高等代数真题答案

合集下载

[全]《高等代数》考研真题详解[下载全]

[全]《高等代数》考研真题详解[下载全]

《高等代数》考研真题详解1.设Q是有理数域,则P={α+βi|α,β∈Q}也是数域,其中.(U )[南京大学研]【答案】对查看答案【解析】首先0,1∈P,故P非空;其次令a=α1+β1i,b=α2+β2i其中α1,α2,β1,β2为有理数,故a±b=(α1+β1i)±(α2+β2i)=(α1±α2)+(β1±β2)i∈Pab=(α1+β1i)(α2+β2i)=(α1α2-β1β2)+(α1β2+α2β1)i∈P又令c=α3+β3i,d=α4+β4i,其中α3,α4,β3,β4为有理数且d≠0,即α4≠0,β4≠0,有综上所述的P为数域.2.设f(x)是数域P上的多项式,a∈P,如果a是f(x)的三阶导数f‴(x)的k重根(k≥1)并且f(a)=0,则a是f(x)的k+3重根.()[南京大学研]【答案】错查看答案【解析】反例是f(x)=(x-a)k+3+(x-a)2,这里f(a)=0,并且f ‴(x)=(k+3)(k+2)(k+1)(x-a)k满足a是f(x)的三阶导数f‴(x)的k重根(k≥1).3.设f(x)=x4+4x-3,则f(x)在有理数域上不可约.()[南京大学研]【答案】对查看答案【解析】令x=y+1,则f(y)=y4+4y3+6y2+8y+2,故由艾森斯坦因判别法知,它在有理数域上不可约.二、计算题1.f(x)=x3+6x2+3px+8,试确定p的值,使f(x)有重根,并求其根.[清华大学研]解:f′(x)=3(x2+4x+p).且(f(x),f′(x))≠1,则(1)当p=4时,有(f(x),f′(x))=x2+4x+4所以x+2是f(x)的三种因式,即f(x)(x+2)3,这时f(x)的三个根为-2,-2,-2.(2)若p≠4,则继续辗转相除,即当p=-5时,有(f(x),f′(x))=x-1即x-1是f(x)的二重因式,再用(x-1)2除f(x)得商式x+8.故f(x)=x3+bx2-15x+8=(x-1)2(x+8)这时f(x)的三个根为1,1,-8.2.假设f1(x)与f2(x)为次数不超过3的首项系数为1的互异多项式,且x4+x2+1整除f1(x3)+x4f2(x3),试求f1(x)与f2(x)的最大公因式.[上海交通大学研]解:设6次单位根分别为由于x6-1=(x2)3-1=(x2-1)(x4+x2+1),所以ε1,ε2,ε4,ε5是x4+x2+1的4个根.由于ε13=ε53=-1,且x4+x2+1∣f1(x3)+x4f2(x3),所以,分别将ε1,ε5代入f1(x3)+x4f2(x3)可得从而f1(-1)=f2(-1)=0即x+1是f1(x)与f2(x)的一个公因式.同理,将ε2,ε4代入f1(x3)+x4f2(x3)可得f1(1)=f2(1)=0,即x -1是f1(x)与f2(x)的一个公因式.所以(x-1)(x+1)是f1(x)与f2(x)的一个公因式.又因为f1(x),f2(x)为次数不超过3的首项系数为1的互异多项式,所以(f(x),g(x))=x2-1名校考研真题第6章线性空间一、选择题1.下面哪一种变换是线性变换().[西北工业大学研]A.B.C.【答案】C查看答案【解析】不一定是线性变换,比如则也不是线性变换,比如给而不是唯一的.2.在n维向量空间取出两个向量组,它们的值().[西北工业大学研] A.必相等B.可能相等亦可能不相等C.不相等【答案】B查看答案【解析】比如在中选三个向量组(I):0(Ⅱ)(Ⅲ).若选(I)(II),秩秩(II),从而否定A,若选(Ⅱ)(Ⅲ),秩(Ⅲ)=秩(Ⅱ),从而否定C,故选B.二、填空题1.若则V对于通常的加法和数乘,在复数域C上是______维的,而在实数域R上是______维的.[中国人民大学研]【答案】2;4.查看答案【解析】在复数域上令;则是线性无关的.则此即证可由线性表出.在实数域上,令若,其中,则此即在R上线性关.可由线性表出,所以在实数域R上,有三、分析计算题1.设V是复数域上n维线性空间,V1和V2各为V的r1维和r2维子空间,试求之维数的一切可能值.[南京大学研]解:取的一组基,再取的一组基则=秩。

高等代数期末试题及答案

高等代数期末试题及答案

高等代数期末试题及答案1. 选择题1.1 题目:解线性方程组已知线性方程组:\[\begin{cases}2x - 3y + z = 7 \\4x + y - 2z = -1 \\3x - 2y + 2z = 5\end{cases}\]其中,x、y、z为实数。

求解该线性方程组的解。

1.1 答案:解线性方程组的步骤如下:通过高斯消元法,将方程组化为行简化阶梯形式:\[\begin{cases}x - \frac{12}{7}z = 5 \\y - \frac{5}{7}z = 2 \\0 = 0\end{cases}\]由最后一行可以看出,方程存在自由变量z。

