最新高中数学--条件概率与独立事件二项分布

合集下载

2021年新课标新高考数学复习课件:§11.3 条件概率、二项分布及正态分布

2021年新课标新高考数学复习课件:§11.3 条件概率、二项分布及正态分布

②根据题意得X~B
4,
1 2
,P(X=0)=
C04
1 2
4
=
1 16
;
P(X=1)=
C14
1 2
4
=
1 4
;P(X=2)=
C24
1 2
4
=
3 8
;
P(X=3)=
C34
1 2
4
=
1 4
;P(X=4)=
C44
1 2
4
=
1 16
.∴X的分布列为
X
0
1
2
3
4
P
1
1
3
1
1
16
4
解析 (1)所抽取的100包速冻水饺该项质量指标值的平均数x=5×0.1+15×
0.2+25×0.3+35×0.25+45×0.15=26.5.
(2)①∵Z服从正态分布N(μ,σ2),且μ=26.5,σ≈11.95,∴P(14.55<Z<38.45)=P(26.5-
11.95<Z<26.5+11.95)=0.682 6,∴Z落在(14.55,38.45)内的概率是0.682 6.
(2)根据此次调查,为使80%以上居民月用水价格为4元/立方米,应将w定为 多少?(精确到小数点后2位) (3)若将频率视为概率,现从该市随机调查3名居民的月用水量,将月用水量 不超过2.5立方米的人数记为X,求其分布列及均值. 解题导引
(2)利用频率分布直方图估计w.
解析 (1)∵前二项分布
1.条件概率及其性质 (1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率

2.2.3二项分布-独立重复事件和二项分布

2.2.3二项分布-独立重复事件和二项分布

3 p , 5
(1)命中一次;
(2)恰在第三次命中目标;
144 625
48 625
24 625
(3)命中两次;
36 (4)刚好在第二、第三两次击中目标。 625
变式(05,北京)甲乙两人各进行3次射击,甲
1 每次击中目标的概率为 ,乙每次击中目标的 2 2 概率为 , 3
求:(1)甲至多击中目标2次的概率;
思考? 二项分布与 两点分布有什么 关系?
两点分布是特殊的二项分布
(1 p)
例1某射手每次射击击中目标的概率是0.8.
手在10次射击中。
(1)恰有8次击中目标的概率;
求这名射
(2)至少有8次击中目标的概率。(结果保留两个有效数字)
练习 已知一个射手每次击中目标的概率为
求他在5次射击中下列事件发生的概率。
例2.设3次独立重复试验中,事件A发 生的概率相等,若已知A至少发生一 次的概率等于19/27,求事件A在一次 试验中发生的概率。
练习 2.一射手对同一目标独立地
进行4次射击,已知至少命中一次 80 的概率为 81 ,则此射手射击一次 的命中率是( B )
A
1 3
B
2 C 3
4
1 4
D
2 5
80 1 (1 p) 81
1 5
X p 0
34 ( ) 4
1 4
1
1 33 C ( )( ) 4 4
2 4
2
3
4
14 ( ) 4
12 32 3 1 3 3 C ( ) ( ) C4 ( ) ( ) 4 4 4 4
即:ξ∽B(4,1/4),ξ的分布列为
1 k 3 4 k P(ξ=k)= C ( ) ( ) ,k=0,1,2,3,4,5,6图钉,针尖向上的概率为p,求 出了连续掷3次图钉,仅出现次1针尖向上的概率。类 似地,连续掷3次图钉,出现 k (0 k 3) 次针尖向 上的概率是多少?你能发现其中的规律吗?

高中数学--条件概率与独立事件二项分布

高中数学--条件概率与独立事件二项分布

【规范解答】 (1)设:“至少有一个系统不发生故障” 为事件 C,那么
1-P(C)=1-110P=4590,解得 P=51, (2)由题意,P(ξ=0)=C03(110)=10100, P(ξ=1)=C13(110)2(1-110)=120070, P(ξ=2)=C23(110)(1-110)2=1204030, P(ξ=3)=C33(110)0(1-110)3=1702090.
P(A)=P(B CD + B C D + BC D)=P(B CD )+P( B C D ) +P( BC D)
=34×(1-32)×(1-23)+(1-34)×32×(1-32)+(1-34)×(1 -23)×23
=376.
(2)根据题意,X 的所以可能取值为 0,1,2,3,4,5. 根据事件的独立性和互斥性得 P(X=0)=P( B C D )=(1-34)×(1-32)×(1-23)=316, P(X=1)=P(B CD )=43×1-23×1-23=112, P(X=2)=P( B C D )+P( B C D)= (1-34)×23×(1-23)×2=19, P(X=3)=P(BC D )+P(B C D)
• 【答案】 D
(2012·山东高考改编)现有甲、乙两个靶,某射 手向甲靶射击一次,命中的概率为34,命中得 1 分,没有命 中得 0 分;向乙靶射击两次,每次命中的概率为23,每命中 一次得 2 分,没有命中得 0 分.该射手每次射击的结果相互 独立.假设该射手完成以上三次射击.
(1)求该射手恰好命中一次的概率; (2)求该射手的总得分 X 的分布列.
• 【【思尝路试点解答拨】】(1)记分“清该射命手中恰一好命次中的一三次”种为情事况件 A,; “根该射据手相设互计甲独靶立命事中”件为的事概件 率B;公“式该射计手算第一次射击乙

