红外吸收光谱解析

合集下载

红外吸收光谱的原理及应用

红外吸收光谱的原理及应用

红外吸收光谱的原理及应用一、红外吸收光谱的原理红外吸收光谱(Infrared Absorption Spectroscopy)是一种常见的光谱分析技术,它利用物质分子对红外辐射的吸收特性进行分析和研究。

红外光谱的原理基于分子的振动和转动引起的能量变化。

在红外辐射的作用下,分子会吸收特定波长或频率的光,从而发生能级跃迁并产生吸收峰。

根据不同的吸收峰位置和强度,可以推断物质的结构、组成和化学环境等信息。

红外吸收光谱的原理主要包括以下几个方面: 1. 分子的振动和转动:分子在吸收红外辐射时,会发生振动和转动。

振动包括拉伸、弯曲和扭转等不同形式,每个分子都有特定的振动模式和频率,使其能够吸收不同波长的红外辐射。

2. 分子吸收特定波长的光:分子在特定波长范围内吸收红外辐射,产生吸收峰。

根据吸收峰的位置和强度,可以确定分子的化学键、官能团和分子结构等信息。

3. 光谱图的解读:通过测量物质对红外辐射的吸收情况,可以得到红外光谱图。

光谱图通常以波数为横轴,吸收峰强度为纵轴,常用峰位和峰形进行分析和判断。

二、红外吸收光谱的应用红外吸收光谱具有广泛的应用领域,主要包括以下几个方面:1. 化学分析红外光谱在化学分析中起着重要作用,可以用于鉴定和分析各种有机和无机化合物。

通过测量样品的红外光谱,可以获得化学键和官能团的信息,从而判断物质的结构和组成。

红外光谱被广泛应用于有机化学、药物分析、环境监测等领域。

2. 药物研发红外光谱在药物研发中具有重要的应用价值。

通过红外光谱分析药物的结构和成分,可以判断药物的稳定性、纯度和相态等性质。

红外光谱还可以用于药物的质量控制和检验,确保药物的安全有效。

3. 材料科学在材料科学领域,红外光谱可以用于材料的表征和分析。

不同材料的红外光谱具有独特的特征,可以用于识别和鉴别材料,评估材料的结构、质量和性能。

红外光谱被广泛应用于聚合物材料、无机材料、涂层材料等领域。

4. 生物医学研究红外光谱在生物医学研究中有着重要的应用。

红外吸收光谱PPT课件

红外吸收光谱PPT课件

02
红外吸收光谱仪器
红外光谱仪的构造
01
02
03
04
光源
发射一定波长的红外光,常用 光源有碘、溴钨灯等。
单色器
将光源发出的红外光分成单色 光,常用单色器有棱镜和光栅

样品室
放置待测样品,样品可以是气 体、液体或固体。
检测器
检测透过样品的红外光,常用 检测器有热电偶、光电导和光
电二极管等。
红外光谱仪的工作原理
红外吸收光谱的应用
确定物质成分
结构分析
通过比较标准物质的红外吸收光谱,可以 确定未知物质的成分。
红外吸收光谱的峰位置和峰强度可以提供 物质分子的振动和转动信息,有助于分析 分子结构和化学键的类型。
定量分析
反应动力学研究
通过测量样品在不同波长下的透射率或反 射率,可以计算样品中目标成分的浓度。
红外吸收光谱可用于研究化学反应过程中 分子振动和转动能级的跃迁。
特点
具有高灵敏度、高分辨率和高选 择性,能够提供物质分子的振动 和转动信息,广泛应用于化学、 物理、环境和生物等领域。
红外吸收光谱的原理
原理
当红外光与物质分子相互作用时,分 子吸收特定波长的红外光,导致分子 振动和转动能级跃迁,产生红外吸收 光谱。
影响因素
分子结构和化学键的性质决定红外吸 收光谱的特征,不同物质具有独特的 红外吸收光谱。
敏度,适用于复杂样品分析。
微型化红外光谱仪
02
通过集成光学、微电子机械系统等技术,将红外光谱仪小型化,
方便携带和移动检测。
多光谱和超光谱红外光谱仪
03
结合多光谱技术和超光谱技术,可同时获取样品多个波段的红
外光谱信息,提高分析效率。

