基因芯片技术

合集下载

基因芯片技术简介

基因芯片技术简介

基因芯片技术简介引言随着基因组学的快速发展,基因芯片技术作为一种高通量、高效率的基因表达分析方法,越来越受到科学家们的关注和广泛应用。

本文将介绍基因芯片技术的定义、原理、应用领域以及发展趋势。

定义基因芯片技术,又称DNA芯片技术,是利用半导体芯片上固定携带有特定DNA序列或cDNA序列的探针,通过杂交技术测定样本中的基因表达水平的一种新兴技术。

它通过将大量DNA序列固定在芯片表面上,可以同时检测成千上万个基因的表达水平,从而实现了高通量、高灵敏度、高速度的基因表达分析。

基因芯片技术的原理主要包括芯片设计、样本处理、杂交和信号检测四个步骤。

芯片设计芯片设计是基因芯片技术的核心环节。

通过将感兴趣的DNA序列打印到芯片表面上,实现对这些DNA序列的同时检测。

芯片设计要考虑到实验的目的、样本来源、携带探针的芯片类型等因素。

样本处理样本处理是基因芯片技术中非常重要的一步。

首先,需要提取样本中的RNA,并转录成cDNA。

然后,对cDNA进行标记,常见的方法是采用荧光标记。

标记完成后,将标记的cDNA与芯片上的探针进行杂交。

杂交是将标记的cDNA与芯片上的DNA探针进行特异性结合的过程。

通过杂交反应,可以使标记的cDNA与芯片上的探针发生碱基配对,从而检测基因表达水平。

信号检测信号检测是基因芯片技术的最后一步。

常见的检测方法包括荧光扫描、激光检测和图像分析等。

这些方法可以量化样本中的基因表达水平,并生成可视化的热图或散点图,以方便科学家对数据进行分析和解读。

应用领域基因芯片技术在生物学、医学和农业等领域具有广泛的应用。

生物学研究基因芯片技术的高通量性能使其成为生物学研究的重要工具。

研究人员可以通过基因芯片技术分析不同组织、不同时间点或不同个体中的基因表达变化,探究基因在生物体发育、疾病发展等过程中的功能。

医学诊断基因芯片技术在医学诊断中有着重要的应用价值。

通过分析患者样本中的基因表达谱,可以为医生提供辅助诊断和治疗的信息。

基因芯片技术

基因芯片技术
实现了平行化操作,避免了各种误差,使实验结果具有可比性)
2、基因芯片的缺点 基因芯片技术体系的建立和使用需要较大的投入。 (但是,相对于传统的表达分析技术而言,单个基因分析的成本仍是较低的。)
第二节 生物芯片的分类
2.1 按载体材料分类 玻璃芯片 硅芯片 陶瓷芯片 玻璃芯片具有易得、荧光背景低、应用方便等优点,目前在国际上广泛使用。
CGTTAGA T
GTTAGATC
ATACGTTAGATC TATGCAATCTAG
重组的互补序列 靶序列
测序芯片
基因表达谱芯片
基 因 差 异 表 达 分 析 芯 片
第三节 基因芯片的制作
固相介质 硅片、二氧化硅、玻璃、尼龙膜、塑料等。 靶片段 DNA、寡核苷酸、RNA等。 探针 mRNA,或是以mRNA为模板合成的cDNA。 标记物 常采用荧光剂(如Cy3、Cy5);同位素等。
2.2 按点样方式分类
1、原位合成芯片(将半导体中的光蚀刻技术运用到DNA合成化学中,以单核苷酸或其他分子大分子为 底物,在玻璃晶片上原位合成寡核苷酸)
2、微矩阵芯片(目前应用最广泛的基因芯片之一。具有高密度、制作简便的特点。其是将用PCR或化 学合成等方法得到的DNA或寡核苷酸片段用针点或喷点的方法直接排列到玻片等载体上,从而制备 成芯片。)
芯片实验室的特点:
其一、集成性。目前一个重要的趋势是:集成的单元部件越来越多,且集成的规模也越来越大。所涉及到的 部件包括:和进样及样品处理有关的透析、膜、固相萃取、净化;用于流体控制的微阀(包括主动阀和被动 阀),微泵(包括机械泵和非机械泵);微混合器,微反应器,另外还有微通道和微检测器等。
其二、分析速度极快。Mathies研究小组在一个半径仅为8厘米长的园盘上集成了384个通道的电泳芯片。他们在 325秒内检测了384份与血色病连锁的H63D 突变株(在人HFE基因上)样品,每个样品分析时间不到一秒钟。