二项分布公开课课件

二项分布公开课课件
某同学玩射击气球游戏,每次射击击破气球的概率为0.7,现有气球10个。 某篮球队员罚球命中率为0.8,罚球6次。 口袋内装有5个白球、3个黑球,放回地抽取5个球。
包含了n个相同的试验; 每次试验相互独立; 5次、10次、6次、5次
创设情景
创设情景
投掷一枚相同的硬币5次,每次正面向上的概率为0.5。 某同学玩射击气球游戏,每次射击击破气球的概率为0.7,现有气球10个。 某篮球队员罚球命中率为0.8,罚球6次。 口袋内装有5个白球、3个黑球,放回地抽取5个球。 问题 上面这些试验有什么共同的特点? 每次试验只有两种可能的结果:A或
请举出生活中碰到的独立重复试验的例子。
2).某人射击,击中目标的概率P是稳定的,他连续射击 了10次,其中6次击中; (YES)
3).口袋装有5个白球,3个红球,2个黑球,从中依次 抽取5个球,恰好抽出4个白球; (NO)
4).口袋装有5个白球,3个红球,2个黑球,从中有放回 的抽取5个球,恰好抽出4个白球. (YES)
某射手每次射击击中目标的概率是0.8. 求这名射手在10次射击中, 恰有8次击中目标的概率; 至少有8次击中目标的概率。 (结果保留两个有效数字)
01
某气象站天气预报的准确率为80%,计算(结果保留两个有效数字): 5次预报中恰有4次准确的概率; 5次预报中至少有4次准确的概率
02
跟踪练习:
变式5.填写下列表格:
2.2.3独立重复试验与二项分布
添加副标题
汇报人姓名
复习旧知识
1、条件概率: 对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率。 2、条件概率的概率公式: P(B|A)= = 3、相互独立事件: 事件A是否发生对事件B发生的概率没有影响,这时我们称两个事件A,B相互独立,并把这两个事件叫做相互独立事件。 4、相互独立事件的概率公式: P(AB)=P(A)P(B)

【数学】2.2《 二项分布及其应用课件(新人教A版选修2-3)

【数学】2.2《 二项分布及其应用课件(新人教A版选修2-3)
( 互独事件 互独事件)
独立事件一定不互斥. 独立事件一定不互斥 互斥事件一定不独立. 互斥事件一定不独立 明确事件中的关键词, 明确事件中的关键词,如,“至少有一个发生”“至 至少有一个发生”“至 ”“ 多有一个发生” 恰有一个发生” 多有一个发生”,“恰有一个发生”,“都发 ”“都不发生 都不发生” 不都发生” 生”“都不发生”,“不都发生”。
此时称随机变量X服从二项分布,记作X~B(n,p), 此时称随机变量 服从二项分布,记作 服从二项分布 并称p为成功概率 为成功概率。 并称 为成功概率。
复习回顾
二项分布 3、
在一次试验中某事件发生的概率是p,那么在n次 在一次试验中某事件发生的概率是 ,那么在 次 独立重复试验中这个事件恰发生 恰发生ξ 显然 显然ξ 独立重复试验中这个事件恰发生ξ次,显然ξ是一个随机 变量. 变量. 于是得到随机变量ξ的概率分布如下: 于是得到随机变量 的概率分布如下: 的概率分布如下 ξ p
例 1 考虑恰有三个小孩的家庭 (假定生男生女为 考虑恰有三个小孩的家庭.
等可能) 等可能)
(1)若已知某一家有一个是女孩,求这家另两个是男孩的概率 )若已知某一家有一个是女孩, (2)若已知某一家第一个是女孩,求这家另两个是男孩的概率 )若已知某一家第一个是女孩,
(女、女、女); (女、女、男); (女、男、女);(女、男、男); ( 男、女、女) ; ( 男、女、男) ; ( 男、男、女) ; ( 男、男、男) ;
B
A
复习回顾
1、事件的相互独立性 、 为两个事件, 设A,B为两个事件,如果 P(AB)=P(A)P(B),则称事 , 为两个事件 则称事 与事件B相互独立 件A与事件 相互独立。 与事件 相互独立。 即事件A( 对事件B( 即事件 (或B)是否发生 对事件 (或A)发生的 )是否发生,对事件 ) 概率没有影响,这样两个事件叫做相互独立事件。 概率没有影响,

