特殊平行四边形复习教案
中考数学复习四边形时特殊平行四边形教案

中考数学复习四边形时特殊平行四边形教案教学目标:1.了解特殊平行四边形的概念和性质。
2.掌握特殊平行四边形的判定方法。
3.运用特殊平行四边形的性质解决实际问题。
教学准备:教学课件、黑板、彩色粉笔、练习题、学生练习本。
教学过程:Step 1:引入新知1.通过展示图片向学生介绍特殊平行四边形的概念:特殊平行四边形是指具有特别性质的平行四边形。
2.让学生观察图片,思考有哪些特殊平行四边形。
3.与学生一起总结,将特殊平行四边形分为矩形、正方形、菱形和长方形。
Step 2:矩形1.通过展示图片向学生介绍矩形的性质:矩形是两对相邻边相等且都平行的四边形。
2.通过黑板上的示意图向学生讲解矩形的判断方法:如果一个四边形的对角线相等,那么它就是矩形。
3.让学生通过默写练习判断一些图形是否是矩形,并与同桌讨论答案。
Step 3:正方形1.通过展示图片向学生介绍正方形的性质:正方形是两对相邻边相等且都平行的四边形,且四个角都是直角。
2.通过黑板上的示意图向学生讲解正方形的判断方法:如果一个四边形的对角线相等且呈直角,那么它就是正方形。
3.让学生通过默写练习判断一些图形是否是正方形,并与同桌讨论答案。
Step 4:菱形1.通过展示图片向学生介绍菱形的性质:菱形是两对相邻边相等的四边形。
2.通过黑板上的示意图向学生讲解菱形的判断方法:如果一个四边形的两对相邻边相等,那么它就是菱形。
3.让学生通过默写练习判断一些图形是否是菱形,并与同桌讨论答案。
Step 5:长方形1.通过展示图片向学生介绍长方形的性质:长方形是两对相邻边相等且都平行的四边形,且四个角都是直角。
2.通过黑板上的示意图向学生讲解长方形的判断方法:如果一个四边形的两对相邻边相等且呈直角,那么它就是长方形。
3.让学生通过默写练习判断一些图形是否是长方形,并与同桌讨论答案。
Step 6:综合练习1.让学生完成练习题,运用所学的方法判断给出的图形属于哪种特殊平行四边形。
平行四边形的性质及判定复习课教案

平行四边形的性质及判定复习课教案平行四边形的性质及判定复习课教案「篇一」一教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.二重点、难点1.重点:平行四边形的判定方法及应用.2.难点:平行四边形的判定定理与性质定理的灵活应用.3.难点的突破方法:平行四边形的判别方法是本节课的核心内容.同时它又是后面进一步研究矩形、菱形、正方形判别的基础,更是发展学生合情推理及说理的良好素材.本节课的教学重点为平行四边形的判别方法.在本课中,可以探索活动为载体,并将论证作为探索活动的自然延续与必要发展,从而将直观操作与简单推理有机融合,达到突出重点、分散难点的目的.(1)平行四边形的判定方法1、2都是平行四边形性质的逆命题,它们的证明都可利用定义或前一个方法来证明.(2)平行四边形有四种判定方法,与性质类似,可从边、对角线两方面进行记忆.要注意:①本教材没有把用角来作为判定的方法,教学中可以根据学生的情况作为补充;②本节课只介绍前两个判定方法.(3)教学中,我们可创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,如通过欣赏图片及识别图片中的平行四边形,使学生建立对平行四边形的直觉认识.并复习平行四边形的定义,建立新旧知识间的相互联系.接着提出问题:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?从而组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,从整体上把握“平行四边形的判别”的方法.然后利用学生手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件.在学生拼图的活动中,教师可以以问题串的形式展开对平行四边形判别方法的探讨,让学生在问题解决中,实现对平行四边形各种判别方法的掌握,并发展了学生说理及简单推理的能力.(4)从本节开始,就应让学生直接运用平行四边形的性质和判定去解决问题,凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明.应该对学生提出这个要求.(5)平行四边形知识的运用包括三个方面:一是直接运用平行四边形的性质去解决某些问题.例如,求角的度数,线段的长度,证明角相等或线段相等;二是判定一个四边形是平行四边形,从而判定直线平行等;三是先判定一个四边形是平行四边形,然后再眼再用平行四边形的性质去解决某些问题.