空间D.零子空间10.欧氏空间的度量矩阵一定是( )A.正交矩阵B.上三角矩阵C. 下三角矩阵D. 正定矩阵 二、填空题(共10小题,每小题3分,共30分。
高等代数(北大版)第2章习题参考答案

第二章 行 列 式1. 求以下9级排列的逆序数,从而决定它们的奇偶性1) 1 3 4 7 8 2 6 9 5; 2) 2 1 7 9 8 6 3 5 4; 3)9 8 7 6 5 4 3 2 1;解:1) 所求排列的逆序数为:()1011033110134782695=+++++++=τ, 所以此排列为偶排列。
2) 所求排列的逆序数为:()1810345401217986354=+++++++=τ, 所以此排列为偶排列。
3) 所求排列的逆序数为:()()36219912345678987654321=-=+++++++=τ, 所以此排列为偶排列。
2.选择i 与k 使1) 1274i 56k 9成偶排列; 2) 1i 25k 4897成奇排列。
解: 1) 当3,8==k i 时, 所求排列的逆序数为:()()10011314001274856399561274=+++++++==ττk i ,故当3,8==k i 时的排列为偶排列.。
2)当6,3==k i 时, 所求排列的逆序数为:()()5110110101325648974897251=+++++++==ττk i ,故当6,3==k i 时的排列为奇排列。
3.写出把排列12345变成排列25341的那些对换。
解: 12345()()()2534125431214354,35,22,1−−→−−−→−−−→−。
4.决定排列()211 -n n 的逆序数,并讨论它的奇偶性。
解: 因为1与其它数构成1-n 个逆序,2与其它数构成2-n 个逆序,……n n 与1-构成1个逆序,所以排列()211 -n n 的逆序数为()[]()()()时排列为奇排列。
当时,排列为偶排列;故当34,2414,4211221211++=+=-=+++-+-=-k k n k k n n n n n n n τ5.如果排列n n x x x x 121- 的逆序数为k ,排列121x x x x n n -的逆序数是多 少?解: 因为比i x 大的数有i x n -个,所以在121x x x x n n -与n n x x x x 121- 这两个排列中,由i x 与比它的 各数构成的逆序数的和为i x n -.因而,由i x 构成的逆序总数 恰为 ()()21121-=-+++n n n 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科目名称:《高等代数》
姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌
≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌
一、填空题(每小题5分,共25分)
1、在[]X P 中,向量21x x ++关于基23,1,12+--x x x 的坐标为 。
2、向量组()()()()()8,3,5,2,1,1,3,0,3,2,4,2,1,2,154321-=-==-=-=ααααα的秩 为 ,一个最大无关组为 .。
3、(维数公式)如果21,V V 是线性空间V 的两个子空间,那么 。
4、假设⎪⎪⎪
⎭
⎫ ⎝⎛-----=175131023A 的特征根是 ,特征向量分别为 。
5、实二次型()323121321224,,x x x x x x x x x f ++-= 的秩为
二、是非题(每小题2分,共20分)
1、如果r a a a ,,,21 线性无关,那么其中每一个向量都不是其余向量的线性组合。
( )
2、在][x P 中,定义变换)()(0x f x Af =,其中P x ∈0,是一固定的数,那么变换A 是线性变换。
( )
3、设21,W W 是向量空间V 的两个子空间,那么它们的并 21W W 也是V 的一个子空间。
( )
4、两个欧氏空间同构的充分且必要条件是它们有相同的维数。
( )
5、令),,,(4321x x x x =ξ是4R 的任意向量,那么δ是4R 到自身的线性变换。
其中
),,,()(2
4232221x x x x =ξδ。
( )
6、矩阵A 的特征向量的线性组合仍是A 的特征向量。
( )
7、若矩阵A 与B 相似,那么A 与B 等价。
( )
8、n 阶实对称矩阵A 有n 个线性无关的特征向量。
( )
9、在)(2R M 中,若W 由所有满足迹等于零的矩阵组成,那么W 是)(2R M 的
子空间。
( )
10、齐次线性方程组0)(=-X A E λ的非零解向量是A 的属于λ的特征向量。
( )
三、明证题(每小题××分,共31分)
1、设n εεε,,,21 是线性空间V 的一组基,A 是V 上的线性变换,证明:A 可逆当且仅当n A A A εεε,,,21 线性无关。
(10)
2、设δ是n 维欧氏空间V 的一个线性变幻,证明:如果δ是对称变幻,2δ=l 是单位变幻,那么δ是正交变换。
(11)
3、设V 是一个n 维欧氏空间,证明:如果21,W W 都是V 得子空间,那么() ⊥⊥⊥=+2121W W W W 。