高三理科数学一轮复习讲义:第十一章计数原理概率随机变量及其分布11.8条件概率n次独立重复试验与二项分布

高三理科数学一轮复习讲义:第十一章计数原理概率随机变量及其分布11.8条件概率n次独立重复试验与二项分布

§11.8 条件概率、n 次独立重复试验与二项分布考纲展示►1.了解条件概率和两个事件相互独立的概念.2.理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.考点1 条件概率条件概率 (1)定义设A ,B 为两个事件,且P (A )>0,称P (B |A )=P ABP A为在事件A 发生条件下,事件B 发生的条件概率.(2)性质①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ).条件概率的性质.(1)有界性:0≤P (B |A )≤1.( )(2)可加性:如果B 和C 为互斥事件,则P ((B ∪C )|A )=P (B |A )+P (C |A ).( )[典题1] (1)从1,2,3,4,5中任取2个不同的数,事件A :“取到的2个数之和为偶数”,事件B :“取到的2个数均为偶数”,则P (B |A )=( )A.18B.14C.25D.12(2)1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则两次都取到红球的概率是( )A.1127B.1124C.827D.924[点石成金] 条件概率的两种求解方法 (1)定义法:先求P (A )和P (AB ),再由P (B |A )=P ABP A求P (B |A ).(2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n ABn A.考点2 事件的相互独立性(1)定义:设A ,B 为两个事件,如果P (AB )=________,则称事件A 与事件B 相互独立. (2)性质:若事件A 与B 相互独立,则A 与B 、A 与B 、A 与B 也都相互独立,P (B |A )=________,P (A |B )=________.[典题2] 为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22千米的地铁票价如下表:的概率分别为14,13,甲、乙乘车超过6千米且不超过12千米的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列.[点石成金] 1.利用相互独立事件的概率乘法公式直接求解;2.正面计算较繁或难以入手时,可从其对立事件入手计算.在一块耕地上种植一种作物,每季种植成本为 1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.考点3 独立重复试验与二项分布独立重复试验与二项分布(1)[教材习题改编]某人抛掷一枚硬币,出现正反的概率都是12,构造数列{a n },使得a n=⎩⎪⎨⎪⎧第n 次出现正面,-第n 次出现反面, 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为________.(2)[教材习题改编]小王通过英语听力测试的概率是13,他连续测试3次,那么其中恰有1次获得通过的概率是________.二项分布:P (X =k )=C k n p k(1-p )n -k(k =0,1,2,…,n ).设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)的值是________.[典题3] [2019·湖南长沙模拟]博彩公司对2019年NBA 总决赛做了大胆地预测和分析,预测西部冠军是老辣的马刺队,东部冠军是拥有詹姆斯的年轻的骑士队,总决赛采取7场4胜制,每场必须分出胜负,场与场之间的结果互不影响,只要有一队获胜4场就结束比赛.前4场,马刺队胜利的概率为12,第5,6场马刺队因为平均年龄大,体能下降厉害,所以胜利的概率降为25,第7场,马刺队因为有多次打第7场的经验,所以胜利的概率为35.(1)分别求马刺队以4∶0,4∶1,4∶2,4∶3胜利的概率及总决赛马刺队获得冠军的概率; (2)随机变量X 为分出总冠军时比赛的场数,求随机变量X 的分布列.[点石成金] 利用独立重复试验概率公式可以简化求概率的过程,但需要注意检查该概率模型是否满足公式P (X =k )=C k n p k(1-p )n -k的三个条件:(1)在一次试验中某事件A 发生的概率是一个常数p ;(2)n 次试验不仅是在完全相同的情况下进行的重复试验,而且各次试验的结果是相互独立的;(3)该公式表示n 次试验中事件A 恰好发生了k 次的概率.某市为了调查学校“阳光体育活动”在高三年级的实施情况,从本市某校高三男生中随机抽取一个班的男生进行投掷实心铅球(重3 kg)测试,成绩在6.9米以上的为合格.把所得数据进行整理后,分成5组画出频率分布直方图的一部分(如图所示),已知成绩在[9.9,11.4)的频数是4.(1)求这次铅球测试成绩合格的人数;(2)若从今年该市高中毕业男生中随机抽取两名,记ξ表示两人中成绩不合格的人数,利用样本估计总体,求ξ的分布列.[方法技巧] 1.古典概型中,A 发生的条件下B 发生的条件概率公式为P (B |A )=P ABP A=n AB n A ,其中,在实际应用中P (B |A )=n ABn A是一种重要的求条件概率的方法.2.判断一个随机变量是否服从二项分布,关键有二:其一是独立性,即一次试验中,事件发生与不发生二者必居其一;其二是重复性,即试验是独立重复地进行了n次.3.n次独立重复试验中,事件A恰好发生k次可看作是C k n个互斥事件的和,其中每一个事件都可看作是k个A事件与n-k个A事件同时发生,只是发生的次序不同,其发生的概率都是p k(1-p)n-k.因此n次独立重复试验中事件A恰好发生k次的概率为C k n p k(1-p)n-k.[易错防范] 1.相互独立事件是指两个事件发生的概率互不影响,计算公式为P(AB)=P(A)P(B).互斥事件是指在同一试验中,两个事件不会同时发生,计算公式为P(A∪B)=P(A)+P(B).2.运用公式P(AB)=P(A)P(B)时一定要注意公式成立的条件,只有当事件A,B相互独立时,公式才成立.真题演练集训1.[2018·重庆模拟]投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A.0.648 B.0.432C.0.36 D.0.3122.[2018·天津模拟]某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A.0.8 B.0.75C.0.6 D.0.45课外拓展阅读误用“二项分布与超几何分布”二项分布和超几何分布是两类重要的概率分布模型,这两种分布存在着很多的相似之处,在应用时应注意各自的适用条件和情境,以免混用出错.[典例1] 某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.现在在总共8小块地中,随机选4小块地种植品种甲,另外4小块地种植品种乙.种植完成后若随机选出4块地,其中种植品种甲的小块地的数目记为X,求X的分布列和数学期望.[思路分析]判断分布的类型→确定X的取值及其概率→列出分布列并求数学期望易错提示本题容易错误地得到X 服从二项分布,每块地种植甲的概率为12,故X ~B (4,0.5).错误的根源在于每块地种植甲或乙不是相互独立的,它们之间是相互制约的,无论怎么种植都要保证8块地中有4块种植甲,4块种植乙,事实上X 应服从超几何分布.如果将题目改为:在8块地中,每块地要么种植甲,要么种植乙,那么在选出的4块地中种植甲的数目为X ,则这时X ~B (4,0.5)(这时这8块地种植的方法总数为28,会出现所有地都种植一种作物的情况,而题目要求4块地种植甲,4块地种植乙,其方法总数为C 48).[典例2] 某高校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作.规定:至少正确完成其中2题的便可提交通过.已知6道备选题中考生甲有4道题能正确完成,2道题不能完成;考生乙每题正确完成的概率都是23,且每题正确完成与否互不影响.(1)分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;(2)试从两位考生正确完成题数的数学期望及至少正确完成2题的概率分析比较两位考生的实验操作能力.易错提示本题容易错误地得到甲、乙两考生正确完成的题数均服从二项分布,实际上题目中已知甲、乙两考生按照题目要求独立完成全部实验操作,甲考生正确完成的题数服从超几何分布,乙考生正确完成的题数服从二项分布.。