红外吸收光谱分析 - 红外吸收光谱分析

红外吸收光谱分析 - 红外吸收光谱分析

归属
CH 3 | CH3 — C — | CH 3
吸收峰 3360 1195
振动形式
OH
COHale Waihona Puke 归属 —OH可能结构为
CH 3 | CH 3 — C — OH |
CH 3
例2 C10H10O4
U 2 210 10 6 (可能有苯环) 2
峰位 1727cm-1 1288 1126
第四节 红外吸收光谱分 析
一、试样的制备(样品纯度>98%)
1.固体试样:KBr压片法
2.液体试样:夹片法(液体试样滴在一片KBr
窗片上,用另一片KBr窗片夹住后测定)
知识点12:红外光谱解析方法
二、IR光谱解析方法
1.计算不饱和度
U 2 2n4 n3 n1 2
意义:
U 0 无双键或环状结构 U 1 可能含一个双键或一个环 U 2 含两个双键,或一个双键 环,或一个叁键 U 4 苯环 U 5 苯环 一个双键
• 3.某未知物的沸点202℃,分子式为 C8H8O,试判断其结构。
4.某化合物的分子式为C8H10O2, 试推断其结构式。
• 5.已知未知物的分子式为C7H9N, 推出其结构。
6.已知某化合物的分子式为 C9H10O2,试推断结构式。
O
CH2OCCH3
CH3 NH2
O C CH3
答案!
OH OH CH CH2
2.确定官能团或结构碎片
3.推出可能的结构 4.核对分子式和不饱和度 5.和Saltler标准光谱对照
例1 C4H10O
U 2 8 10 (0饱和脂肪族化合物) 2
吸收峰 2970cm-1 2874 1476 1395 1363

红外吸收光谱分析法FTIR

红外吸收光谱分析法FTIR

光谱解析难度大
红外光谱的复杂性较高,需要专业的 知识和技能进行解析,对分析人员的 要求较高。
仪器成本高
FTIR仪器的制造成本较高,使得其普 及和应用受到一定限制。
测试时间较长
与一些其他分析方法相比,FTIR的测 试时间可能较长,需要更多的时间来 完成分析。
未来发展前景
提高检测灵敏度和分辨率 通过改进仪器性能和技术,提高 FTIR的检测灵敏度和分辨率,使 其能够更好地应用于微量样品和 高精度分析。
环境监测
FT-IR可以用于环境监测领域, 如气体分析、水质分析、土壤
分析等。
02 ftir仪器组成
光源
光源是红外傅里叶变换红外光 谱仪(ftir)中的重要组成部分, 负责提供足够能量和合适波长 的红外辐射。
常见光源有硅碳棒、陶瓷气体 放电灯、远红外激光等。
光源的选择直接影响ftir的灵敏 度和分辨率,因此需要根据实 验需求选择合适的光源。
小型化和便携化 为了方便现场快速检测和实时监 测,FTIR仪器的小型化和便携化 成为一个重要的发展方向。
拓展应用领域 随着FTIR技术的不断成熟和普及, 其应用领域将会进一步拓展,包 括生物医学、环境监测、食品安 全等领域。
智能化和自动化 通过引入人工智能和自动化技术, 实现FTIR分析的智能化和自动化, 提高分析效率和准确性。
基频峰
分子振动能级跃迁产生的谱线,是红外光谱中最 强的峰。
特征峰
与分子中特定化学键或振动模式对应的峰,可用 于鉴定化合物结构。
谱图解析方法
峰位置分析
通过分析峰的位置,确定特定化学键或基团的存在。
峰强度分析
通过分析峰的强度,了解分子中特定化学键或基团的相对含量。
峰形分析

红外吸收光谱的解析.

红外吸收光谱的解析.

红外吸收光谱法第一节概述一、红外光谱测定的优点20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。

到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。

红外光谱测定的优点:1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。

2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。

3、常规红外光谱仪价格低廉,易于购置。

4、样品用量小。

二、红外波段的划分δ=104/λ(λnm δcm -1)红外波段范围又可以进一步分为远红外、中红外、近红外波段波长nm 波数cm -1近红外 0.75~2.5 13300~4000中红外 2.5~15.4 4000~650远红外 15.4~830 650~12三、红外光谱的表示方法红外光谱图多以波长λ(nm )或波数δ(cm -1)为横坐标,表示吸收峰的位置,多以透光率T%为纵坐标,表示吸收强度,此时图谱中的吸收―峰‖,其实是向下的―谷‖。

一般吸收峰的强弱均以很强(ε大于200)、强(ε在75-200)、中(ε在25-75)、弱(ε在5-25)、很弱(ε小于5),这里的ε为表观摩尔吸收系数红外光谱中吸收峰的强度可以用吸光度(A )或透过率T%表示。