令z为任意实数,可以得到:\[\begin{cases}x = 5 + \frac{12}{7}z \\y = 2 + \frac{5}{7}z \\z = z\end{cases}\]因此,该线性方程组的解为:\[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 +\frac{12}{7}z \\ 2 + \frac{5}{7}z \\ z \end{pmatrix}\]2. 填空题2.1 题目:求行列式的值计算行列式的值:\[D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}\]2.1 答案:计算行列式的值,可以通过按任意行或列展开的方法来求解。

选择第一行进行展开计算:\[D = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}\]计算上述三个二阶行列式的值,得到:\[D = 1 \cdot (5 \cdot 9 - 6 \cdot 8) - 2 \cdot (4 \cdot 9 - 6 \cdot 7) + 3\cdot (4 \cdot 8 - 5 \cdot 7) = 0\]因此,行列式的值为0。

考研高等代数真题答案

考研高等代数真题答案

考研高等代数真题答案一、选择题1. 根据线性空间的定义,下列哪个选项不是线性空间的子空间?- A. 所有零向量组成的集合- B. 线性空间中的非零向量集合- C. 线性空间中的任意向量集合- D. 线性空间中满足特定线性组合的向量集合答案:B2. 矩阵A的特征值是λ1, λ2, ..., λn,矩阵B的特征值是μ1,μ2, ..., μn。

若AB=BA,那么矩阵A+B的特征值是什么?- A. λ1+μ1, λ2+μ2, ..., λn+μn- B. λ1*μ1, λ2*μ2, ..., λn*μn- C. λ1+μ1, λ1+μ2, ..., λn+μn(无规律)- D. 不能确定答案:A二、填空题1. 若线性变换T: V → W,其中V和W是有限维向量空间,且dim(V) = n,dim(T(V)) = r,则T的核的维数是_________。

答案:n-r2. 设A是一个3×3的矩阵,且|A| = 2,矩阵A的特征多项式为f(λ)= (λ-1)^2(λ-3),则矩阵A的迹是_________。

答案:4三、解答题1. 证明:若矩阵A可逆,则A的伴随矩阵A*的行列式等于|A|^(n-1),其中n是A的阶数。

证明:设矩阵A是一个n×n的可逆矩阵,其伴随矩阵记为A*。

根据伴随矩阵的定义,我们有:A * A* = |A| * I,其中I是单位矩阵。

两边同时乘以A的逆矩阵A^(-1),得到:A^(-1) * A * A* = |A| * A^(-1) * I,即 A* = |A|^(n-1) * A^(-1)。

由此可知,A*的行列式是|A|^(n-1)。

2. 解线性方程组:x + 2y + 3z = 14x + 5y + 6z = 27x + 8y + 9z = 3解:首先写出增广矩阵:[1 2 3 | 1][4 5 6 | 2][7 8 9 | 3]通过初等行变换,将增广矩阵化为行最简形式:[1 0 -1 | -1][0 1 3 | 4][0 0 0 | 0]根据行最简形式,我们可以得到y = 4 - 3z,x = 1 + z。

武汉科技大学614高等代数2020年考研真题(含标准答案)

武汉科技大学614高等代数2020年考研真题(含标准答案)

9、 设 A 是 n(n 2) 阶方阵, R( A) n 1 ,则 R(( A*)*) ( )
A. 0
B. 1
10、下列集合能构成向量空间的是(
A.V x, y, z | xyz 0
C. n 1
D. n

B. V x, y, z | x3 1
C. V x, y, z | x y z 0 D. V x, y, z | x3 y3 z3 1
0 1 1
4、(12
分)已知矩阵
A
2 0
3 0
0 0

(Ⅰ)求 A9 ;(Ⅱ)设 3 阶矩阵 B (1,2 ,3) 满足 B2 BA ,记 B10 (1, 2 , 3 ) 将
1, 2 , 3 分别表示为1,2 ,3 的线性组合.
5、(12 分)设向量组1,2 ,3 内 R3 的一个基, 1 31 3k3 , 2 m2 (m 0,1) ,
0 1 0 A. 0 0 1
1 1 0
0 1 0 B. 1 0 0
0 0 1
1 0 0 C. 0 0 1
0 1 0
0 0 2、设 n 阶矩阵 A 与 B 等价,则必有( )
A. 当 A a a 0 时, B a B. 当 A a a 0 时, B a
C. 当 A 0 时, B 0
D. 当 A 0 时, B 0
3、设 A 为 3 阶实对称矩阵,且 A2 A 0 ,若 A 的秩为 2,则 A 相似于( )
1
A.
1
0
1
B.
1
0
1
1
C.
1
0
D.
0
0
4、设方阵 A 的秩不为 0, E 为单位矩阵,若 A5 0 ,则( )