(6)平行四边形的概念、性质、判定都是非常重要的基础知识,这些知识是本章的重点内容,要使学生熟练地掌握这些知识.三例题的意图分析本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法.例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题.例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣.如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由.四课堂引入1.欣赏图片、提出问题.展示图片,提出问题,在刚才演示的图片中,有哪些是平行四边形?你是怎样判断的?2.【探究】:小明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?让学生利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的'一种判别方法?你能用文字语言表述出来吗?(5)你还能找出其他方法吗?从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。
特殊的平行四边形复习课教案

特殊的平行四边形复习课教案教学目标知识技能:1、掌握本章的知识体系,2、综合应用本章知识解决实际应用问题。
过程与方法:从问题出发有效组织学生独立思考,合作学习,通过综合的证明过程,体会证明的有关证明的思维方法。
情感态度价值感:通过师生活动以及多媒体教学软件的应用,培养学生的直觉性,积极性,是学生发现数学中所用蕴含美。
教学重点:知识体系的形成。
教学难点:知识体系的综合应用。
教学过程一、梳理本章知识体系1、课件展示特殊平行四边形之间的关系。
2、课件展示特殊平行四边形的性质。
3、课件展示特殊平行四边形的判定方法。
二、梳理练习(课件出示)三、合作探究合作活动一1、已知:△ABC中AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.1)线段QM、PM、AB之间有什么关系?(2)图中的三角形之间有什么关系?2、已知:△ABC中AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q.探究:当M位于BC的什么位置时, 四边形AQMP是菱形?并说明你的理由当△ABC满足什么条件菱形AQMP是正方形?合作活动二李大爷有一个边长为a的正方形鱼塘,鱼塘四个角的顶点A、B、C、D上各有一棵大树,现在李大爷想把鱼塘扩建成一个圆形或正方形鱼塘(原鱼塘周围的面积足够大).又不想把树挖掉(四棵大树要在新建鱼塘的边沿上).(1)若按圆形设计,请画出你设计的示意图,并求出圆形鱼塘的面积;(2)若按正方形设计,请画出你设计的示意图.四、巩固练习1、检查一个门框是矩形的方法是()A、测量两条对角线是否相等.B、测量有三个角是直角.C、测量两条对角线是否互相平分.D、测量两条对角线是否互相垂直.2、顺次连接矩形各边中点所得的四边形是()A、矩形B、菱形C、梯形D、正方形3、菱形的周长等于高的8倍,则其最大内角等于()A、60°B、90°C、120°D、150°4、矩形ABCD中,AB=8,BC=6,E、F是AC的三等分点,则△BEF的面积是()A、8B、12C、16D、245、在矩形ABCD中,AB=16,BC=8.将矩形沿AC折叠,点D落在点E处,且CE交AB于点F,求AF的长.五:本节课的收获。
平行四边形复习课教案

平行四边形复习课教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第18章平行四边形【教学目标】1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法,三角形的中位线定理等;2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;3、引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。
【教学重点】1、平行四边形与各种特殊平行四边形的区别。
2、梳理平行四边形、矩形、菱形、正方形、三角形的中位线定理的知识体系及应用方法。
【教学难点】平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。
【教学模式】以题代纲,梳理知识-----变式训练,查漏补缺-----综合训练,总结规律-----测试练习,提高效率。