2024年新高考版数学专题1_11.3 二项分布与正态分布(分层集训)

2024年新高考版数学专题1_11.3 二项分布与正态分布(分层集训)

首选志愿为非师范专业 35 25
(1)根据小概率值α=0.05的独立性检验,能否认为首选志愿为师范专业与 性别有关? (2)用样本估计总体,用本次调研中首选志愿样本的频率代替首选志愿的 概率,从2022年全国文科考生中随机抽取3人,设被抽取的3人中首选志愿 为师范专业的人数为X,求X的分布列、数学期望E(X)和方差D(X).
=0.25×0.8+0.35×0.6+0.4×0.75=0.71,
所以P(A3|B)= P( A3B) = P( A3)P(B | A3) = 0.3 = 30 .
P(B)
P(B)
0.71 71
即采摘出的某颗水仙花球茎经雕刻后能使用,它是由丙工作队所采摘的
概率为 30 .
71
考点二 正态分布
1.(2023届广东东莞四中月考,4)某地组织普通高中数学竞赛.初赛共有
2.(2015课标Ⅰ,4,5分)投篮测试中,每人投3次,至少投中2次才能通过测试. 已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则 该同学通过测试的概率为( ) A.0.648 B.0.432 C.0.36 D.0.312 答案 A
3.(2023届江苏常州一中检测,7)袋子里装有形状、大小完全相同的4个小 球,球上分别标有数字1,2,3,4,从中有放回地随机取两次,每次取1个球,A表 示事件“第一次取出的球上数字是1”,B表示事件“第二次取出的球上 数字是2”,C表示事件“两次取出的球上数字之和是5”,D表示事件“两 次取出的球上数字之和是6”,通过计算,则可以得出 ( ) A.B与D相互独立 B.A与D相互独立 C.B与C相互独立 D.C与D相互独立 答案 C
9.(2022山东济宁一中开学考试,14)已知随机变量ξ~B