高等代数真题答案

高等代数真题答案

⾼等代数真题答案第六章习题册1. 检验下述集合关于所规定的运算是否构成实数域R 上的线性空间? (a) 集合{()[]deg()}f x R x f n ∈|=关于多项式的加法和数乘.(b) 集合{()}T n A M R A A ∈|=关于矩阵的加法和数乘.(c) 集合0{{}}n n n x x R ∞=|∈关于数列的加法和数乘.2. 设V 是数域F 上的线性空间, 证明(αβ)αβk k k ?=?, 这⾥αβV k F ,∈,∈.3. 下述集合是否是()n M R 的⼦空间 (a) {()}T n V A M R A A =∈|=?(b) {()()[]}V f A f x R x =|∈, 这⾥()n A M R ∈是⼀个固定⽅阵.4. 叙述并证明线性空间V 的⼦空间1W 与2W 的并12W W ∪仍为V 的⼦空间的充分必要条件.5. 设1S 与2S 是线性空间V 的两个⾮空⼦集, 证明: (a) 当12S S ?时, 12()()Span S Span S ?.(b) 1212()()()Span S S Span S Span S =+∪.(c) 1212()()()Span S S Span S Span S ?∩∩.6. 如果123f f f ,,是实数域上⼀元多项式全体所成的线性空间[]R x 中三个互素的多项式, 但其中任意两个都不互素, 那么它们线性⽆关.试证之.7. 设S 是数域F 上线性空间V 的⼀个线性⽆关⼦集, α是V 中⼀个向量, αS ?, 则{α}S ∪线性相关充分必要条件α()Span S ∈.8. (a)证明{|()}ij ji E E i j +≤是()n M F 中全体对称矩阵组成的⼦空间的⼀个基.(b). 求3()M F 的⼦空间{()()[]}f A f x F x |∈的⼀个基和维数, 这⾥010001000A=9. 在4R 中, 求向量ξ在基1234(εεεε),,,下的坐标, 其中 12341210111112εεεεξ0301311014 =,=,=,=,=10. 求⼀个⾮零向量ξ, 使得它在基1234(εεεε),,,下的坐标和它在基1234(ηηηη),,,下的坐标相同, 这⾥1234εεεε,,,与第9题相同, 123420101121ηηηη22112111=,=,=,=11. 在4R 中, 求由向量 123421111211αααα30311101=,=,=,= 所张成的⼦空间的⼀个基与维数12. 设123411111146αααα11351122=,=,=,=???????????? ,123411311111ββββ11115131=,=,=,=????????11234{αααα}W Span =,,,, 21234{ββββ}W Span =,,,, 请分别求12W W +和12W W ∩的⼀个基13. 设12{()01},{()1}ij n n ij ij n n ij ji V a a i j n V a a a i j n ××=|=,≤≤≤=|=?,≤,≤是矩阵空间()n M R 的两个⼦空间, 证明12V V ?14. 设3323212322233222g x x g x x x g x x x =?+,=??+,=+?,是[]F x 的⼦空间V ⼀个基, 3321232122f x x f x x f x x =++,=?+,=+.请问123f f f ,,中哪些是属于V ,哪些是不属于V , 如果属于请给出它在基123()g g g ,,下的坐标.15. 4R 中, 求由基1234(αααα),,,到基1234(ββββ),,,的过渡矩阵, 并求向量ξ在指定基1234(αααα),,,下的坐标. 其中1α(1111)=,,,, 2α(1111)=,,?,?, 3α(1111)=,?,,?, 4α(1111)=,?,?,; 1β(1101)=,,,, 2β(2131)=,,,,3β(1100)=,,,, 4β(0111)=,,?,?. ξ(1001)=,,,?.16. 设123()A A A ,,和123()B B B ,,是矩阵空间2()M R 的⼦空间V 的两个基, 其中123123100111450321,111000113112A A A B B B =,=,==,=,=??????求 (a) 基123()A A A ,,到123()B B B ,,的过渡矩阵.(b) 3631C ??=在基123()A A A ,,的坐标(c) C 在基123()B B B ,,的坐标17. 设W 是全体实函数关于函数的加法和函数的数乘所成的实数域上的线性空间, 1W 是全体偶函数所成的⼦集, 2W 是全体奇函数所成的⼦集.证明:1W 与2W 是W 的⼦空间且12W W W =⊕.18. 设1W 与2W 分别是齐次线性⽅程组120n x x x +++= 与 12n x x x === 的解空间.证明12n R W W =⊕, 这⾥R 是实数域.19. 如果12V V V =⊕, ⽽11112V V V =⊕, 证明:11122V V V V =⊕⊕.