同济大学《高等数学》(第四版)1-4节 函数的极限

合集下载

高等数学同济大学版课程讲解函数的极限

高等数学同济大学版课程讲解函数的极限

课 时 授 课 计 划课次序号: 03一、课 题:§1.3 函数的极限二、课 型:新授课三、目的要求:1.理解自变量各种变化趋势下函数极限的概念;2.了解函数极限的性质.四、教学重点:自变量各种变化趋势下函数极限的概念.教学难点:函数极限的精确定义的理解与运用.五、教学方法及手段:启发式教学,传统教学与多媒体教学相结合.六、参考资料:1.《高等数学释疑解难》,工科数学课程教学指导委员会编,高等教育出版社;2.《高等数学教与学参考》,张宏志主编,西北工业大学出版社.七、作业:习题1–3 1(2),2(3),3,6八、授课记录:九、授课效果分析: 第三节 函数的极限复习1.数列极限的定义:lim 0,N,N n n n x a n x a εε→∞=⇔∀>∃>-<当时,; 2.收敛数列的性质:唯一性、有界性、保号性、收敛数列与其子列的关系.在此基础上,今天我们学习应用上更为广泛的函数的极限. 与数列极限不同的是,对于函数极限来说,其自变量的变化趋势要复杂的多.一、x →∞时函数的极限对一般函数y ?f (x )而言,自变量无限增大时,函数值无限地接近一个常数的情形与数列极限类似,所不同的是,自变量的变化可以是连续的.定义1 若∀ε>0,∃X >0,当x >X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →+∞f (x )?A . 若∀ε>0,∃X >0,当x <?X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →?∞时,f (x )以A 为极限,记为lim x →-∞f (x )?A . 例1 证明limx 0.证 0-,故∀ε>00-<εε,即x >21ε.因此,∀ε>0,可取X ?21ε,则当x >X 0-<ε,故由定义1得 limx ?0. 例2 证明lim 100x x →-∞=. 证 ∀ε>0,要使100x -?10x <ε,只要x <l gε.因此可取X ?|l gε|?1,当x <?X 时,即有|10x ?0|<ε,故由定义1得lim x →+∞10x ?0. 定义2 若∀ε>0,∃X >0,当|x |>X 时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称x →∞时,f (x )以A 为极限,记为lim x →∞f (x )?A . 为方便起见,有时也用下列记号来表示上述极限:f (x )→A (x →?∞);f (x )→A (x →?∞);f (x )→A (x →∞).注 若lim ()lim ()lim ()x x x f x A f x A f x A →∞→+∞→-∞===或或,则称y A =为曲线()y f x =的水 平渐近线.由定义1、定义2及绝对值性质可得下面的定理.定理1 lim x →∞f (x )?A 的充要条件是lim x →+∞f (x )?lim x →-∞f (x )?A . 例3 证明2lim 1x x x →∞--?1.证 ∀ε>0,要使211x x ---?31x +<ε,只需|x ?1|>3ε,而|x ?1|≥|x |?1,故只需|x |?1>3ε,即|x |>1?3ε. 因此,∀ε>0,可取X ?1?3ε,则当|x |>X 时,有211x x --+<ε,故由定义2得2lim 1x x x →∞-+?1. 二、x →x 0时函数的极限现在我们来研究x 无限接近x 0时,函数值f (x )无限接近A 的情形,它与x →∞时函数的极限类似,只是x 的趋向不同,因此只需对x 无限接近x 0作出确切的描述即可.以下我们总假定在点x 0的任何一个去心邻域内都存在f (x )有定义的点.定义3 设有函数y ?f (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,使得x ∈U (x 0,δ)(即0<|x ?x 0|<δ)时,相应的函数值f (x )∈U (A ,ε)(即|f (x )?A |<ε),则称A 为函数y ?f (x )当x →x 0时的极限,记为0lim x x →f (x )? A ,或f (x )→A (x →x 0). 研究f (x )当x →x 0的极限时,我们关心的是x 无限趋近x 0时f (x )的变化趋势,而不关心f (x )在x ?x 0处有无定义,大小如何,因此定义中使用去心邻域.函数f (x )当x →x 0时的极限为A 的几何解释如下:任意给定一正数ε,作平行于x 轴的两条直线y ?A ?ε和y ?A ?ε,介于这两条直线之间是一横条区域.根据定义,对于给定的ε,存在着点x 0的一个δ邻域(x 0?δ,x 0?δ),当y ?f (x )的图形上点的横坐标x 在邻域 (x 0?δ,x 0?δ)内,但x ≠x 0时,这些点的纵坐标f (x )满足不等式 |f (x )?A |<ε,或 A ?ε<f (x )<A ?ε.亦即这些点落在上面所作的横条区域内,如图1-34所示.图1-34例4 证明211lim 1x x x →--?2. 