基因芯片技术及其应用

基因芯片技术及其应用

基因芯片技术及其应用随着生物学、生命科学的发展,基因芯片技术越来越受到关注。

基因芯片又称为DNA芯片,是一种利用微阵列技术来检测基因表达水平的高通量方法。

基因芯片技术的发展带来了许多应用领域的新成果,包括疾病预测、药物研发等。

本文将介绍基因芯片技术及其应用。

一、基因芯片技术的原理基因芯片技术是一种高通量的生物技术,它利用微阵列生物芯片来检测基因表达的水平。

这种技术利用了DNA分子的特异性与完整性,它可以在任何生物样品中高效地检测出其蛋白质表达水平和基因组变异情况。

基因芯片技术的工作原理基于蛋白质表达水平与基因组变异情况的探测。

首先,需要将基因DNA序列通过逆转录过程转换成mRNA序列,进而使用荧光标记标记mRNA序列。

接下来将标记好的mRNA序列通过微阵列技术固定到芯片上,并使用高通量扫描技术来观察标记后荧光强度的变化程度。

荧光值越高,则说明该基因表达水平越高。

基因芯片技术不仅可以检测基因表达水平,还可以检测基因序列的变异情况,用于了解某种疾病或细胞状态的基因组变化情况。

比如,可以用这种技术针对某种疾病相关的单核苷酸多态性位点检测基因变异情况。

二、基因芯片技术的应用1. 癌症筛查基因芯片技术可用于癌症筛查,将肿瘤组织中的RNA与正常细胞组织的RNA进行比较,寻找表达水平具有显著差别的基因,进而确定这些基因是否与癌症发展相关。

利用这种方法可以更加准确地判断某个癌症的种类、发展程度等。

2. 个性化药物设计基因芯片技术可用于个性化药物设计,通过基因芯片可以确定某个病人,是否会对某种药物产生不良反应,从而确定是否使用该药物。

同时,可以利用基因芯片技术根据病人的基因组变异情况,设计出一种更加适合该病人的药物。

3. 遗传疾病筛查基因芯片技术可用于遗传疾病筛查,利用基因芯片技术可以检测出某些基因的表达水平是否异常,从而确定在某些疾病中,基因的表达水平是否存在异常。

4. 农业和环保应用基因芯片技术不仅可以应用在医学领域,还可以应用于农业和环保领域,例如种植业、畜牧业、水产养殖业等。

基因芯片技术的原理和发展

基因芯片技术的原理和发展

基因芯片技术的原理和发展随着科技的不断发展,人们对于基因的研究也越来越深入,基因芯片技术作为一种迅速发展的生物技术,具有重要的理论意义和实践价值。

基因芯片技术是一种高通量和高标准化的分子生物学技术,可以用于基因表达、基因变异、蛋白质量、DNA甲基化等领域的研究。

1. 基因芯片技术的原理基因芯片技术是将DNA分子、RNA分子或蛋白质分子等多样化的生物大分子分子序列固定在一块小小的玻璃片或硅片上,然后利用微量的核酸或蛋白质的杂交反应来检测样品中这些生物大分子的存在或相对数量。