第七章习题册1. 判别下列变换是否线性变换?(a) α是线性空间V 中⼀个固定向量定义(β)βαβT V :=+,?∈(b) 在3R 中, 定义221231233()()T x x x x x x x ,,:=,+,.(c) 在3R 中, 定义12312231()(22)T x x x x x x x x ,,:=?,+,.(d) 在[]F x 中, 定义(())(1)T f x f x =+2. 设V W ,分别是数域F 上的n 维与m 维线性空间, 12{ααα}n ,,, 是V 的⼀个基, ⽽12{βββ}n ,,, 是 W 中 n 个向量.证明存在唯⼀的线性映射T V W :→使得(α)β12i i T i n =,=,,, .3. 设V W ,是数域F 上的两个线性空间, ()L V W ,是V 到W 的所有线性映射所组成的集合.证明 ()L V W ,关于线性映射的加法与数量乘法, 成为数域F 上的⼀个线性空间.4. 在[]F x 中, 定义 12()(())(())()df x T f x T f x xf x dx:=,:=, 证明: 1221TT T T E ?=5. 设T 是V 的线性变换, 向量αV ∈, 存在⼀个正整数k ,使得1(α)0k T ?≠但(α)0k T =. 证明: 21α(α)(α)(α)k T T T ?,,,, 线性⽆关.6. 证明: 设12T T , 是V 的可逆线性变换, 则12TT 也是可逆线性变换, 并且1111221()TTT T =.7. 设T 是V 的线性变换, 证明T 是单射线性变换的充分必要条件是T 把线性⽆关的向量组变为线性⽆关的向量组.8. 设V W ,是数域F 上的两个线性空间, ⽽T V W :→是线性映射. 证明ker T 与()T V 分别是V 与W 的⼦空间. ⼜若dim V 有限, 证明: dimker dim ()dim T T V V +=.9. 在线性空间2()M F 定义线性变换()T X AX XA =?, 其中1234A ??=, 求T 在基11122122()E E E E ,,,下的矩阵.10. 设1234{}V Span f f f f =,,,为函数空间的4维⼦空间, 其中1cos f bx =, 2sin f bx =, 3cos f x bx =, 4sin f x bx =, 求微分变换D 在基1234()f f f f ,,,下的矩阵.11. T 是n 维线性空间V 上的⼀个线性变换, 如果存在αV ∈使得1(α)0n T ?≠, 但(α)0n T =.证明在V 中存在⼀个基, 使得 T 在该基下的矩阵为 0000100001000010A=.12. 设V 是n 维线性空间, 求dim ()L V V ,, 并找出()L V V ,的⼀个基.13. 证明与n 维线性空间V 的所有线性变换可交换的线性变换是数乘变换. 14.设123131η1η2η1211=,=,=??????是3R 的⼀个基, 定义线性变换为123505(η)0(η)1(η)1369T T T =,=?,=?,???? 求T 在基123(ηηη),,下的矩阵并求(α)T , 其中2α15??=15. 设AP PB =, 其中1581026900370004P =,??0234002300020000B=,求10A16. 若A 可逆, 证明AB 与BA 相似.17. 若A 与B 相似, C 与D 相似, 证明00A C ??与00B D ??相似18. 设A 与B 相似, C 与D 相似, 请举反例说明AC 与BD 不⼀定相似, A C +与B D +不⼀定相似.19. 设123103η0η1η1210=,=,=?,123100010001e e e =,=,=, 在定义为15(η)03T =,?20(η)16T=?,35(η)19T=?, 已知3R 中线性变换T 在基()123ηηη,,下的矩阵为100110002,求T 在基123()e e e ,,下的矩阵.20. 设12n e e e ,,, 是线性空间V 的⼀个基, 11αβnnj ij i j ij i i i a e b e ===,=∑∑, ()()ij ij A a B b =,=, 已知12αααn,,, 线性⽆关. T 是V 上的线性变换使得(α)β12i i T i n =,=,,, .(a) 证明T 在基12(ααα)n ,,, 下的矩阵为1A B ?.(b) T 在基12()n e e e ,,, 下的矩阵为1BA ?.21. 证明: 1212(λ,λ,,λ)~(λ,λ,,λ)n n i i i diag diag , 其中12()n i i i ,,, 是(12)n ,,, 的⼀个排列.22. 设V 为数域F 上的线性空间, T 是V 的线性变换, 若0λ是T 的特征值, 则对任意(λ)[λ]f F ∈, 0(λ)f 是 ()f T 的特征值, 且T 的属于0λ的特征向量也是()f T 的属于0(λ)f 的特征向量.23. 设12λλ,是线性变换T 的两个不同的特征值, 12αα,分别是属于12λλ,的特征向量, 证明12αα+不是T 的特征向量24. 