证 函数f (x )?211x x --在x ?1处无定义.∀ε>0,要找δ>0,使0<|x ?1|<δ时,2121x x ---?|x ?1|<ε成立.因此,∀ε>0,据上可取δ?ε,则当0<|x ?1|<δ时,2121x x ---<ε成立,由定义3得211lim 1x x x →--?2. 例5 证明0lim x x →sin x ?sin x 0. 证 由于|sin x |≤|x |,|cos x |≤1,所以|sin x ?sin x 0|?200cos sin 22x x x x +-≤|x ?x 0|. 因此,∀ε>0,取δ?ε,则当0<|x ?x 0|<δ时,|sin x ?sin x 0|<ε成立,由定义3得0lim x x →sin x ?sin x 0.有些实际问题只需要考虑x 从x 0的一侧趋向x 0时,函数f (x )的变化趋势,因此引入下面的函数左右极限的概念.定义4 设函数y ?f (x ),其定义域D f ⊆R ,若∀ε>0,∃δ>0,当x ∈0(,)U x δ- (或x ∈0(,)U x δ+)时,相应的函数值f (x )∈U (A ,ε),则称A 为f (x )当x →x 0时的左(右)极限,记为0lim x x -→f (x )?A (0lim x x +→f (x )?A ),或记为f (0x -)?A (f (0x +)?A ). 由定义3和定义4可得下面的结论.定理2 0lim x x →f (x )?A 的充要条件是0lim x x -→f (x )?0lim x x +→f (x )?A . 例6 设cos ,0()10x x f x x x <⎧=⎨-≥⎩,研究0lim x →f (x ). 解 x ?0是此分段函数的分段点,0lim x -→f (x )?0lim x -→cos x ?cos0?1,而 0lim x +→f (x )?0lim x +→(1?x )?1. 故由定理2可得,0lim x →f (x )?1. 例7 设,0()10x x f x x ≤⎧=⎨>⎩,研究0lim x →f (x ). 解 由于 0lim x -→f (x )?0lim x -→x ?0,0lim x +→f (x )?0lim x +→1?1,因为0lim x -→f (x )≠0lim x +→f (x ),故0lim x →f (x )不存在. 三、函数极限的性质与数列极限性质类似,函数极限也具有相类似性质,且其证明过程与数列极限相应定理的证明过程相似,下面未标明自变量变化过程的极限符号“lim”表示定理对任何一种极限过程均成立.1.唯一性定理3 若lim f (x )存在,则必唯一.2.局部有界性定义5 在x →x 0(或x →∞)过程中,若∃M >0,使x ∈U (x 0)(或|x |>X )时,|f (x )|≤M ,则称f (x )是x →x 0(或x →∞)时的有界变量.定理4 若lim f (x )存在,则f (x )是该极限过程中的有界变量.证 我们仅就x →x 0的情形证明,其他情形类似可证.若0lim x x →f (x )?A ,由极限定义,对ε?1,∃δ>0,当x ∈U (x 0,δ)时,|f (x )?A |<1,则|f (x )|<1?|A |,取M ?1?|A |,由定义5可知,当x →x 0时,f (x )有界.注意,该定理的逆命题不成立,如sin x 是有界变量,但lim x →∞sin x 不存在. 3.局部保号性定理5 若0lim x x →f (x )?A ,A >0(A <0),则∃U (x 0),当x ∈U (x 0)时,f (x )>0 (f (x )<0).若lim x →∞f (x )?A ,A >0(A <0),则∃X >0,当|x |>X 时,有f (x )>0(f (x )<0). 该定理通常称为保号性定理,在理论上有着较为重要的作用.推论 在某极限过程中,若f (x )≥0(f (x )≤0),且lim f (x )?A ,则A ≥0(A ≤0).4. 函数极限与数列极限的关系定理6 0lim x x →f (x )?A 的充要条件是对任意的数列{x n },x n ∈D f (x n ≠x 0),当x n →x 0(n →∞)时,都有lim n →∞f (x n )?A ,这里A 可为有限数或为∞. 定理6 常被用于证明某些极限不存在. 例1 证明极限01limcos x x→不存在. 证 取{x n }?12n π,则lim n →∞x n ?lim n →∞12n π?0,而lim n →∞cos 1n x ?lim n →∞cos2nπ?1. 又取{x ′n }?()121n π⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭,则lim n →∞x ′n ?lim n →∞()121n π+?0,而lim n →∞cos 1'n x ?lim n →∞cos(2n ?1)π??1, 由于 lim n →∞cos 1n x ≠lim n →∞cos 1'n x ,故0lim n →cos 1x不存在. 课堂总结1.两种变化趋势下函数极限的定义;2.左右极限(单侧极限);3.函数极限的性质:惟一性、局部有界性、局部保号性、函数极限与数列极限的关系.。