这些生物大分子的浓度水平可以用来衡量基因的表达情况、基因变异、蛋白质相互作用等生物学过程。

具体操作过程包括:1.1 表达谱芯片表达谱芯片是一种测量运用基因芯片技术研究基因表达的方法。

在表达谱芯片上可以固定多种类型的DNA序列,例如真核细胞DNA片段,互补DNA片段、探针、引物等。

对于鉴定被检测样品的物种,应选择特异而高丰度的探针或引物。

通过部分或大量存储的文献或数据库,研究人员首先确定所需的目标基因,然后通过设计合适的核酸杂交探针,将所需目标基因的序列在探针区域进行固定。

1.2 基因组芯片基因组芯片是一种利用基因芯片技术直接测量基因组中DNA 分子存在量的方法。

基因组芯片和其他一些技术类似,通常分三部分作用:建立样品库,设计并制备基因组芯片,通过基因芯片技术来测量DNA分子的存在量。

2. 基因芯片技术的发展基因芯片技术是一种非常年轻的生物技术,近年来其不断得到完善和发展,具有日益广泛的应用前景。

2.1 应用于生物医学基因芯片技术在生物医学领域得到广泛的应用,其中最具有代表性的应用是基因诊断和基因治疗。

通过基因芯片技术,可以对特定基因的表达情况和蛋白质质量进行分析和检测,为许多临床诊疗和治疗提供了关键方法。

2.2 应用于生态环境基因芯片技术也可以用于生态环境监测,特别是对于环境中的有害生物及其基因信息的监测。

基因芯片技术可以通过绿色监测来减轻生态环境对生物生态的影响。

基因芯片名词解释

基因芯片名词解释

基因芯片名词解释基因芯片是一种可以同时测量几千到数百万个基因在一个特定生物样本中表达水平的大规模平行检测技术。

基因芯片通常由玻璃片或硅片制成,上面带有数千至数百万个微小的探针,每个探针与一个特定的基因序列或基因组区域相关联。

通过将待测样本中的RNA转录成cDNA,然后与芯片上的探针杂交,基因芯片可以快速、高通量地测量每个基因的表达水平。

基因芯片有许多不同的应用,包括基因表达分析、基因型检测、突变检测和DNA甲基化等。

基因芯片可以帮助科学家们揭示基因与疾病之间的关系,理解生物体内基因的功能和相互作用。

以下是基因芯片中一些常用的名词解释:1. 探针(Probe):探针是芯片上的小片段DNA或RNA序列,用于与待测样本中的RNA或DNA杂交。

通过测量探针与待测样本中的RNA或DNA的配对程度,可以确定基因的表达水平或基因型。

2. 表达水平(Expression Level):基因芯片可以测量基因在生物样本中的表达水平,即该基因的mRNA的相对或绝对数量。

表达水平的高低可以表明该基因在特定生物过程中的重要性。

3. 杂交(Hybridization):基因芯片上的探针与待测样本中的RNA或DNA发生互补配对的过程。

通过杂交,可以测量样本中的RNA或DNA与探针的亲和性,从而确定基因的表达水平或基因型。

4. 基因组学(Genomics):基因组学研究生物体内所有基因的组成、结构和功能。

基因芯片是基因组学研究中最重要的工具之一,可以帮助科学家们理解基因组的组成和调控。

5. 转录组学(Transcriptomics):转录组学研究生物体内所有基因的转录产物,即mRNA的组成、结构和功能。

基因芯片可以帮助科学家们测量转录组的表达水平,从而理解基因在特定生物过程中的调控。

6. 基因型(Genotype):基因型指的是一个生物体内某个基因的具体变种或突变形式。

基因芯片可以通过检测基因组中的多个SNP(单核苷酸多态性)位点,帮助科学家们确定个体的基因型。

基因芯片技术和转录组测序技术

基因芯片技术和转录组测序技术

基因芯片技术和转录组测序技术
基因芯片技术和转录组测序技术是两种常用的分子生物学技术,用于研究生物体内基
因表达的特征和变化。

这两种技术都是高通量技术,可以同时检测/测序几百到数万个基
因及其表达情况,是现代生物技术研究中的重要手段。

基因芯片技术是一种高通量的DNA芯片技术,其基本原理是利用已知的基因序列信息
设计出一组具有探针序列的DNA芯片,将待检测的目标DNA样本杂交(hybridization)到芯片上,并利用荧光或化学检测方法检测芯片上探针序列与样本DNA的匹配程度,从而获
得目标DNA中各个基因的表达水平数据。