【教具准备】三角板、实物投影仪、电脑、自制课件。
【教学过程】一、以题代纲,梳理知识(一)开门见山,直奔主题同学们,今天我们一起来复习《平行四边形》的相关知识,先请同学们迅速地完成下面几道练习题,请看大屏幕。
(二)诊断练习1、根据条件判定它是什么图形,并在括号内填出,在四边形ABCD中,对角线AC和BD相交于点O:(1)AB=CD,AD=BC (平行四边形)(2)∠A=∠B=∠C=90°(矩形)(3)AB=BC,四边形ABCD是平行四边形(菱形)(4)OA=OC=OB=OD ,AC⊥BD (正方形)(5)AB=CD, ∠A=∠C ( )2、菱形的两条对角线长分别是6厘米和8厘米,则菱形的边长为5厘米。
3、顺次连结矩形ABCD各边中点所成的四边形是菱形。
4、若正方形ABCD的对角线长10厘米,那么它的面积是50平方厘米。
5、平行四边形、矩形、菱形、正方形中,轴对称图形有:矩形、菱形、正方形,中心对称图形的有:平行四边形、矩形、菱形、正方形,既是轴对称图形,又是中心对称图形的是:矩形、菱形、正方形。
平行四边形复习教案

《四边形复习》教案樟村坪中学张道鲲一、教学目标1.利用基本图形结构使本章内容系统化.2.对比掌握各种特殊四边形的概念,性质和判定方法.3. 运用知识解决简单数学问题。
二、导入与自主预习1、(在箭头上填上合适的数字序号)学生活动:自己处理,个别学生演排,集体评讲师(展示特殊平行四边形的性质与判定)(1)两组对边分别平行(2)有一个角为直角(3)一组对边平行(4)另一组对边不平行(5)一组邻边相等(6)一组对边相等Array学生活动:分组推火车,注意速度与准确度,开展小组或者以学号开始竞赛。
三、知识探究与合作学习学生活动:(1)提前准备,用纸做一个等腰直角三角形。
(2)学生拼图。
(3)思考:可以用翻折、平移、旋转得到吗?(4)画出草图。
师(提示学生,此题要注意多种情况,分类讨论的思想与分类的依据)学生活动:独立思考,写出规范过程。
个别(2个)学生到黑板是演排。
师(组织学生对演排内容进行评价)学生活动:独立思考,分组交流,集体展示结论。
师(提示学生回答问题的条理性,表达问题的规范性)例3学生活动: (1)独立思考(2)个别学生分析思路师:不规则四边形面积如何求面积? (3)探索条件,分析用到正方形的什么性质?(4)师:通过此题,你有什么收获?(特殊四边形性质运用,方法,思想)例2. ①如图,矩形ABCD 的对角线AC 、BD 交于点O ,过点D 作 DP ∥OC ,且 DP=OC ,连结CP ,试说明:四边形CODP 是的形状。
ABDCOP四、总结归纳本节课你复习了什么?你能说出平行四边形及矩形、菱形、正方形的性质和判定吗?你还有什么收获? 五、当堂演练 2、选择题3、填空题(1)如图,矩形ABCD 沿AE 折叠,使D 点落在 BC 边上的F 点处,如果∠BAF=60°,则∠DAE= 。
(2)矩形的面积为12cm 2,一条边长为3cm ,则对角线长为 。
4、(选做)以△ABC 的边AB 、AC 为边的等边三角形ABD 和等边三角形ACE ,四边形ADFE 是平行四边形。
复习课《特殊平行四边形》教案

【设计意图】:
三道例题的选取有代表性,都是充分综合应用特殊平行四边形的性质和判定,其中例1让学生灵活应用正方形的判定定理解题;例2则矩形问题,引导学生在解决这类问题时,可以灵活的改变思路,从题目的结论入手,同培养学生的发散思维;例3是考试时经常遇到的折叠问题,通过几种折叠方法,使学生自己总结出解决此类问题的方法。
4、直角三角形的推论及三角形的中位线定理
(1)、直角三角形中斜边上的中线等于斜边的一半。
(2)、直角三角形中,300所对的直角边等于斜边的一半。
【设计意图】:
复习几种特殊平行四边形的性质定理和判定定理,为下面几何题的证明做好准备。采用小组合作的方式,共同回顾所学知识,力求学生能较快的找出解题的方法。
3、要使一个矩形成为正方形需添加的一个条件是_______________________
4、要使一个菱形成为正方形需增加的一个条件是____________________。
(三)、填空题
1、在平行四边形、直角三角形、菱形、梯形中,既是中心对称图形又是轴对称图形的是_______________。
【思维点击】:判断出三角形EFD是等腰直角三角形是解答本题的关键。
3、如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.
(1)当折痕的另一端F在AB边上时,如图(1).求△EFG的面积.
(2)当折痕的另一端F在AD边上时,如图(2).证明四边形BGEF为菱形,并求出折痕GF的长.