同济大学《高等数学》(第四版)1-6节 极限的运算法则

同济大学《高等数学》(第四版)1-6节 极限的运算法则
3
3
x→2
小结: 小结: 1. 设 f ( x ) = a 0 x n + a1 x n −1 + ⋯ + a n , 则有
x → x0
lim f ( x ) = a 0 ( lim x ) n + a1 ( lim x ) n −1 + ⋯ + a n
x → x0
n
x → x0
= a 0 x 0 + a1 x 0
n −1
+ ⋯ + a n = f ( x 0 ).
P( x) 2. 设 f ( x ) = , 且Q( x 0 ) ≠ 0, 则有 Q( x )
P ( x0 ) lim f ( x ) = = f ( x 0 ). = x → x0 lim Q ( x ) Q( x0 )
x → x0 x → x0
由无穷小与无穷大的关系,得 由无穷小与无穷大的关系 得
4x − 1 lim 2 = ∞. x →1 x + 2 x − 3
x −1 例3 求 lim 2 . x →1 x + 2 x − 3
2
0 解 x → 1时, 分子 , 分母的极限都是零 . ( 型) 0
先约去不为零的无穷小 因子 x − 1后再求极限 . 后再求极限
1 2 n 1+ 2 +⋯+ n lim ( 2 + 2 + ⋯ + 2 ) = lim 2 n→ ∞ n n→ ∞ n n n
1 n( n + 1) 1 1 1 2 = lim = lim (1 + ) = . 2 n→ ∞ n→ ∞ 2 n n 2
sin x 例6 求 lim . x→∞ x

同济版高数1-4

同济版高数1-4

/14 11 11/14
/14 12 12/14
四、小结 . 无穷小与无穷大是相对于过程而言的 无穷小与无穷大是相对于过程而言的.
: 两个定义 1.主要内容 主要内容: ;两个定理 .铅直渐近线 两个定义; 两个定理. : 几点注意: 2.几点注意 ,不能与很小(大)的数混淆 , (1)无穷小( 大)是变量 大)是变量, ;常数中不存在无穷大 . 零是唯一的无穷小的数 零是唯一的无穷小的数; 常数中不存在无穷大. . (2)无穷大必无界;无界变量未必是无穷大 )无穷大必无界;无界变量未必是无穷大. 具有 一致性, 无界变量 不具有 一致性 . 无穷大 无穷大具有 具有一致性, 一致性,无界变量 无界变量不具有 不具有一致性 一致性.
[两者区别与联系]
. 无穷大必无界,但无界未必是无穷大 无穷大必无界,但无界未必是无穷大. [无穷大] lim f ( x ) = ∞ ⇔
x → x0
6/14
一致性
∀ M > 0, ∃ δ > 0 , 当 0 < x − x 0 < δ 时 ,
有 f ( x ) > M (如右图)
[无界量] f ( x ) 在 U ( x0 )内无界 ⇔
lim α = 0
f ( x) = A + α
对自变量的其它变化过程类似可证 .
(无穷小 ); 4/14 将一般极限问题转化为特殊极限问题( 无穷小); 】(1)将一般极限问题转化为特殊极限问题 【意义 意义】 (2 )给出了函数 f ( x ) 在 x0 附近的近似表达式
牛-莱称无穷小分析 f ( x ) ≈ A, 误差为 α ( x ). x +1 当 x → ∞ 时,将函数 f ( x ) = 】 【补例 补例】 x . 写成其极限值与一个无穷小之和的形式 写成其极限值与一个无穷小之和的形式. x +1 = lim(1 + 1 ) = 1 ∵ lim f ( x ) = lim 【解】 x x →∞ x →∞ x x →∞