基因芯片技术的优点是高通量、快速、灵敏度高,缺点是对于未知基因或变异位点无法检测出来,需要设计探针,实验成本相对较高。

转录组测序技术是一种直接测序RNA的技术,其基本原理是将RNA样本进行反转录合
成cDNA,然后进行大规模的二代测序。

通过分析测序数据,可以得到目标细胞或组织中各个基因的表达水平和RNA剪接形式的信息。

研究者可以通过对转录组测序数据的分析揭示
潜在的调控机制和功能富集的通路。

转录组测序技术的优点是对RNA样本无偏性,能扫描
到所有的转录物,可以检测到未知基因或变异位点,缺点是测序深度较大,需要更高的测
序成本。

基因芯片技术和转录组测序技术各有优缺点,研究者需根据研究目的和资源选择合理
的技术进行基因表达分析。

在研究水平上,随着测序数据的不断积累和分析方法的不断深化,转录组测序技术逐渐成为基因表达分析的首选技术,同时基因芯片技术得到了广泛的
应用,尤其是在快速检测大量样本的情况下,例如生物标志物筛选和临床诊断中的应用。

基因芯片名词解释

基因芯片名词解释

检验检测的分类与选择检验方法的选择正确与否将直接影响到检验的结果和检验的效率,正是从这个意义上说:掌握检验的各种分类标准至关重要。

一、按照检验数量分类1、免检:免检是指如果可以得到由有资格的单位进行过检验的可靠性资料、如合格证、检验报告等,就可以不需要检验。

免检的适用范围生产过程稳定对后续生产无影响时可采用免检长期检验证明质量优良信誉很高的产品在交接中可采用免检、国家批准的免检产品或通过产品质量认证的产品可采用免检2、抽检:抽检是指按照一定的比例和取样方法抽取样品,通过逐个检验样品品质,判断总体合格与否的检验。

3、全数检验(100%检验/产品筛选):全数检验的含义全数检验就是对全部产品逐个地进行测定,从而判定每个产品合格与否的检验。

全数检验适用范围1、产品价值高但检验费用不高时应全数检验;2、关键质量特性和安全性指标应全数检验;3、生产批量不大质量又无可靠措施保证时应全数检验;4、产品质量不稳定时应全数检验;5、精度要求比较高或对下道工序加工影响比较大的质量特性要全数检验;6、手工操作比重大质量不稳定的加工工序所生产的产品要全数检验;7、用户退回的不合格交验品应全数重检筛选不合格产品。

全数检验存在的问题1、需增加人员添置设备多设检验站点2、人力有限的条件下进行全检势必要缩短每个产品的检验时间或减少检验项目这将降低产品质量的保证程序特别提示:全数检验不能用于破坏性检测等一些试验费用昂贵的检验,对价值低、批量大的产品采用全检显得很不经济,全检也存在着错检、漏检。

在一次全检中平均只能检出70%的不合格品,如果希望得到产品100%合格,必须重复多次进行全数检验才能接近100%合格,检验误差与批量大小、不合格率高低、检验技术水平、责任心强弱等因素有关。

3.抽样检验:抽样检验的含义:抽样检验是按预先确定的抽样方案,从交验批中抽取规定数量的样品构成一个样本,通过对样本的检验推断产品批合格或产品批不合格。

抽样检验适用范围1、量多值低且允许有不合格品混入的检验;2、检验项目较多时;3、希望检验费用较少时;4、生产批量大、产品质量比较稳定的情况;5、不易划分单位产品的连续产品、例如钢水、粉状产品等;6、带有破坏性检验项目的产品;7、生产效率高、检验时间长的产品;8、有少数产品不合格不会造成重大损失的情况;9、希望检验对供应商改进质量起促进作用,强调生产方风险的场合。

基因芯片技术的优势与局限性

基因芯片技术的优势与局限性

基因芯片技术的优势与局限性基因芯片技术是一种被广泛运用于生物学研究和实际应用中的技术。

随着科技的不断发展,其应用领域正在不断拓展。

然而,任何一种技术都有其优势与局限性,基因芯片技术也不例外。

本文将分别从基因芯片技术的优势与局限性两个方面进行探讨。

优势:1. 精确性高:基因芯片技术是一种高通量并行检测技术,可以一次性检测成千上万个基因。

相比传统的方法,如RT-PCR等单一基因检测方法,基因芯片技术可以大大提高检测效率,减少操作时间和成本,并且具有更高的精确性。

2. 广泛应用:基因芯片技术在生物学研究领域和临床医学等方面具有广泛的应用。

例如,可以用于疾病诊断、药物研发、基因表达研究等方面。

同时,其广泛的应用也为人类提供了更加便捷和精准的生物医学服务。

3. 数据大量积累:随着基因芯片技术的不断发展,研究人员可以通过大量的数据积累,进一步了解基因调控网络及其相互作用关系,同时也为基因药物研发提供了更加坚实的依据。