设T 是V 的线性变换. 证明:T 是可逆线性变换充要条件零不是T 的特征值, 并且若λ是T 的特征值, 则1λ?是1T ?的特征值25. 设A B ,是n 阶⽅阵. 证明若1B P AP ?=, 则()()Tr B Tr A =26. 设V 是复数域上的线性空间, 123(ααα),,是V 的有序基, T 是V 上线性变换它在有序基123(ααα),,下的矩阵为 310410482A=, 求T 的特征值与特征向量.27. 求1111111111111111A=的特征值与特征向量.28. 证明不可能存在n 阶⽅阵A 和B 使得AB BA E ?=29. 求下⾯矩阵1212111211121211121124242A=的特征值30. 设A 是⼀个n 阶下三⾓矩阵. 证明若A 的对⾓线元素1122nn a a a === , 且A 不是对⾓阵, 则A 不可对⾓化.31. 设A 是3阶⽅阵, 112,?,是A 的三个特征值, 101111011,,是分别属于特征值112,?,的三个特征向量,求A .32. 设142034043A=?;求可逆矩阵P 使得1P AP ?为对⾓阵, 并求k A .33. 设A 是⼀个n 阶下三⾓矩阵. 证明若A 的对⾓线元素ii jj a a ≠, (i j ≠), 则A 可对⾓化34. 已知T 在⼀个基下的矩阵为 310410482A=??,试问T 是否可以对⾓化35. 对于n 阶⽅阵A , 定义(){()}n C A D M F AD DA :=∈|= (a) 证明()C A 是()n M F 的⼦空间(b) 设1B P AP ?=, 定义映射1()f D P DP ?:=, 证明f 是()C A 到()C B 的同构映射(c) 设A 是n 阶对⾓矩阵, 它的特征多项式为 1212?(λ)(λ)(λ)(λ)s c c c D s d d d =, 其中12s d d d ,,, 两两不同, 证明22212dim ()s C A c c c =+++.36. 设()n A M F ∈, 证明()n M F 的⼦空间{()()[]}V f A f x F x =|∈的为数等于(λ)A m 的次数.37. 设A 为准对⾓矩阵12()s diag A A A ,,,, 其中i A 为i n 阶⽅阵, 它的最⼩多项式为(λ)12i m i s ,=,,,. 证明: 12(λ)[(λ)(λ)(λ)]A s m m m m =,,, (即A 的最⼩多项式是12s A A A ,,, 的最⼩多项式的最⼩公倍式).38. 设101011112A=,求A 的最⼩多项式.39.求矩阵01011010*******0A=的最⼩多项式, 并判断它们是否可对⾓化.40. 证明:A 是幂零矩阵的充分必要条件是A 的特征值全为零41. 设T 是矩阵空间()n M F 上的线性变换定义为()T T A A :=. 证明: T 是否可对⾓化42. 若W 是V 的⼀维⼦空间, T 是V 的线性变换, 则W 是T -⼦空间充分必要条件W 中任⼀⾮零向量都是属于同⼀特征值的特征向量.43. 设V 是复数域上n 维线性空间, 1T ,2T 是V 的线性变换, 且1221TT T T =. 证明:1T , 2T ⾄少有⼀个公共特征向量44. 设T 是线性空间V 的线性变换, W 是T -⼦空间, 证明(λ)(λ)WT T m m |45. 设T 是线性空间V 的可逆线性变换, W 是T -⼦空间, 证明W 也是1T ?-⼦空间.46. 设A 是实⽅阵, 则存在实可逆⽅阵P 使得1P AP ? 为上三⾓阵的充分必要条件是A 的特征值全为实数.47. 设T 是3维线性空间V 的线性变换, 它在基123(ααα),,下的矩阵为 210021002A=,(a) 证明如果W 是T 的⾮零不变⼦空间, 则1αW ∈,(b) 证明不存在两个T -⼦空间12W W ,, 使得12V W W =⊕48. 设12T T ,是n 维线性空间V 的两个线性变换, 并且11221T TT T T =?, αV ∈是属于λ的1T 特征向量, 证明2{α012}i W Span T i =|=,,, 是2T -⼦空间, 也是1T -⼦空间.49. 设T 是n 维线性空间V 的两个线性变换, ()()[]f x g x F x ,∈, ()(()())d x f x g x =,, ()[()()]h x f x g x =, (a) 证明如果()()f x g x |, 则ker ()ker ()f T g T ?(b) ker ()ker ()ker ()f T g T d T =∩(c) ker ()ker ()ker ()h T f T g T =+第⼋章习题册1. 试求下列各λ-矩阵的秩, 并判别哪些矩阵是可逆的, 如可逆, 求出其逆矩阵.(a) 22λ2λ111λ1λ1λ1λλ+++??(b) 21010λ1λλ1λ?(c) 5λ125λλ5λ1+??.2. ⽤初等变换求λ-矩阵λ2100λ2100λ2的标准形, 和不变因⼦:。