6、若平行四边形一边长为8cm,一条对角线长为6cm,则另一条对角线长X的取值范围是_____________。
第18章 平行四边形(小结与复习)教案-八年级数学下册课件(人教版)

回顾与思考:本章我们主要学习了平行四边形的性质定理、判定定理;探索并证明了三角形的中位线定理,介绍了平行线问距离的概念;通过平行四边形边、角的特殊化,获得了特殊的平行四边形——矩形、菱形和正方形,了解了它们之间的关系;根据它们的特殊性,得到了这些特殊的平行四边形的性质定理和判定定理.在学习这些知识的过程中,我们采用了从一般到特殊的研究方法:利用图形的性质定理与判定定理之间的关系,通过证明性质定理的逆命题,得到了图形的判定定理,这些方法在今后的学习中都是很有用的.请你带着下面的问题,复习一下全章的内容吧。
1,你能概述一下研究平行四边形的思路和方法吗?2.平行四边形有哪些性质?如何判定一个四边形是平行四边形?3.矩形、菱形、正方形除了具有平行四边形的性质外,分别还具有哪些性质?如何判定一个四边形是矩形、菱形、正方形?你能总结一下研究这些性质和判定的方法吗?4.本章我们利用平行四边形的性质,得出了三角形的中位线定理,你能仿照这一过程,再得出一些其他几何结论吗?本章学习了哪些特殊的四边形?是按照什么顺序学习这些四边形的?请说说这些四边形之间的关系.各种平行四边形的研究中,它们各自的研究内容、研究步骤、研究方法有什么共同点?能列表说明吗?各种平行四边形的研究中,它们各自的研究内容、研究步骤、研究方法有什么共同点?能列表说明吗?(1)本章研究内容:各种平行四边形的边、角、对角线的特征;(2)研究步骤:下定义→探性质→研判定;(3)研究方法:观察、猜想、证明;建立当前图形(平行四边形)与三角形的联系;从性质定理的逆命题的讨论中研究判定定理;类比、一般到特殊.【课堂探究案】考点讲练考点一 平行四边形的性质与判定例1 如图,在直角梯形ABCD 中,AD ∥BC ,∠B =90°,AG ∥CD 交BC 于点G ,点E 、F 分别为AG 、CD 的中点,连接DE 、FG.(1)求证:四边形DEGF 是平行四边形;(2)如果点G 是BC 的中点,且BC =12,CD =10,求四边形AGCD 的面积.(1)证明:∵ AG ∥CD ,AD ∥BC∴ 四边形AGCD 是平行四边形∴ AG=CD∵ E 、F 分别为AG 、CD 的中点∴ EG=21AG ,DF=21CD ∴ EG=DF 且EG ∥DF∴ 四边形DEGF 是平行四边形(2)解:∵ 点G 是BC 的中点,BC=12∴ BG=CG=21BC=6 ∵ 四边形AGCD 是平行四边形∴ AG=CD=10在R t △ABG 中,根据勾股定理2222610-=-=BG AG AB =8∴ S 四边形AGCD =6×8=48例2如图,在□ABCD中,点E在边BC上,点F在边DA的延长线上,且AF=CE,EF与AB交于点G.(1)求证:AC∥EF;(2)若点G是AB的中点,BE=6,求边AD的长.(1)证明:∵四边形ABCD是平行四边形∴ AD∥BC∴ AF∥CE又∵ AF=CE∴四边形AFEC是平行四边形∴ AC∥EF(2)解:∵ AD∥BC,∴∠F=∠BEG,∠FAG=∠B∵点G是AB的中点,∴ AG=BG∴△AGF≌△BGE (AAS)∴ AF=BE=6∴ CE=AF=6∴ BC=BE+CE=12∵四边形ABCD是平行四边形∴ AD=BC=12考点二三角形的中位线与R t△斜边上的中线例3如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.证明:(1)∵点D,E,F分别是AB,BC,CA的中点∴ DE、EF都是△ABC的中位线∴ DE∥AC,EF∥AB∴四边形ADEF是平行四边形(2)∵四边形ADEF是平行四边形∴∠DEF=∠BAC∵ D,F分别是AB,CA的中点,AH是边BC上的高∴ DH、FH分别是R t△ABH和R t△ACH斜边上的中线∴ DH=AD,FH=AF∴∠DAH=∠DHA,∠FAH=∠FHA∵∠DAH+∠FAH=∠BAC∠DHA+∠FHA=∠DHF∴∠DHF=∠BAC∴∠DHF=∠DEF考点三特殊平行四边形的性质与判定例4如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∥BD,过点D作DE∥AC,两线相交于点E.(1)求证:四边形AODE是菱形;(2)连接BE,交AC于点F.若BE⊥DE于点E,求∠AOD的度数.(1)证明:∵ AE ∥BD ,DE ∥AC∴ 四边形AODE 是平行四边形∵ 四边形ABCD 是矩形∴ AC=BD ,OA=21AC ,OD=21BD ∴ OA=OD∴ 四边形AODE 是菱形(2)解:连接OE.