局限性:1. 数据分析成本高:基因芯片技术生成的数据量极大,其分析过程也是相当复杂和困难的。

而且,目前的基因芯片技术仍然不能够充分说明不同基因之间的关联性、真正的寿命价值以及相关的生物信息学作用等。

2. 监管不够严格:随着基因芯片技术的不断发展,其应用领域也越来越广泛。

但是,由于缺乏有效的监管机制,可能导致一些不合规的商家在基因检测领域滥竽充数,也可能会出现一些不合理产品或设备,从而对用户造成了经济和身体上的损失和风险。

3. 结果的解释可能存在不确定性:基因芯片技术的检测结果可能会存在不确定性,这是由于存在许多影响基因表达的因素,如环境和遗传因素等。

因此在基因芯片技术的应用中,需要考虑多方面的因素,以达到更加准确和可靠的结果。

综上所述,基因芯片技术在生物学研究和应用中具有重要的地位,具有很多优势。

但是,其应用也存在一些需要关注的局限性。

在今后的发展中,需要不断进行技术革新和完善监管机制,更好地发挥基因芯片技术的作用,并为人类健康作出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)、待检病毒核酸的扩增与标记
提取病毒RNA后,用锚定随机引物进行反转录获得cDNA 作模板,反转录随机引物序列为5′-GTTTCCCAGTCACGATCNNNNNNNNN-3′,然后用测序酶合成第二链cDNA,随机PCR 扩增用随机引物5′-GTTTCCCAGT-CAOGATC-3′进行,并在 扩增的过程中掺入aa-dUTP对PCR产物进行标记,PCR反应 体系为100ug,扩增条件为95℃变性5min,然后94℃30s、 55℃30s、72℃60s,共35个循环。
ห้องสมุดไป่ตู้
图1、利用基因芯片进行杂交测序 的原理
三、基因芯片的技术流程
三、基因芯片的技术流程
T7 promoter
PCR
体内转录
T7 promoter
荧光素
片段化
1.5 小时
杂交、冲洗
ACGT
扫描分析 1 小时
图 2 样品处理与检测过程简图
四、基因芯片技术与传统杂交 检测方式的比较
操作 自动化程度 一次可检测的序列个数 总体效率 基因芯片技术 传统杂交方法 简便 很高 复杂 很低 极大 很小 很高 很低
二、基因芯片的基本原理
基因芯片的制作技术主要包括芯片制备,样品制备, 杂交反应,信号检测和结果分析。
将各种基因寡核苷酸点样于芯片表面,微生物样品 DNA经PCR扩增后制备荧光标记探针,然后再与芯片上 寡核苷酸点杂交,最后通过扫描仪定量好分析荧光分 布模式来确定检测样品是否存在某些特定微生物。
该技术可检测各种介质中的微生物,研究复杂微 生物群体的基因表达。
(2)、病毒的培养和病毒核酸的提取
EEEV、WEEV、VEEV、MAYV、WNV和JBEV用BHK细胞培养,1-4型 DENV用C6/36细胞培养,BUNV用Vero-E6细胞培养。产生细胞病变 后,将培养瓶在-70℃冰箱中冻融,用于病毒核酸的提取。 由于以上13种虫媒病毒均为RNA病毒,因此,病毒总RNA用 QIAGENRNAeasy试剂盒提取。
(二)、杨银辉等利用实验室建立的医学病毒属
水平筛查基因芯片及主要虫媒病毒检测基因芯片, 对2006年7月从山西临沂地区猪脑组织中分 离到的未知病毒进行筛查与鉴定,初步筛查显示 该病原体属于黄病毒属,结合流行病学调查分析, 进一步与主要虫媒病毒检测基因芯片杂交,判断 该病原体为乙型脑炎病毒,与 PCR及基因序 列检测结果一致.
基因芯片技术
一、基因芯片的基本概念及发展经过
基因芯片(Gene chip) 又称DNA 芯片( DNA Chip )或生物芯片 (Biological chip), 它是指将大量探针分子固定于支持物上,然 后与标记的样品进行杂交,通过检测杂交信号的强 度及分布进而对靶分子的序列和数量进行分析。
通俗地说,就是通过微加工技术 ,将数以万计、 乃至百万计的特定序列的DNA片段(基因探针), 有规律地排列固定于2cm2 的硅片、玻片 等支持物 上,构成的一个二维DNA探针阵列,与计算机的电 子芯片十分相似,所以被称为基因芯片。
DNA 样 品 TATGCAATCTAG 与基因芯片上 65,000 种可能的 八聚体进行杂交从而形成特定 的结合图形 1 ATACGTTA CGTTAGAT 22 GTTAGATC
4 CGTTAGAT 4 ACGTTAGA 33 TACGTTAG ACGTTAGA 5 GTTAGATC 1 ATACGTTA 3 4 2 5 TACGTTAG ACGTTAGA CGTTAGAT GTTAGATC 计算机分析杂交图象 并由探针的重叠情况 推导样品的核酸序列 互补序列为:ATACGTTAGATC 样品序列为:TATGCAATCTAG
扩增产物用Amicon Microcon-PCR纯化柱进行纯化,与 lmol/L碳酸氢钠混合,然后将待检病毒及细胞基因组的 PCR产物分别与cyTM3和CyTM5偶联,经纯化后可用于芯片 杂交。
(4)、基因芯片的制备
使用醛基化处理的玻片,纯化干燥后的寡核昔酸探针用 3X标准柠檬酸盐溶液溶解,使终浓度为40umol/L。用Spot Array72进行点样,每条探针重复点样3次,每种样品点成 4×4的矩阵,每种病毒的10个探针分散点样在4个矩阵中。 点样后的芯片用HoeferLJVC500紫外交联仪以 600×100uJ/cm2交联2次,用于芯片的杂交。 (5)、芯片杂交反应 将芯片在含甲酞胺的杂交液中于42℃预杂交1h,同时将 标记好并纯化的待检病毒靶核酸溶于含酵母tRNA、Poly-A、 SSC及SDS的杂交液中,于99℃变性2-5min后加入甲酞胺,滴 加到芯片上,盖上盖玻片后进行杂交,42℃水浴孵育8-16h。 杂交结束后分别在2xSSC、0.2xSSC蒸馏水和无水乙醇中进 行洗涤。