高等代数试题及参考答案

高等代数试题及参考答案

高等代数试题及参考答案The document was prepared on January 2, 2021高等代数(一)考试试卷一、单选题(每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号填入答题纸内相应的表格中。

错选、多选、不选均不给分,6小题,每小题4分,共24分)1. 以下乘积中( )是4阶行列式ij D a =展开式中取负号的项. A 、11223344a a a a . B 、14233142a a a a . C 、12233144a a a a . D 、23413214a a a a .2.行列式13402324a --中元素a 的代数余子式是( ).A 、0324-. B 、0324--. C 、1403-. D 、1403. 3.设,A B 都是n 阶矩阵,若AB O =,则正确的是( ). A 、()()r A r B n +≤. B 、0A =. C 、A O =或B O =. D 、0A ≠. 4.下列向量组中,线性无关的是( ). A 、{}0. B 、{},,αβ0. C 、{}12,,,r ααα,其中12m αα=. D 、{}12,,,r ααα,其中任一向量都不能表示成其余向量的线性组合.5.设A 是n 阶矩阵且()r A r n =<,则A 中( ). A 、必有r 个行向量线性无关. B 、任意r 个行向量线性无关.C 、任意r 个行向量构成一个极大线性无关组.D 、任意一个行向量都能被其它r 个行向量线性表出.6.n 阶矩阵A 具有n 个不同的特征值是A 与对角阵相似的( )条件. A 、充要. B 、充分非必要. C 、必要非充分. D 、非充分非必要. 二、判断题(正确的打√,错误的打×,5小题,每小题2分,共10分). 1.若A 为n 阶矩阵,k 为非零常数,则kA k A =. ( ) 2.若两个向量组等价,则它们包含的向量个数相同. ( ) 3.对任一排列施行偶数次对换后,排列的奇偶性不变. ( ) 4.正交矩阵的逆矩阵仍是正交矩阵. ( ) 5.任何数域都包含有理数域. ( )三、填空题(每空4分,共24分).1.行列式000100201000D n n==- . 2.已知5(1,0,1)3(1,0,2)(1,3,1),(4,2,1)αβ---=--=-,则α= ,(,)αβ= .3.矩阵12311211022584311112A ---⎡⎤⎢⎥--⎢⎥=⎢⎥---⎢⎥--⎣⎦,则()r A = . 4.设线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩有解,其系数矩阵A 与增广矩阵A 的秩分别为s 和t ,则s 与t 的大小关系是 .5.设111123111,124111051A B ⎡⎤⎡⎤⎢⎥⎢⎥=-=--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,则1A B -= . 四、计算题(4小题,共42分)1.计算行列式(1)111111111111a a a a;(2)111116541362516121612564.(每小题6分,共12分)2.用基础解系表出线性方程组123451234512345123452321236222223517105x x x x x x x x x x x x x x x x x x x x ++-+=⎧⎪+++-=⎪⎨+++-=⎪⎪+--+=⎩的全部解.(10分)3.求与向量组123(1,1,1,1),(1,1,0,4),(3,5,1,1)ααα==-=-等价的正交单位向量组.(10分)4.求矩阵211020413A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的特征根和特征向量.(10分)一、单选题(每题4分,共24分)二、判断题(每题2分,共10分)三、填空题(每空4分,共24分)1.(1)2(1)!n n n --⋅; 2.(1 (2)0;3.3; 4.s t =;5.351222312212112-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦. 四、计算题(共42分)1.(12分,每小题各6分) (1)解:11131111111111311111(3)111311111111311111a a a a a a a a a a a aa a a++==+++ ..............(3分)311110100(3)(3)(1)001001a a a a a a -=+=+--- ...................(3分)注:中间步骤形式多样,可酌情加分 (2)解:222233331111111116541654136251616541216125641654=,此行列式为范德蒙行列式 ......(3分)进而2222333311111654=(61)(51)(41)(56)(46)(45)12016541654=------=-原式 .......(3分)2.(10分)解:用初等变换把增广矩阵化为阶梯形1213211213211213212111360317740115411122220115410317742351710501711630171163---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥--------⎣⎦⎣⎦⎣⎦1213211213210115410115410317740048510171163000000--⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥→→⎢⎥⎢⎥-----⎢⎥⎢⎥---⎣⎦⎣⎦..................(3分) 得同解方程组取45,x x 为自由未知量,得方程的一般解为12345234534521321544185x x x x x x x x x x x x++=+-⎧⎪-=+-⎨⎪=--+⎩(其中45,x x 为自由未知量) 将450,0x x ==代入得特解01551(,,,0,0)444γ=--. ................(3分)用同样初等变换,得到与导出组同解的方程组12345234534523205404850x x x x x x x x x x x x ++-+=⎧⎪--+=⎨⎪+-=⎩仍取45,x x 为自由未知量,得一般解12345234534523254485x x x x x x x x x x x x++=-⎧⎪-=-⎨⎪=-+⎩,将451,0x x ==和450,4x x ==分别代入得到一个基础解系:12(1,3,2,1,0),(9,11,5,0,4)ηη=--=- ...............(3分)所以,原方程组的全部解为01122k k γηη++,12,k k 为数域P 中任意数。

延安大学继续教育学院二零二二年高等代数期末考试试题及答案

延安大学继续教育学院二零二二年高等代数期末考试试题及答案

延安大学继续教育学院二零二二年高等代数期末考试试题及答案注意事项:1、答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3、考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合2A x x x B=--<=-,则{|340},{4,1,3,5}A、{4,1}-B、A B={1,5}C、{3,5}D、{1,3}2、若3zz=++,则||=12i iA、0B、1C D、23、埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A 、14B 、12C 、14D 、12+ 4、设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为A 、15 B 、25 C 、12D 、455、某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A 、y a bx =+B 、2y a bx =+C 、e x y a b =+D 、ln y a b x =+6、已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为A 、1B 、2C 、3D 、47、设函数π()cos()6f x x ω=+在[−π,π]的图像大致如下图,则f (x )的最小正周期为A 、10π9B 、7π6C 、4π3D 、3π28、设3log 42a =,则4a -=A 、116B 、19C 、18D 、169、执行下面的程序框图,则输出的n =A 、17B 、19C 、21D 、2310、设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=A 、12B 、24C 、30D 、3211、设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为A 、72B 、3C 、52D 、212、已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A 、64πB 、48πC 、36πD 、32π二、填空题:本题共4小题,每小题5分,共20分。