由(1)得,四边形AODE 是菱形,∴ AE=AO=BO∵ AE ∥BO ,∴ 四边形AEOB 是平行四边形∵ BE ⊥DE ,DE ∥AC ,∴ BE ⊥AO∴ 四边形AEOB 是菱形∴ AE=AB=BO∴ AB=BO=AO∴ △AOB 是等边三角形∴ ∠AOB=60°∴ ∠AOD=180°-60°=120°例5 如图,已知在四边形ABFC 中,∠ACB =90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且CF =AE.(1)试判断四边形BECF 是什么四边形?并说明理由;(2)当∠A 的大小满足什么条件时,四边形BECF 是正方形?请回答并证明你的结论.解:(1)四边形BECF 是菱形.理由如下:∵ EF 垂直平分BC ,∴ BF=CF ,BE=CE∴ ∠3=∠1∵ ∠ACB=90°,∴ ∠3+∠A=90°,∠1+∠2=90°∴ ∠2=∠A ,∴ CE=AE∴ BE=AE∵ CF=AE∴ BE=CE=CF=BF∴ 四边形BECF 是菱形(2)当∠A=45°时,四边形BECF 是正方形.证明:∵ ∠A=45°,∠ACB=90°∴ ∠CBA=45°∵ 四边形BECF 是菱形∴ ∠EBF=2∠CBA=90°∴ 菱形BECF 是正方形【课堂检测案】一、分类讨论思想例6 在一个平行四边形中,若一个角的平分线把一条边分成长是2cm 和3cm 的两条线段,求该平行四边形的周长是多少.解:如图,∵在平行四边形ABCD 中,AB=CD ,AD=BC ,AD ∥BC ,。
5.平行四边形和梯形整理与复习(教案)2023-2024学年数学四年级上册

平行四边形和梯形整理与复习(教案)2023-2024学年数学四年级上册一、教学目标1. 让学生理解和掌握平行四边形和梯形的特征和性质,能正确区分平行四边形和梯形。
2. 培养学生的观察能力、空间想象能力和逻辑思维能力。
3. 培养学生运用平行四边形和梯形知识解决实际问题的能力。
二、教学内容1. 平行四边形的特征和性质2. 梯形的特征和性质3. 平行四边形和梯形的判定方法4. 平行四边形和梯形的面积计算5. 平行四边形和梯形在实际中的应用三、教学过程1. 复习导入通过提问的方式,引导学生回顾平行四边形和梯形的定义和特征,为新课的学习做好铺垫。
2. 新课导入(1)平行四边形的特征和性质通过观察图形,引导学生发现平行四边形的特征:对边平行且相等,对角相等。
在此基础上,引导学生推导出平行四边形的性质:对角线互相平分。
(2)梯形的特征和性质通过观察图形,引导学生发现梯形的特征:一组对边平行,另一组对边不平行。
在此基础上,引导学生推导出梯形的性质:对角线互相平分。
(3)平行四边形和梯形的判定方法通过观察图形,引导学生总结出平行四边形和梯形的判定方法:两组对边分别平行或一组对边平行且另一组对边相等。
(4)平行四边形和梯形的面积计算通过实例,引导学生掌握平行四边形和梯形的面积计算方法:平行四边形的面积等于底乘以高,梯形的面积等于上底加下底乘以高再除以2。
(5)平行四边形和梯形在实际中的应用通过实例,引导学生运用平行四边形和梯形知识解决实际问题,如计算图形的面积、求解未知长度等。
3. 课堂小结对本节课的内容进行总结,强调平行四边形和梯形的特征、性质、判定方法和面积计算,以及在实际中的应用。
4. 课后作业布置适量的课后作业,巩固学生对平行四边形和梯形知识的掌握。
四、教学评价1. 课堂表现:观察学生在课堂上的参与程度、发言积极性和解题能力。
2. 课后作业:检查学生对平行四边形和梯形知识的掌握程度,以及运用知识解决实际问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题 特殊平行四边形复习
一、 知识点梳理:
平行四边形、矩形、菱形、正方形四者之间关系
平行四边形、矩形、菱形、正方形的性质:
平行四边形 矩形 菱形 正方形 对边平行且相等 √
√
√ √ 四条边都相等 √ √ 对角相等 √ √ √ √ 四个角都是直角 √ √ 对角线互相平分 √ √ √ √ 对角线互相垂直 √ √ 对角线相等
√ √ 每条对角线平分一组对角
√
√
(凡是图形所具有的性质,在表中相应的空格中填上“√”,没有的性质不要填写)
1、 矩形的判定方法
矩形定义:有一个角是直角的平行四边形是矩形. 矩形判定方法1:对角线相等的平行四边形是矩形. 注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线相等. 矩形判定方法2:有三个角是直角的四边形是矩形.