同济大学《高等数学》(第四版)1-5节 无穷小与无穷大

同济大学《高等数学》(第四版)1-5节 无穷小与无穷大
0,
x → x0
∴ f ( x ) = A + α( x ).
充分性 设 f ( x ) = A + α( x ),
其中 α( x )是当x → x 0时的无穷小,
则 lim f ( x ) = lim ( A + α( x )) = A + lim α( x ) = A.
意义 关于无穷大的讨论,都可归结为关于无穷小 关于无穷大的讨论 都可归结为关于无穷小 的讨论. 的讨论
四、小结
无穷小与无穷大是相对于过程而言的. 无穷小与无穷大是相对于过程而言的 1、主要内容: 两个定义 四个定理 三个推论 、主要内容 两个定义;四个定理 三个推论. 四个定理;三个推论 2、几点注意: 、几点注意
值f (x)都 足 等 f (x) > M, 满 不 式
x 称 数 则 函 f (x)当x →x0(或 →∞)时 无 小 为 穷 ,
作 记
x→x0
lim f (x) = ∞ (或 lim f (x) = ∞ ).
x→ ∞
特殊情形:正无穷大,负无穷大. 特殊情形:正无穷大,负无穷大.
x → x0 ( x→∞ )
练习题答案
一、1、0; 3、 3、 ⇔ ; 2、 2、 lim f ( x ) = C ;
x→∞ x → ±∞
1 4、 4、 . f ( x)
1 二、 0 < x < 4 . 10 + 2
思考题
若 f ( x ) > 0 ,且 lim f ( x ) = A,
x → +∞
问:能否保证有 A > 0 的结论?试举例说明 的结论?试举例说明.
思考题解答
不能保证. 不能保证

高等数学-第一章-函数与极限-函数的极限-同济大学

高等数学-第一章-函数与极限-函数的极限-同济大学
f (x) A ,
经过不等式的变形, 得到关系
f (x) A M x x0 ,
其中 M是一个与x无关的常量. 再取 , 则当
0 x x0 时, 有:
M
f (x) A M x x0 ,
此即说明 lim f (x) A. x x0
例1 证明下列极限
⑴ lim(2x 1) 5; x2
xn
是函数 f
x
xx0
定义域中的一个任意数列,
xn
x0 ,

lim
n
xn
x0,
则相应的数列 f xn 收敛, 且
lim
n
f
(xn )
lim
x x0o
f
(x).
o

设 lim f (x) A, xx0
则存在U (x0, ), 当x U (x0, ), 有
f (x) A ,
o
又因
lim
n
x
证令
xn
1,
1
2n
2
yn
1
2n
,

lim
n
xn
lim
n
yn
0,
且 xn
0, yn , 0,

lim
n
f
(xn )
1, lim n
f
( yn )
0,
所以 lim sin π 不存在.
x0
x
对于数列, 相应的归并性定理为
定理
设数列
lim
n
xn 存在,
则对于
xn
的任一子列(xnk )