北京大学数学系《高等代数》名校考研真题(矩阵)【圣才出品】

北京大学数学系《高等代数》名校考研真题(矩阵)【圣才出品】

E
AB
E
2E AB
E E
AB AB
2E O
E AB
1
[
E
(
AB)2
]
2
2E
O
O
1
[
E
(
AB)2
]
2

r(2E) r[1 (E AB)2] n 2
所以
1 [E ( AB)2 ] O 2
因此有(AB)2=E 即 ABA=B-1.
4.求证:A+UV′=∣A∣+V′A·U 其中 A 为 n 阶矩阵,U,V 为 n 维列向量.[浙江大
2.设 A 为非零矩阵,但丌必为方阵,证明 AX=E 有解当且仅当 CA=0 必有 C=0,
3 / 10
圣才电子书 十万种考研考证电子书、题库视频学习平台

其中 E 为单位矩阵.[上海交通大学研] 证明:设 A 为 m×n 矩阵,则如果 AX=E 有解 Bn×m,即 AB=Em,有 m≥r(A)≥r(Em)
3.设 A、B 都是 n 阶方阵,E 为 n 阶单位矩阵.证明:ABA=B-1 的充要条件是 r(E
+AB)+r(E-AB)=n.[厦门大学研]
证明:由 ABA=B-1 得(AB)2=E,所以有:
E-(AB)2=(E+AB)(E-AB)=0
故 r(E-AB)+r(E+AB)≤n(1)
又 n=r(2E)=r[(E-AB)+(E+AB)]≤r(E-AB)+r(E+AB)(2)
Q
P
Er O
O O
Q
P)
Er O
O O
Er O
O
O

B C

QXP
D
F
nm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.

α1
=
⎜ ⎜ ⎜
1
⎟ ⎟
−1⎟
,
α2
=
⎜ ⎜ ⎜
1
⎟ ⎟
−1⎟
,
α3
=
⎜ ⎜ ⎜
4 −3
⎟ ⎟ ⎟
,
α
4
=
⎜ ⎜ ⎜
6
⎟ ⎟
−5 ⎟
, β1
=
⎜ ⎜ ⎜
1
⎟ ⎟
−1⎟
,
β2
=
⎜⎜1⎟⎟ ⎜1⎟
,
β3
=
⎜ ⎜ ⎜
1
⎟ ⎟
−1⎟
,
β4
=
⎜ ⎜
−1⎟⎟
⎜ −1⎟
⎜⎜⎝ −1⎟⎟⎠
⎜⎜⎝ 1 ⎟⎟⎠
姓名
学号
(高等代数习题册)
1
第六章习题册
1. 检验下述集合关于所规定的运算是否构成实数域 R 上的线性空间?
(a) 集合{ f (x) ∈ R[x] | deg( f ) = n} 关于多项式的加法和数乘.
(b) 集合{A∈ M n (R) | AT = A}关于矩阵的加法和数乘.
(c)
集合{{xn
⎜⎝ 5 ⎟⎟⎠
⎜⎜⎝1⎟⎟⎠
⎜⎜⎝ 3 ⎟⎟⎠
⎜⎜⎝ 1 ⎟⎟⎠
W1 = Span{α1, α2, α3, α4}, W2 = Span{β1,β2,β3,β4}, 请分别求W1 + W2 和W1 ∩W2 的一个基
姓名
学号
(高等代数习题册)
5
13. 设V1 = {(aij )n×n | aij = 0,1 ≤ i ≤ j ≤ n},V2 = {(aij )n×n | aij = −a ji ,1 ≤ i, j ≤ n}是矩阵空间 M n (R) 的两个子空间,
=
⎜ ⎜ ⎜
1 3
⎟ ⎟ ⎟
,
ε3
=
⎜ ⎜ ⎜
1 0
⎟ ⎟ ⎟
,
ε
4
=
⎜ ⎜ ⎜
1 1
⎟ ⎟ ⎟
,
ξ
=
⎜ ⎜
2
⎟ ⎟
⎜3⎟
⎜⎜⎝ 1 ⎟⎟⎠
⎜⎜⎝ 1 ⎟⎟⎠
⎜⎜⎝ 0⎟⎟⎠
⎜⎜⎝ 1⎟⎟⎠ ⎜⎜⎝ 4⎟⎟⎠
姓名
学号
(高等代数习题册)
4
10. 求一个非零向量 ξ, 使得它在基 (ε1, ε2, ε3, ε4 ) 下的坐标和它在基 (η1, η2, η3, η4 ) 下的坐标相同, 这里
(b) Span(S1 ∪ S2 ) = Span(S1) + Span(S2 ) .
(c) Span(S1 ∩ S2 ) ⊆ Span(S1) ∩ Span(S2 ) .
姓名
学号
(高等代数习题册)
3
6. 如果 f1, f2, f3 是实数域上一元多项式全体所成的线性空间 R[x] 中三个互素的多项式, 但其中任意两个 都不互素, 那么它们线性无关.试证之.
⎛ 2 ⎞ ⎛0⎞ ⎛1⎞ ⎛0⎞
ε1, ε2, ε3, ε4 与第9题相同,
η1
=
⎜ ⎜ ⎜
−1⎟⎟ 2⎟
,
η2
=
⎜ ⎜ ⎜
1 2
⎟ ⎟ ⎟
,
η3
=
⎜ ⎜ ⎜
2 1
⎟ ⎟ ⎟
,
η4
=
⎜ ⎜
1
⎟ ⎟
⎜1⎟
⎜⎜⎝ 2 ⎟⎟⎠
⎜⎜⎝ 1 ⎟⎟⎠
⎜⎜⎝ 1 ⎟⎟⎠
⎜⎜⎝ 1⎟⎟⎠
⎛ 2⎞ ⎛ 1 ⎞ ⎛ −1⎞ ⎛1⎞
}∞ n=0
|
xn