最新高中数学二项分布及其应用知识点+练习

最新高中数学二项分布及其应用知识点+练习

高中数学二项分布及其应用知识点+练习二项分布及其应用要求层次重难点条件概率A 了解条件概率和两个事件相互独立的概念,理解n 次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.事件的独立性A n 次独立重复试验与二项分布B(一) 知识内容条件概率对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =).(二)典例分析:【例1】 在10个球中有6个红球,4个白球(各不相同),不放回的依次摸出2个球,在第1次摸出红球的条件下,第2次也摸出红球的概率是( )A .35B .23C .59D .13【例2】 某地区气象台统计,该地区下雨的概率是415,刮风的概率是215,既刮风又下雨的概率是条件概率事件的独立性独立重复实验二项分布高考要求例题精讲知识框架二项分布及其应用板块一:条件概率1,10设A=“刮风”,B=“下雨”,求()(),.P B A P A B【例3】设某种动物活到20岁以上的概率为0.7,活到25岁以上的概率为0.4,求现龄为20岁的这种动物能活到25岁以上的概率.【例4】把一枚硬币抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现反面”,则()_____P B A=.【例5】抛掷一颗骰子两次,在第一次掷得向上一面点数是偶数的条件下,则第二次掷得向上一面点数也是偶数的概率为.【例6】设某批产品有4%是废品,而合格品中的75%是一等品,任取一件产品是一等品的概率是_____.【例7】掷两枚均匀的骰子,记A=“点数不同”,B=“至少有一个是6点”,求(|)P B A.P A B与(|)【例8】甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率?【例9】从1~100个整数中,任取一数,已知取出的—数是不大于50的数,求它是2或3的倍数的概率.【例10】袋中装有21n-个白球,2n个黑球,一次取出n个球,发现都是同一种颜色的,问这种颜色是黑色的概率是多少?【例11】 一袋中装有10个球,其中3个黑球,7个白球,先后两次从袋中各取一球(不放回)⑴已知第一次取出的是黑球,求第二次取出的仍是黑球的概率;⑵已知第二次取出的是黑球,求第一次取出的也是黑球的概率; ⑶已知第一次取出的是黑球,求第二次取出的是白球的概率.【例12】 有两箱同类零件,第一箱内装50件,其中10件是一等品;第二箱内装30件,其中18件是一等品.现从两箱中随意挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:⑴先取出的零件是一等品的概率;⑵在先取出的零件是一等品的条件下后取出的仍然是一等品的概率.(保留三位有效数字)【例13】 设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份,⑴求先抽到的一份是女生表的概率p .⑵己知后抽到的一份是男生表,求先抽到的是女生的概率q .(一) 知识内容事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事件i A 换成其对立事件后等式仍成立.(二)典例分析:板块二:事件的独立性cba【例14】 判断下列各对事件是否是相互独立事件⑴容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.⑵一筐内有6个苹果和3个梨,“从中任意取出1个,取出的是苹果”与“把取出的苹果放回筐子,再从筐子中任意取出1个,取出的是梨”.⑶甲组3名男生、2名女生;乙组2名男生、3名女生,今从甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”.【例15】 从甲口袋摸出一个红球的概率是13,从乙口袋中摸出一个红球的概率是12,则23是( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有一个红球的概率D .2个球中恰好有1个红球的概率【例16】 猎人在距离100m 处射击一只野兔,其命中率为12.如果第一次射击未命中,则猎人进行第二次射击,但距离为150m ;如果第二次又未命中,则猎人进行第三次射击,但在射击瞬间距离野兔为200m .已知猎人命中率与距离的平方成反比,求猎人命中野兔的概率.【例17】 如图,开关电路中,某段时间内,开关a b c 、、开或关的概率均为12,且是相互独立的,求这段时间内灯亮的概率.【例18】 甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工的零件不是一等品的概率为14,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为112,甲、丙两台机床加工的零件都是一等品的概率为29. 分别求甲、乙、丙三台机床各自加工的零件是一等品的概率.【例19】 椐统计,某食品企业一个月内被消费者投诉的次数为012,,的概率分别为0.4,0.5,0.1 ⑴ 求该企业在一个月内被消费者投诉不超过1次的概率;⑵假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率.【例20】某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为45、35、25、15,且各轮问题能否正确回答互不影响.⑴求该选手进入第四轮才被淘汰的概率;⑵求该选手至多进入第三轮考核的概率.【例21】甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.⑴求再赛2局结束这次比赛的概率;⑵求甲获得这次比赛胜利的概率.【例22】纺织厂某车间内有三台机器,这三台机器在一天内不需工人维护的概率:第一台为0.9,第二台为0.8,第三台为0.85,问一天内:⑴3台机器都要维护的概率是多少?⑵其中恰有一台要维护的概率是多少?⑶至少一台需要维护的概率是多少?【例23】为拉动经济增长,某市决定新建一批重点工程,分为基础设施工程、民生工程和产业建设工程三类.这三类工程所含项目的个数分别占总数的12,13,16.现有3名工人独立地从中任选一个项目参与建设.求:⑴他们选择的项目所属类别互不相同的概率;⑵至少有1人选择的项目属于民生工程的概率.【例24】甲、乙两个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:⑴两个人都译出密码的概率;⑵两个人都译不出密码的概率;⑶恰有1个人译出密码的概率;⑷至多1个人译出密码的概率;⑸至少1个人译出密码的概率.【例25】从10位同学(其中6女,4男)中,随机选出3位参加测验,每位女同学能通过测验的概率均为45,每位男同学能通过测验的概率均为35,试求:⑴选出的3位同学中至少有一位男同学的概率;⑵10位同学中的女同学甲和乙及男同学丙同时被抽到,且三人中恰有二人通过测验的概率.【例26】甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p,且乙投球2次均未命中的概率为116.⑴求乙投球的命中率p;⑵求甲投球2次,至少命中1次的概率;⑶若甲、乙两人各投球2次,求两人共命中2次的概率.【例27】一汽车沿一街道行驶,需要通过三个设有红绿灯的路口,每个信号灯彼此独立工作,且红绿灯信号显示时间相等.以X表示该汽车首次遇到红灯时已通过的路口个数,求X的分布列以及该汽车首次遇到红灯时至少通过两个路口的概率.【例28】甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:⑴2人都射中的概率?⑵2人中有1人射中的概率?⑶2人至少有1人射中的概率?⑷2人至多有1人射中的概率?【例29】(07福建)甲、乙两名跳高运动员一次试跳2米高度成功的概率分别是0.7,0.6,且每次试跳成功与否相互之间没有影响,求:⑴甲试跳三次,第三次才成功的概率;⑵甲、乙两人在第一次试跳中至少有一人成功的概率;⑶甲、乙各试跳两次,甲比乙的成功次数恰好多一次的概率.【例30】A、B两篮球队进行比赛,规定若一队胜4场则此队获胜且比赛结束(七局四胜制),A、B两队在每场比赛中获胜的概率均为12,X为比赛需要的场数,求X的分布列及比赛至少要进行6场的概率.