lim
2x 2(x2 1)
1 x

同济大学高等数学 函数极限 ppt课件

同济大学高等数学 函数极限 ppt课件
当 x时, f (x) π
2 lim f(x)A
x
y π 2
oX
x
0, “X一>个0 时刻” 使得 “当在x该>X时时刻以后”恒有
f(x)A.
(三)各过程的函数极限定义
1.x 2.x
3.x 4.x x0 5.x x0 6.x x0
(三)各过程的函数极限定义
1.x 2.x
3.x 4.x x0 5.x x0 6.x x0
x 1,
x 2, x 1.
1
当 x 1时,
o
1
x
f (x) 1
lim f(x) A (右极限)
xx0
5.x x0
x递减地无限接近常数x0,但恒不等于x0
例: x, x 1,
y
f
(
x)
0,
x 1,
x 2, x 1.
1
当 x 1时,
o
1
x
f (x) 1
lim f(x) A (右极限)
f(x)A
A f(x)A
y
A+ε A
A-ε
o
x
(三)各过程的函数极限定义
1.x 2.x
3.x 4.x x0 5.x x0 6.x x0
(三)各过程的函数极限定义
1.x 2.x
3.x 4.x x0 5.x x0 6.x x0
1.x
自变量恒取正值,递增地无限变大
例 f(x)arctanx
f(x)A.
2.x
自变量恒取负值, |x|递增地无限变大
例: y
f(x)arctanx
当 x时,
f (x) π 2
-X
o
x
lim f(x)A