(10) 四、计算题(每小题8分,共24分)
1、求矩阵⎪⎪⎪
⎭
⎫
⎝⎛---=466353331A 的特征根与特征向量,并求满秩矩阵P 使得AP P 1-为对
角形矩阵。
2、求一个正交矩阵U ,使得AU U '使对角形式,其中⎪⎪⎪
⎭
⎫ ⎝⎛--=52024202
3A 。
3、化二次型 ()323121321224,,x x x x x x x x x f ++-=为平方和,并求所用的满秩线性变换。
科目名称:《高等代数》
姓名: 班级: 考试时间:120分钟 考试形式:闭卷 ≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌
≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌≌
一、填空题(每小题5分,共25分)
1、(3,4,1)
2、秩为2,一个最大无关组为31,αα
3、维(1V )+维(2V )=维(21V V +)+维( 21V V )
4、特征根是1,1,2,特征向量分别为()(),1,1,2,1,1,121-==αα
5、秩为 3
二、是非题(每小题2分,共20分)
1、(是 )
2、(是 )
3、(是 )
4、(否 )
5、(否 )
6、(否 )
7、(是 )
8、(是 )
9、(是 ) 10、(是 )
三、明证题(每小题××分,共31分)
1、证明 设A 可逆,则1-A 存在,且1-A 也是V 的线性变换,(1) 若n A A A εεε,,,21 线性相关,则)(,),(),(12111n A A A A A A εεε--- ,(2)
即n εεε,,,21 也线性相关,这与假设n εεε,,,21 是基矛盾,故n A A A εεε,,,21 线性无关。
(5)反之,若n A A A εεε,,,21 线性无关,因V 是n 维线性空间,故它也是V 的一组基,(7) 故对V
中任意向量1α有)(22111n n k k k A εεεα+++= ,即存在
)(2211n n k k k εεεα+++= ,使1)(αα=A ,故A 为V 到V 上的变换。
(8) 若
又
有
n
n l l l εεεβ+++= 2211,使
1
)(αβ=A ,即
)(22112211n n n n A k A k A k A l A l A l A εεεεεεβ+++=+++= ,
因为n A A A εεε,,,21 是基,),,2,1(,n i k l i i ==,即βα=,从而A 又是一一的变换,故A 为可逆变换。
(10)
2、证:()()()()()()ξξξδξδξδξξδξξδξ
ξδ,,2,,2
+-=--=-,(4)
=()()()()ξξδξξξδξ,,2,2+- ,(8)
=()()()()ξδξδξδξ2,2,2-, (10)
=0 ,(11)
3、证:(1)()() ⊥⊥⊥
⊥⊥⊥
⊆+⇒∈⇒+∈∀21212121W W W W W W W W ξξ,(5)
同理() ⊥⊥⊥
⊇+2121W W W W , (8)
则() ⊥⊥⊥
=+2121W W W W 。
(10)
四、计算题(每小题8分,共24分)
1、解:A E -λ=)4()2(2-+λλ,则A 的特征根为22,1-=λ,43=λ, (3)
i λ)3,2,1(=i ,它们对应的特征向量分别为⎪⎪⎪
⎭⎫
⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=211,011,101321ααα, (6)
易知321,,ααα线性无关,取⎪⎪⎪⎭⎫ ⎝⎛-=201110111P ,那么就得⎪⎪⎪⎭⎫
⎝⎛--=-4000200021
AP P 。
(8)
2、解:)7)(4)(1(---=-λλλλA E ,则特征根为7,4,1321===λλλ, (3)
对应它们的线性无关的特征向量分别为⎪⎪⎪
⎭⎫
⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=221,212,122321ααα,
(6)
他们单位化后分别为
⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=323231332313223132321,,βββ,取正交矩阵⎪⎪⎪
⎭
⎫ ⎝⎛--=323
23
13
2313
23132
3
2U , (7) 则,⎪⎪⎪
⎭⎫ ⎝⎛=700040001'AU U 。
(8)
3、解 332122
11y x y y x y y x =-=+= ,⎪⎪⎪
⎭
⎫
⎝⎛-=1000110111C ,得 (2)
3
213212121)(2)(2))((4y y y y y y y y y y f -+++-+-=
整理得2322232112231214)(4444y y y y y y y y f ++--=++-= (4)
在令3
32
23
2111y z y z y y z ==-=,⎪⎪⎪
⎭
⎫ ⎝⎛=10001001212C , (6)
23222144z z z f ++-=,⎪⎪⎪⎭⎫ ⎝⎛-==100111121
2121C C C , (8)。