【例31】已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.求依方案甲、乙分别所需化验次数的分布列以及方案甲所需化验次数不少于方案乙所需化验次数的概率.【例32】 为防止某突发事件发生,有甲、乙、丙、丁四种相互独立的预防措施可供采用,单独采用甲、乙、丙、丁预防措施后此突发事件不发生的概率(记为P )和所需费预防措施 甲 乙 丙 丁P0.9 0.8 0.7 0.6 费用(万元)90 60 30 10 120万元的前提下,请确定一个预防方案,使得此突发事件不发生的概率最大.【例33】 某公司招聘员工,指定三门考试课程,有两种考试方案.方案一:考试三门课程,至少有两门及格为考试通过;方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.假设某应聘者对三门指定课程考试及格的概率分别是a b c ,,,且三门课程考试是否及格相互之间没有影响.⑴ 分别求该应聘者用方案一和方案二时考试通过的概率;⑵ 试比较该应聘者在上述两种方案下考试通过的概率的大小.(说明理由)(一) 知识内容板块三:独立重复试验与二项分布1.独立重复试验如果每次试验,只考虑有两个可能的结果A 及A ,并且事件A 发生的概率相同.在相同的条件下,重复地做n 次试验,各次试验的结果相互独立,那么一般就称它们为n 次独立重复试验.n 次独立重复试验中,事件A 恰好发生k 次的概率为()C (1)kk n k n nP k p p -=-(0,1,2,,)k n =.2.二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q -==,其中0,1,2,,k n =. 于是得到由于表中的第二行恰好是二项展开式0()C C C C n n n n n n q p p q p q p q p q +=++++各对应项的值,所以称这样的离散型随机变量X 服从参数为n ,p 的二项分布,记作~(,)X B n p .(二)典例分析:【例1】 某人参加一次考试,4道题中解对3道则为及格,已知他的解题正确率为0.4,则他能及格的概率为_________(保留到小数点后两位小数)【例2】 某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率 .(用数值表示)【例3】 接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 .(精确到0.01)【例4】 甲乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3∶1的比分获胜的概率为( )A .827B .6481C .49D .89【例5】 一台X 型号的自动机床在一小时内不需要人照看的概为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是( )A .0.1536B .0.1808C .0.5632D .0.9728【例6】 某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.⑴求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.【例7】某万国家具城进行促销活动,促销方案是:顾客每消费1000元,便可获得奖券一张,每张奖券中奖的概率为15,若中奖,则家具城返还顾客现金200元.某顾客消费了3400元,得到3张奖券.⑴求家具城恰好返还该顾客现金200元的概率;⑵求家具城至少返还该顾客现金200元的概率.【例8】某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为56和45,且各株大树是否成活互不影响.求移栽的4株大树中:⑴至少有1株成活的概率;⑵两种大树各成活1株的概率.【例9】一个口袋中装有n个红球(5n≥且*n∈N)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.⑴试用n表示一次摸奖中奖的概率p;⑵若5n=,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;⑶记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P.当n取多少时,P最大?【例10】已知随机变量ξ服从二项分布,1~(4)3Bξ,,则(2)Pξ=等于____【例11】已知随机变量ξ服从二项分布,1~(6)3Bξ,,则(2)Pξ=等于()A.316 B.4243C.13243D.80243【例12】从一批由9件正品、3件次品组成的产品中,有放回地抽取5次,每次抽一件,求恰好抽到两次次品的概率(结果保留2位有效数字).【例13】袋子A和B中装有若干个均匀的红球和白球,从A中摸出一个红球的概率是13,从B中摸出一个红球的概率为p.⑴从A中有放回地摸球,每次摸出一个,有3次摸到红球即停止.①求恰好摸5次停止的概率;②记5次之内(含5次)摸到红球的次数为ξ,求随机变量ξ的分布.⑵若A B,两个袋子中的球数之比为1:2,将A B,中的球装在一起后,从中摸出一个红球的概率是25,求p的值.【例14】设在4次独立重复试验中,事件A发生的概率相同,若已知事件A至少发生一次的概率等于6581,求事件A在一次试验中发生的概率.【例15】我舰用鱼雷打击来犯的敌舰,至少有2枚鱼雷击中敌舰时,敌舰才被击沉.如果每枚鱼雷的命中率都是0.6,当我舰上的8个鱼雷发射器同是向敌舰各发射l枚鱼雷后,求敌舰被击沉的概率(结果保留2位有效数字).【例16】某厂生产电子元件,其产品的次品率为5%,现从一批产品中的任意连续取出2件,求次品数ξ的概率分布列及至少有一件次品的概率.【例17】某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都是12.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助.求:⑴该公司的资助总额为零的概率;⑵该公司的资助总额超过15万元的概率.【例18】射击运动员李强射击一次击中目标的概率是0.8,他射击3次,恰好2次击中目标的概率是多少?【例19】设飞机A有两个发动机,飞机B有四个发动机,如有半数或半数以上的发动机没有故障,就能够安全飞行,现设各个发动机发生故障的概率p是t的函数1tp eλ-=-,其中t为发动机启动后所经历的时间,λ为正的常数,试讨论飞机A与飞机B哪一个安全?(这里不考虑其它故障).【例20】假设飞机的每一台发动机在飞行中的故障率都是1P-,且各发动机互不影响.如果至少50%的发动机能正常运行,飞机就可以顺利地飞行.问对于多大的P而言,四发动机飞机比二发动机飞机更安全?【例21】一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13.⑴设ξ为这名学生在途中遇到红灯的次数,求ξ的分布列;⑵设η为这名学生在首次停车前经过的路口数,求η的分布列;⑶求这名学生在途中至少遇到一次红灯的概率.【例22】一个质地不均匀的硬币抛掷5次,正面向上恰为1次的可能性不为0,而且与正面向上恰为2次的概率相同.令既约分数ij为硬币在5次抛掷中有3次正面向上的概率,求i j+.【例23】某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位)⑴5次预报中恰有2次准确的概率;⑵5次预报中至少有2次准确的概率;⑶5次预报中恰有2次准确,且其中第3次预报准确的概率;【例24】某大厦的一部电梯从底层出发后只能在第181920,,层可以停靠.若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为13,求至少有两位乘客在20层下的概率.【例25】10个球中有一个红球,有放回的抽取,每次取一球,求直到第n次才取得()k k n≤次红球的概率.【例26】某车间为保证设备正常工作,要配备适量的维修工.设各台设备发生的故障是相互独立的,且每台设备发生故障的概率都是0.01.试求:⑴若由一个人负责维修20台,求设备发生故障而不能及时维修的概率;⑵若由3个人共同负责维修80台设备,求设备发生故障而不能及时维修的概率,并进行比较说明哪种效率高.【例27】A B,是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组.