同济高数第四版知识点总结

同济高数第四版知识点总结

同济高数第四版知识点总结一、微积分微积分是数学中的一个重要分支,它研究的是函数的极限、导数和积分。

在《同济高数第四版》中,微积分的内容主要包括了函数的极限、导数、微分、定积分和不定积分等方面。

1.1 函数的极限函数的极限是研究函数在某一点附近的变化趋势。

在教材中,介绍了数列的极限和函数的极限的概念,并给出了一些典型的函数极限的计算方法,比如使用极限的性质进行计算、泰勒公式等。

1.2 导数导数是函数在某一点处的变化率,也可以理解为函数的斜率。

在教材中,介绍了导数的定义、导数的代数运算规则、导数的几何意义以及一些常见函数的导数计算方法。

1.3 微分微分是导数的一种应用,它可以用于函数的局部线性逼近,也可以用于函数的最值问题等。

在教材中,介绍了微分的定义、微分的性质和微分的计算方法。

1.4 定积分定积分是对函数在一定区间内的积分,它可以理解为函数在这一区间内的“总体积”。

在教材中,介绍了定积分的定义、定积分的性质、定积分的计算方法以及一些几何应用。

1.5 不定积分不定积分是对函数的反导数,它可以用于计算定积分、解微分方程等。

在教材中,介绍了不定积分的定义、不定积分的基本性质、不定积分的计算方法以及一些典型的不定积分的计算方法。

二、多元函数微分学在多元函数微分学中,主要讨论了多元函数的极限、偏导数、全微分、方向导数、梯度、多元函数的微分、多元函数的导数、隐函数及参数方程求导等内容。

2.1 多元函数的极限多元函数的极限是研究多元函数在某一点附近的变化趋势,它与一元函数的极限类似。

在教材中,介绍了多元函数的极限的概念、多元函数的极限的判定方法以及一些典型的多元函数的极限的计算方法。

2.2 偏导数偏导数是多元函数的导数在某一方向上的投影,它可以用于研究多元函数在某一方向上的变化率。

在教材中,介绍了偏导数的概念、偏导数的计算方法、偏导数的性质以及一些典型的偏导数的计算方法。

2.3 全微分全微分是多元函数的微分在某一方向上的投影,它可以用于多元函数的局部线性逼近。

高等数学(第四版) 上、下册(同济大学 天津大学等编) 电子教案-1_2 极限的概念-电子课件

高等数学(第四版) 上、下册(同济大学 天津大学等编) 电子教案-1_2 极限的概念-电子课件

2n 2 2n 1
成立.
发散数列 1n 也可能有界, 1 n 1 ;
无界数列 (1)n 2n 一定发散;
有界数列
1 2
1
(1)n






1 2
1
(1)n
1,但当
n
为奇数时,
1 2
1
(1)
n
0 ;当
n
为偶数时,
1 2
1
(1)n
1.
综上可知:收敛数列必有界.数列有界是数列收敛的
2x 1 7 ,即 m f (x) M .此处 f x 2x 1 在x 3 处有定义,且当 x 3时, f x 的极限值恰好是f 2 .
例 8 由表达式
y
f
(x)
1
x, 0, x
x 0
0
1
的确定的函数,如图 1-26 所示.
O
1
x
图21-526
当 x 0时, f (x) 1 x,则lim f (x) lim(1 x) 1.
x2 x2
求 lim f (x), lim f (x),并由此判断lim f (x) 是否存在.
x2
x2
x2
解 lim f (x) lim (2x 1) 5, lim f (x) lim (x2 1) 5,
x2
x2
x2
x2
即 f (2 ) f (2 ) 5, 由函数 f (x) 在x 2 处极限存在的充要
自变 x x0的变化过程中,函数值 f (x)无限接近于 A,就
称 A 是函数 f (x)当
x
x0



.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 0
1
o
x
1
lim x lim x lim 1 1
x x x0
x0
x 0
左右极限存在但不相等, lim f ( x) 不存在. x0
三、函数极限的性质
1.有界性
定理 若在某个过程下, f (x) 有极限,则存在 过程的一个时刻,在此时刻以后 f ( x) 有界.
2.唯一性
定理 若lim f ( x)存在,则极限唯一.
一、自变量趋向无穷大时函数的极限
观察函数 sin x 当 x 时的变化趋势. x
播放
问题:函数 y f ( x) 在x 的过程中, 对应 函数值 f ( x)无限趋近于确定值 A.
通过上面演示实验的观察: 当 x 无限增大时, f ( x) sin x 无限接近于 0.
x 问题: 如何用数学语言刻划函数“无限接近”.
的图形的水平渐近线.
二、自变量趋向有限值时函数的极限
问题:函数 y f ( x) 在x x0 的过程中,对应 函数值 f ( x)无限趋近于确定值 A.
f ( x) A 表示 f ( x) A任意小;
0 x x0 表示x x0的过程.
x0
x0
x0 x
点x0的去心邻域, 体现x接近x0程度.
n
xn n
2
lim1 1, n
二者不相等, 故 lim sin 1 不存在.
x0
x
四、小结
函数极限的统一定义
lim f (n) A;
n
lim f ( x) A; lim f ( x) A; lim f ( x) A;
x
x
x
lim f ( x) A; lim f ( x) A;
x x0
例7 证明 lim sin 1 不存在. x0 x


xn
1 n
,
lim
n
xn
0,
且 xn 0;
y sin 1 1
1
,
lim
n
xn
0,
2
且 xn 0;
而 lim sin 1 lim sin n 0,
n
x n n
而 lim sin 1 lim sin 4n 1
左极限 0, 0,使当x0 x x0时, 恒有 f (x) A .
记作 lim f ( x) A 或 x x0 0
f ( x0 0) A.
(
x
x
0
)
右极限 0, 0,使当x0 x x0 时,
恒有 f (x) A .
记作 lim f ( x) A 或 x x0 0 ( x x0 )
lim f ( x) lim (5 x2 ) 5,
x0
x0
lim f ( x) lim x sin 1 0,
x0
x0
x
左极限存在, 右极限存在,
lim f ( x) lim f ( x) lim f ( x) 不存在.
x0
x0
x0
一、填空题:
练习题
1、当 x 2 时,y x 2 4,问当 取 ___时, 只要 0 x 2 ,必有 y 4 0.001 .
4.子列收敛性(函数极限与数列极限的关系)
定义 设在过程x a(a可以是x0 , x0 ,或x0 )中 有数列xn( a),使得n 时xn a.则称数列
f ( xn ),即f ( x1 ), f ( x2 ),, f ( xn ),为函数f ( x)
当x a时的子列.
定理
若 lim xa
四、讨论:函数(x) x 在 x 0 时的极限是否
x 存在?
练习题答案
一、1、0.0002; 四、不存在.
2、 397 .
定理(保号性) 若 lim f ( x) A,且A 0(或A 0), x x0
则 0,当x U 0( x0 ,)时, f ( x) 0(或f ( x) 0).
推论
若 lim x x0
f
(x)
A,且
0,当x U 0( x0 ,)时,
f ( x) 0(或f ( x) 0),则A 0(或A 0).
x
" X"定义 lim f ( x) A x
0,X 0,使当 x X时,恒有 f ( x) A .
2.另两种情形:
10. x 情形 : lim f ( x) A x
0, X 0, 使当x X时, 恒有 f ( x) A .
20. x 情形 : lim f ( x) A x
" "定义 0, 0,使当0 x x0 时, 恒有 f (x) A .
注意:1.函数极限与f ( x)在点x0是否有定义无关;
2.与任意给定的正数有关.
2.几何解释:
当x在x0的去心邻 域时,函数y f ( x) 图形完全落在以直
y
A
A
A
y f (x)
线y A为中心线,
宽为2的带形区域内. o
,
lim x2 1 2. x1 x 1
例5
证明 :当x0
0时, lim x x0
x
x0 .
证 f (x) A
x x0
x x0 x x0 ,
x x0
x0
任给 0, 要使 f ( x) A ,
只要 x x0 x0 且不取负值.取 min{ x0 , x0},
当0 x x0 时, 就有 x x0 ,
3.不等式性质
定理(保序性) 设 lim f ( x) A, lim g( x) B.
x x0
x x0
若 0,x U 0( x0 ,),有f ( x) g( x),则A B.
推论 设 lim f ( x) A, lim g( x) B,且A B
x x0
x x0
则 0,x U 0( x0 ,),有f ( x) g( x).
f
(x)
A,数列f
( xn )是f
( x)当x
a
时的一个子列, 则有lim n
f
( xn )
A.
证 lim f ( x) A x x0 0, 0,使当0 x x0 时, 恒有 f (x) A .
又 lim n
xn
x0