优点:合成效率高、点阵密度高 缺点:设备昂贵、技术复杂、反映产率低
“点膜”型:合成工作用传统的DNA固相合成仪式完成,只是 合成后用特殊的自动化微量点样装置将其以比较高的密度涂 布于硝酸纤维膜、尼龙膜或玻璃片上。
{优点:设备廉价、技术简便、研制周期短、灵活度高 缺点:点阵密度低
七、基因芯片技术的应用
(6)、结果判断 基因芯片杂交结果用ScanArray Gx Plus扫描仪 进行扫描,用GenePixPro5.1软件进行分析。在所有 的检测中,病毒感染的细胞上清用一种荧光染料标 记,而阴性对照的未感染病毒的细胞上清用另一种 荧光染料标记。 取病毒荧光信号绝对值大于1000或与细胞荧光信 号强度比值在2.0以上的点为阳性信号点。
五、基因芯片的基本构造
探针 支持物
外观
剖面图
平面局部放大
1.支持物:如玻片、硅片、NC膜、Nylon膜 2.探针:高密度的探针序列按照一定的次序固定 在支持物上,每个位点的序列是已知的
六、基因芯片的主要类型
从点阵的制备方法分
原位合成型
“点膜”型
原位合成型:根据预先设计的点阵序列在每个位点通过有机 合成的方式直接聚合得到所要求的探针分子
(一)、朱晓光、杨银辉、康晓平等人写了13种虫媒病毒基 因芯片检测方法的建立等论文 1、方法
(1)寡核昔酸探针的设计与合成寡核昔酸探针 由华大基因公司设计并合成。每条探针长度为70mer,mT介于 75一85℃。每种病毒设计5条寡核昔酸探针及相同数量的互补 序列探针,用于病毒特异性鉴定。另外,针对以上13种病毒所 在的3个病毒属,各设计10条寡核昔酸探针,探针总数为160条, 用于属水平的筛查。
相关文档
最新文档