R}
关于数列的加法和数乘.
2. 设V 是数域 F 上的线性空间, 证明 k(α − β) = kα − kβ , 这里 α,β ∈V , k ∈ F.
姓名
学号
(高等代数习题册)
2
3. 下述集合是否是 M n (R) 的子空间
(a) V = {A∈ M n (R) | AT = − A}
7. 设 S 是数域 F 上线性空间V 的一个线性无关子集, α 是V 中一个向量, α ∉ S , 则 S ∪{α} 线性相关充 分必要条件 α ∈ Span(S) .
8. (a) 证明{Eij + E ji | (i ≤ j)}是 M n (F ) 中全体对称矩阵组成的子空间的一个基.
⎛0 1 0⎞
姓名
学号
(高等代数习题册)
6
16. 设 ( A1, A2, A3) 和 (B1, B2, B3) 是矩阵空间 M 2 (R) 的子空间V 的两个基, 其中
A1
=
⎛1 ⎜⎝1
0⎞ −1⎟⎠
,
A2
=
⎛0
⎜ ⎝
−1
1 0
⎞ ⎟ ⎠
,
A3
=
⎛1
⎜ ⎝
0
1⎞ 0 ⎟⎠
15. R4 中, 求由基 (α1, α2, α3, α4 ) 到基 (β1,β2,β3,β4 ) 的过渡矩阵, 并求向量 ξ 在指定基 (α1, α2, α3, α4 ) 下的坐 标 . 其 中 α1 = (1,1,1,1), α2 = (1,1, −1, −1), α3 = (1, −1,1, −1), α4 = (1, −1, −1,1); β1 = (1,1, 0,1), β2 = (2,1,3,1), β3 = (1,1, 0, 0), β4 = (0,1, −1, −1). ξ = (1, 0, 0, −1) .
证明V1 ≅ V2
14. 设 g1 = 2x3 − 2x + 2, g2 = x3 − 3x2 − x + 3, g3 = 2x3 + 2x2 − 2x, 是 F[x] 的 子 空 间 V 一 个 基 , f1 = x3 + 2x +1, f2 = x3 − x + 2, f3 = 2x2 + x . 请问 f1, f2, f3 中哪些是属于V , 哪些是不属于V , 如果属于请给 出它在基 (g1, g2, g3) 下的坐标.
(b).
求 M3(F)
的子空间{ f (A) | f (x) ∈ F[x]}
的一个基和维数,
这里
A
=
⎜ ⎜
0
0
1
⎟ ⎟
⎜⎝ 0 0 0⎟⎠
⎛1⎞ ⎛2⎞ ⎛1⎞ ⎛0⎞ ⎛1⎞
9.
在 R4 中,
求向量 ξ 在基 (ε1, ε2, ε3, ε4 ) 下的坐标,
其中
ε1
=
⎜ ⎜ ⎜
1 0
⎟ ⎟ ⎟
,
ε
2
11.
在 R4 中,
求由向量
α1
=
⎜ ⎜ ⎜
1 3
⎟ ⎟ ⎟
,
α
2
=
⎜ ⎜ ⎜
2 0
⎟ ⎟ ⎟
,
α3
=
⎜ ⎜ ⎜
1 −3
⎟ ⎟ ⎟
,
α
4
=
⎜⎜1⎟⎟ ⎜1⎟
所张成的子空间的一个基与维数
⎜⎜⎝ 1 ⎟⎟⎠
⎜⎜⎝ 1 ⎟⎟⎠
⎜⎜⎝ 0 ⎟⎟⎠
⎜⎜⎝1⎟⎟⎠
⎛ 1 ⎞ ⎛ −1⎞ ⎛ 1 ⎞ ⎛ 1 ⎞
⎛ −1⎞ ⎛1⎞ ⎛ −3⎞ ⎛ 1 ⎞
(b) V = { f ( A) | f (x) ∈ R[x]}, 这里 A∈ M n (R) 是一个固定方阵.
4. 叙述并证明线性空间V 的子空间W1 与W2 的并W1 ∪W2 仍为V 的子空间的充分必要条件.
5. 设 S1 与 S2 是线性空间V 的两个非空子集, 证明: (a) 当 S1 ⊆ S2 时, Span(S1) ⊆ Span(S2 ) .
相关文档
最新文档