设每只小白鼠服用A有效的概率为23,服用B有效的概率为12.观察3个试验组,求至少有1个甲类组的概率.(结果保留四位有效数字)【例28】已知甲投篮的命中率是0.9,乙投篮的命中率是0.8,两人每次投篮都不受影响,求投篮3次甲胜乙的概率.(保留两位有效数字)【变式】若甲、乙投篮的命中率都是0.5p=,求投篮n次甲胜乙的概率.(1n n∈N,≥)【例29】省工商局于某年3月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的x饮料的合格率为80%,现有甲,乙,丙3人聚会,选用6瓶x饮料,并限定每人喝2瓶,求:⑴甲喝2瓶合格的x饮料的概率;⑵甲,乙,丙3人中只有1人喝2瓶不合格的x饮料的概率(精确到0.01).【例30】在一次考试中出了六道是非题,正确的记“√”号,不正确的记“×”号.若某考生随手记上六个符号,试求:⑴全部是正确的概率;⑵正确解答不少于4道的概率;⑶至少答对2道题的概率.【例31】 某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校队队员与系队队员比赛时,校队队员获胜的概率为0.6.现在校、系双方商量对抗赛的方式,提出了三种方案:⑴双方各出3人;⑵双方各出5人;⑶双方各出7人.三种方案中场次比赛中得胜人数多的一方为胜利. 问:对系队来说,哪一种方案最有利?(一) 知识内容二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则()E X np =,()D x npq =(1)q p =-.(二)典例分析:【例32】 一盒子内装有10个乒乓球,其中3个旧的,7个新的,每次取一球,取后放回,取4次,则取到新球的个数的期望值是______.【例33】 同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是( )A .20B .25C .30D .40【例34】 已知~()X B n p ,,()8E X =,() 1.6D X =,则n 与p 的值分别为( ) A .10和0.8 B .20和0.4 C .10和0.2 D .100和0.8【例35】 某服务部门有n 个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是p ,则该部门一天中平均需要服务的对象个数是( )A .(1)np p -B .npC .nD .(1)p p -【例36】 已知随机变量X 服从参数为60.4,的二项分布,则它的期望()E X =_______,方差()D X =_____.【例37】 已知随机变量X 服从二项分布,且() 2.4E ξ=,() 1.44D ξ=,则二项分布的参数n ,p 的值板块四:二项分布的期望与分别为__________、_________.【例38】一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,则其中含红球个数的数学期望是_________.(用数字作答)【例39】已知(100.8)X B,,求()E X与()D X.【例40】同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为ξ,则ξ的数学期望是()A.20 B.25 C.30 D.40【例41】甲、乙、丙3人投篮,投进的概率分别是121 352,,.⑴现3人各投篮1次,求3人都没有投进的概率;⑵用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望.【例42】抛掷两个骰子,当至少有一个2点或3点出现时,就说这次试验成功.⑴求一次试验中成功的概率;⑵求在4次试验中成功次数X的分布列及X的数学期望与方差.【例43】某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为4%.问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?【例44】某批数量较大的商品的次品率是5%,从中任意地连续取出10件,X为所含次品的个数,求()E X.【例45】某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人%的选择相互之间没有影响.⑴任选1名下岗人员,求该人参加过培训的概率;⑵任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布和期望.【例46】设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布及期望.【例47】某班级有n人,设一年365天中,恰有班上的m(m n≤)个人过生日的天数为X,求X的期望值以及至少有两人过生日的天数的期望值.【例48】购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有10000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10000元的概率为410-.10.999⑴求一投保人在一年度内出险的概率p;⑵设保险公司开办该项险种业务除赔偿金外的成本为50000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).【例49】某安全生产监督部门对5家小型煤矿进行安全检查(简称安检).若安检不合格,则必须进行整改.若整改后复查仍不合格,则强行关闭.设每家煤矿安检是否合格是相互独立的,且每家煤矿整改前安检合格的概率是0.5,整改后安检合格的概率是0.8,计算(结果精确到0.01).⑴恰好有两家煤矿必须整改的概率;⑵平均有多少家煤矿必须整改;⑶至少关闭一家煤矿的概率.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学--条件概率与独立事件二项分布1.两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( )A.12 B.512 C.14D.16【解析】 记两个零件中恰好有一个一等品的事件为A ,则P (A )=P (A 1)+P (A 2)=23×14+13×34=512. 【答案】 B2.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1]B .(0,0.4]C .(0,0.6]D .[0.6,1]【解析】 设事件A 发生的概率为p ,则C 14p (1-p )3≤C 24p 2(1-p )2,解得p ≥0.4,故选A.【答案】 A3.一位国王的铸币大臣在每箱100枚的硬币中各掺入了一枚劣币,国王怀疑大臣作弊,他用两种方法来检测.方法一:在10箱中各任意抽查一枚;方法二:在5箱中各任意抽查两枚.国王用方法一、二能发现至少一枚劣币的概率分别记为p 1和p 2.则( )A .p 1=p 2B .p 1<p 2C .p 1>p 2D .以上三种情况都有可能【解析】 p 1=1-⎝⎛⎭⎫1-110010=1-⎝⎛⎭⎫9910010 =1-⎝⎛⎭⎫9 80110 0005,p 2=1-⎝⎛⎭⎫C 299C 21005=1-⎝⎛⎭⎫981005则p 1<p 2. 【答案】 B4.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为__________. 【解析】 由1-P 2=1625,得P =35.【答案】 355.某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是13.(1)求这支篮球队首次胜场前已经负了两场的概率; (2)求这支篮球队在6场比赛中恰好胜了3场的概率. 【解】 (1)P =⎝⎛⎭⎫1-132×13=427. 所以这支篮球队首次胜场前已负两场的概率为427;(2)6场胜3场的情况有C 36种, ∴P =C 36⎝⎛⎭⎫133⎝⎛⎭⎫1-133=20×127×827=160729. 所以这支篮球队在6场比赛中恰胜3场的概率为160729.课时作业【考点排查表】1.袋中有5个小球(3白2黑),现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是( )A.35 B.34 C.12D.310【解析】 在第一次取到白球的条件下,在第二次取球时,袋中有2个白球和2个黑球共4个球,所以取到白球的概率P =24=12,故选C.