xn
x0 ,
对上述 0, N 0,使当n N时, 恒有
当0 x x0 时,
f ( x) A x x0 成立,
lim x x0
x
x0 .
例4 证明 lim x2 1 2. x1 x 1
证 函数在点x=1处没有定义.
f (x)
A
x2 x
1 1
2
x1
任给 0,
要使 f ( x) A , 只要取 ,
当0
x x0
时,
就有 x2 1 2 x1
1. 定义 :
定义 2 如果对于任意给定的正数 (不论它多
么小),总存在正数 ,使得对于适合不等式
0 x x0 的一切x ,对应的函数值 f ( x) 都 满足不等式 f ( x) A ,那末常数A 就叫函数
f ( x)当x x0 时的极限,记作
lim f ( x) A 或
x x0
f ( x) A(当x x0 )
0 xn x0 .
从而有 f ( xn ) A ,

lim
x
f
(xn )
A.
例如, lim sin x 1 x0 x
y sin x x
lim nsin 1 1,
n
n
lim
n
n sin 1 1, n
n2 n 1
lim sin n n 1
n2
1
函数极限与数列极限的关系
函数极限存在的充要条件是它的任何子列的极 限都存在,且相等.
x x0
lim f ( x) A.
x
x
0
lim f ( x) A 0,时刻,从此时刻以后,
恒有 f ( x) A . (见下表)
过 程 n
时刻
从此时刻以后 n N f (x)
x x x N
x N x N x N
f (x) A
过程 时刻
x x0
x x0
lim x x0
x
x0 .
3.单侧极限:
例如,

f (x)
1 x,
x
2
1,
证明lim f ( x) 1. x0
x0 x0
y y 1 x
1
o
分x 0和x 0两种情况分别讨论
x从左侧无限趋近x0 , 记作x x0 0;
x从右侧无限趋近x0 , 记作x x0 0;
y x2 1 x
x0 x0 x0
x
显然,找到一个后, 越小越好.
例2 证明 lim C C, (C为常数). x x0
证 任给 0, 任取 0, 当0 x x0 时,
f ( x) A C C 0 成立, lim C C. x x0
例3
证明
lim
x x0
x
x0 .
证 f ( x) A x x0 , 任给 0, 取 ,
0, X 0,使当x X时, 恒有 f ( x) A .
定理 : lim f ( x) A lim f ( x) A且 lim f ( x) A.
x
x
x
3.几何解释:
y sin x x
A
X
X
当x X或x X时, 函数 y f ( x)图形完全落在以 直线y A为中心线, 宽为2的带形区域内.
从此时刻以后 0 x x0 0 x x0
f (x)
f (x) A
x x0
相关文档
最新文档