直角三角形性质:直角三角形斜边上的中线等于斜边的一半。
一个角是直
一组邻边相等 有一个角是直角 一组邻边相等
平行四边形
矩形 菱形
正方形
例题:已知:如图, □ABCD 各角的平分线分别相交于点E ,F ,G ,•H , •求证:•四边形EFGH 是矩形.
练习:如图,在□ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F . (1)求证:AB=CF ;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,并说明理由.
2、 菱形的判定方法
菱形的定义:一组邻边相等的平行四边形是菱形.
菱形判定方法1:对角线互相垂直的平行四边形是菱形. 注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直. 菱形判定方法2:四边都相等的四边形是菱形。
例题:如图,在平行四边形ABCD 中,点P 是对角线AC 上的一点,PE ⊥AB ,PF ⊥AD ,垂足分别为E 、F ,且PE=PF ,平行四边形ABCD 是菱形吗?为什么?
练习:如图,平行四边形ABCD 中,EF 过AC 的中点O ,与边AD 、BC 分别相交于点E 、F .若EF 与AC 垂直,试说明四边形AECF 是菱形;
3、正方形的判定方法
正方形判定方法1:有一个角是直角的菱形是正方形. 正方形判定方法2:有一组邻边相等的矩形是正方形.
注意:要确定一个四边形是正方形,应先确定它是菱形或是矩形,然后再加上相应的条件,确定是正方形.
F E D C B
A
例题:在△ABC中,∠C=90°,∠A,∠B的平分线交于点D,DE⊥BC于点E,DF ⊥AC于点F,求证:四边形CFDE是正方形.
已知:如图,四边形ABCD是正方形,分别过点A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、DN分别交l2于Q、P点.
求证:四边形PQMN是正方形.
题型解析二、常见与重点题目解析
1、如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是(D)A.AB=CD B.AD=BC C.AB=BC D.AC=BD
2、如图,要使平行四边形ABCD成为矩形,需添加的条件是(C)
A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠2
3、如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是(C)A.AB=CD B.AD=BC C.AB=BC D.AC=BD
4、下列命题中正确的是(D)
A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形
C.对角线相等的平行四边形是菱形
D.对角线互相垂直的平行四边形是菱形
5、如图,将三角形纸片△ABC沿DE折叠,使点A落在BC边上的点F处,且DE∥BC,下列结论中,一定正确的个数是(C)
①△BDF是等腰三角形;②DE=
2
1
BC;
③四边形ADFE是菱形;④∠BDF+∠FEC=2∠A.
A.1 B.2 C.3 D.4
6、下列说法不正确的是(D)
A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形
C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形7、在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是(C)
A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠A=∠C
C.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC
8、有下列命题,其中真命题有(B)
①四边都相等的四边形是正方形;
②四个内角都相等的四边形是正方形;
③有三个角是直角,且有一组邻边相等的四边形是正方形;
④对角线与一边夹角都为45°的四边形是正方形.
A.1个B.2个C.3个D.4个
课后作业四、课后作业
1.在▱ABCD中,AC交BD于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是(A)
A.AB=AD B.OA=OB C.AC=BD D.DC⊥BC
2.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是(D)A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形
C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形
3.如图,下列条件之一能使平行四边形ABCD是菱形的为(A)
①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.
A.①③B.②③C.③④D.①②③
4.下列说法中错误的是(B)
A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的矩形是正方形D.两条对角线相等的菱形是正方形5.顺次连接菱形各边中点得到的四边形一定是(C)
A.菱形B.正方形C.矩形D.等腰梯形
6.下列命题中:
①对角线互相平分的四边形是平行四边形;
②对角线相等的四边形是矩形;
③一组对角相等,一组对边平行的四边形是平行四边形;
④对角线平分一组对角的平行四边形是菱形;
⑤对角线相等且互相垂直的四边形是正方形.
其中真命题有(C)个
A.1 B.2 C.3 D.4
7.用两块完全重合的等腰直角三角形纸片拼下列图形:(1)平行四边形(不包含菱形、矩形、正方形);(2)矩形;(3)正方形;(4)等边三角形;(5)等腰直角三角
形,一定能拼成的图形是(B)
A.(1)(2)(3)B.(1)(3)(5)C.(2)(3)(5)D.(1)(3)(4)(5)
8.如图,四边形ABCD是菱形,DE⊥AB交BA的延长线于E,DF⊥BC,交BC的延长线于F。
请你猜想DE与DF的大小有什么关系.
9.如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.
(1)求证:四边形ABCD是矩形;
(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.。