【答案】 C2.一个电路如图所示,A 、B 、C 、D 、E 、F 为6个开关,其闭合的概率都是12,且是相互独立的,则灯亮的概率是( )A.164B.5564C.18D.116【解析】 设A 与B 中至少有一个不闭合的事件为T ,E 与F 至少有一个不闭合的事件为R ,则P (T )=P (R )=1-12×12=34,所以灯亮的概率P =1-P (T )P (R )P (C )P (D )=5564. 【答案】 B3.甲、乙两地都位于长江下游,根据天气预报的纪录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%.则甲市为雨天,乙市也为雨天的概率为( )A .0.6B .0.7C .0.8D .0.66 【解析】 甲市为雨天记为事件A ,乙市为雨天记为事件B ,则P (A )=0.2,P (B )=0.18, P (AB )=0.12,∴P (B |A )=P (AB )P (A )=0.120.2=0.6. 【答案】 A4.(2013·九江模拟)某人射击,一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为( )A.81125B.54125C.36125D.27125【解析】 P =C 23×0.62×0.4+0.63=81125. 【答案】 A5.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是( )①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立; ④A 1,A 2,A 3是两两互斥的事件; A .②④ B .①③ C .②③D .①④【解析】 由题意知P (B )的值是由A 1,A 2,A 3中某一个事件发生所决定的,故①③错误;∵P (B |A 1)=P (B ∩A 1)P (A 1)=12×51112=511,故②正确;由互斥事件的定义知④正确,故正确的结论的编号是②④.【答案】 A6.在一次反恐演习中,三架武装直升机分别从不同方位对同一目标发动攻击(各发射一枚导弹),由于天气原因,三枚导弹命中目标的概率分别是0.9,0.9,0.8,若至少有两枚导弹击中目标方可将其摧毁,则目标被摧毁的概率是( )A .0.998B .0.046C .0.936D .0.954【解析】 法一:(直接求解)P =0.9×0.9×0.2+0.9×0.1×0.8+0.1×0.9×0.8+0.9×0.9×0.8=0.954. 法二:(排除法)P =1-(0.9×0.1×0.2+0.1×0.9×0.2+0.1×0.1×0.8+0.1×0.1×0.2)=0.954. 【答案】 D 二、填空题7.有一批书共100本,其中文科书40本,理科书60本,按装潢可分精装、平装两种,精装书70本,某人从这100本书中任取一书,恰是文科书,放回后再任取1本,恰是精装书,这一事件的概率是__________.【解析】 设“任取一书是文科书”的事件为A ,“任取一书是精装书”的事件为B ,则A 、B 是相互独立的事件,所求概率为P (AB ).据题意可知P (A )=40100=25,P (B )=70100=710,∴P (AB )=P (A )·P (B )=25×710=725.【答案】7258.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于__________.【解析】 此选手恰好回答4个问题就晋级下一轮,说明此选手第2个问题回答错误,第3、第4个问题均回答正确,第1个问题答对答错都可以.因为每个问题的回答结果相互独立,故所求的概率为1×0.2×0.82=0.128.【答案】 0.1289.将一枚硬币抛掷6次,则正面出现的次数比反面出现的次数多的概率为__________.【解析】 由题意知,正面可以出现6次,5次,4次,所求概率P =C 66⎝⎛⎭⎫126+C 56⎝⎛⎭⎫126+C 46⎝⎛⎭⎫126=1+6+1564=1132. 【答案】113210.(2013·聊城模拟)某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率是12,两次闭合都出现红灯的概率为16.在第一次闭合后出现红灯的条件下第二次出现红灯的概率为____________.【解析】 “第一次闭合后出现红灯”记为事件A ,“第二次闭合后出现红灯”记为事件B ,则P (A )=12,P (AB )=16.∴P (B |A )=1612=13.【答案】 13三、解答题11.(2013·湖南高考)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这(1)确定x ,y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)【解】 (1)由已知,得25+y +10=55,x +y =35 所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得p (X =1)=15100=320,p (X =1.5)=30100=310,p (X =2)=25100=14,p (x =2.5)=20100=15,p (X =3)=10100=110.X 的分布为X 的数学期望为E (X )=1×320+1.5×310+2×14+2.5×15+3×110=1.9(2)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,X i (i =1,2)为该顾客前面第i 位顾客的结算时间,则P (A )=P (X 1=1且X 2=1)+P (X 1=1且X 2=1.5)+P (X 1=1.5且X 2=1). 由于顾客的结算相互独立,且X 1,X 2的分布列都与X 的分布列相同,所以 P (A )=P (X 1=1)×P (X 2=1)+P (X 1=1)×P (X 2=1.5)+P (X 1=1.5)×P (X 2=1) =320×320+320×310+310×320=980. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 12.某单位为绿化环境,移栽了甲、乙两种大树各2株.设甲、乙两种大树移栽的成活率分别为56和45,且各株大树是否成活互不影响.求移栽的4株大树中:(1)至少有1株成活的概率; (2)两种大树各成活1株的概率.【解】 设A k 表示第k 株甲种大树成活,k =1,2,B l 表示第l 株乙种大树成活,l =1,2. 则A 1,A 2,B 1,B 2独立,且P (A 1)=P (A 2)=56,P (B 1)=P (B 2)=45.(1)至少有1株成活的概率为 1-P (A 1·A 2·B 1·B 2)=1-P (A 1)·P (A 2)·P (B 1)·P (B 2) =1-(16)2(15)2=899900.(2)由独立重复试验中事件发生的概率公式知,所求概率为 P =C 12(56)(16)·C 12(45)(15)=1036×825=80900=445. 四、选做题13.投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(1)求投到该杂志的1篇稿件被录用的概率;(2)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.【解】(1)记A表示事件:稿件能通过两位初审专家的评审;B表示事件:稿件恰能通过一位初审专家的评审;C表示事件:稿件能通过复审专家的评审;D表示事件:稿件被录用.则D=A+B·C,P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3,P(D)=P(A+B·C)=P(A)+P(B·C)=P(A)+P(B)P(C)=0.25+0.5×0.3=0.40.(2)记A0表示事件:4篇稿件中没有1篇被录用;A1表示事件:4篇稿件中恰有1篇被录用;A2表示事件:4篇稿件中至少有2篇被录用.A2=A0+A1.P(A0)=(1-0.4)4=0.129 6,P(A1)=4×0.4×(1-0.4)3=0.345 6,P(A2)=P(A0+A1)=P(A0)+P(A1)=0.129 6+0.345 6=0.475 2,P(A2)=1-P(A2)=1-0.475 2=0.524 8.。

相关文档
最新文档