峰的强度遵守朗伯-比耳定律。

吸光度与透过率关系为所以在红外光谱中―谷‖越深(T%小),吸光度越大,吸收强度越强。

第二节红外吸收光谱的基本原理一、分子的振动与红外吸收任何物质的分子都是由原子通过化学键联结起来而组成的。

分子中的原子与化学键都处于不断的运动中。

它们的运动,除了原子外层价电子跃迁以外,还有分子中原子的振动和分子本身的转动。

这些运动形式都可能吸收外界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。

红外吸收光谱解析

红外吸收光谱解析
(CH2)n :1350~1192 cm-1 (间隔约 20 cm-1 )的谱带, 800~700 cm-1 ,弱吸收带
酸酐:两个羰基振动偶合产生双峰,波长位移60~80 cm-1。 酯:脂肪酯--~1735 cm-1 不饱和酸酯或苯甲酸酯--低波数位移约20 cm-1
羧酸:~1720 cm-1 若在第一区约 3000 cm-1出现强、宽吸收,可确认羧基 存在。
醛:在2850~2720 cm-1 范围有 m 或 w 吸收,出现1~2条谱 带,结合此峰,可判断醛基存在。
酰胺:伯酰胺:3350,3150cm-1 附近出现双峰 仲酰胺:3200cm-1 附近出现一条谱带 叔酰胺:无吸收
2012-9-17
19
3. C-H
烃类:3300~2700 cm-1范围,3000 cm-1是分界线。 不饱和碳(三键、双键及苯环)>3000 cm-1 饱和碳(除三元环外)<3000 cm-1
吸收峰,较为稀疏,容易辨认.
2012-9-17
17
特征区(4000-1400cm-1) ¾ 第一峰区(4000-2500cm-1)
X-H 伸缩振动吸收范围。 X:O、N、C、S 对应醇、酚、羧酸、胺、亚胺、炔烃、烯烃、芳烃 及饱和烃类的 O-H、N-H、C-H 伸缩振动。
1. O-H
醇与酚:游离态--3640~3610cm-1,峰形尖锐。 缔合--3300cm-1附近,峰形宽而钝
2012-9-17
25
3. N=O
硝基、亚硝基化合物:强吸收 脂肪族:1580~1540 cm-1,1380~1340 cm-1 芳香族:1550~1500 cm-1,1360~1290 cm-1 亚硝基: 1600~1500 cm-1
4. N-H (弯曲振动)

精品现代材料分析-红外吸收光谱介绍PPT课件

精品现代材料分析-红外吸收光谱介绍PPT课件
H
R1 C
H
H 3040~3010
C R2
R2 3040~3010
C H
1420~1410 1420~1410
895~885
990 910 840~800
965
730~675
1658~1698 1645~1640 1675~1665 1675~1665 1665~1650
(3)炔烃
末端炔烃的C-H伸缩振动一般在3300 cm-1处 出现强的尖吸收带。
对于伸缩振动来说,氢键越强,谱带越宽,吸收强度越 大,而且向低波数方向位移也越大。
对于弯曲振动来说,氢键则引起谱带变窄,同时向高波 数方向位移。
O H NH 游离
R
R
HN H O 氢键
C=O 伸缩 N-H 伸缩 N-H 变形
1690
3500
1620-1590
1650
3400
1650-1620
HO O
苯环取代类型在2000~1667cm-1和 900~650cm-1的图形
邻、间及对位二甲苯的红外光谱
(5)醇和酚
在稀溶液中,O-H键的特征吸收带位于3650~3600 cm-1;在纯液体或固体中,由于分子间氢键的关系, 使这个吸收带变宽,并向低波数方向移动,在 3500~3200 cm-1处出现吸收带。
~17ห้องสมุดไป่ตู้0
~1760(游离态)
(5)芳环、C=C、C=N伸缩振动区 1675~1500cm-1
① RC=CR′ 1620 1680 cm-1 强度弱, R=R′(对称)时,无红外活性。
② 芳环骨架振动在1600~1450 cm-1有二到四 个中等强度的峰,是判断芳环存在的重要标 志之一。

红外吸收光谱分析

 红外吸收光谱分析
指纹区(1350 650 cm-1 ) ,较复杂。 C-H,N-H的变形振动; C-O,C-X的伸缩振动; C-C骨架振动等。精细结构的区分。 顺、反结构区分;
基团吸收带数据
O-H
3630
基团吸收
活 泼 氢
N-H P-H
3350 2400
伸 缩
带数据
能级跃迁类型
近红外 0.76~2.5
1358~400 0
OH、NH、CH及SH倍频 吸收区
中红外
2.5~25
4000~400
分子振动-转动 (基本振动区)
远红外 25~1000 400~10 纯转动
第二节 红外吸收基本理 论
一、红外光谱产生的条件
(1) 辐射能应具有能满足物质产生振动跃迁所 需的能量;
3、炔烃
炔烃的特征吸收主要是C≡C伸缩振 动(2250~2100cm-1) 和炔烃 C-H伸缩振动(3300cm-1附近)
4、芳烃
芳烃的特征吸收分散在3个小频区:
(1600~1450cm-1)为C=C骨架振动, (2000~1667cm-1) 区域出现C-H 面外弯曲振动的泛频峰,虽然强度很弱, 但吸收峰形状和数目与芳环的取代类型 有关。利用该区的吸收峰与900~ 650cm-1区域苯环的C-H面外弯曲振动, 可确定苯环的取代类型。
(3)1900 1200 cm-1 双键伸缩振动区
(4)1200 670 cm-1 X—Y伸缩, X—H变形振动区
1. X—H伸缩振动区(4000 2500 cm-1 )
(1)—O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强
吸收;当浓度较大时,发生缔合作用,峰形较宽。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

红外吸收光谱法第一节概述一、红外光谱测定的优点20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。

到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。

红外光谱测定的优点:1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。

2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。

3、常规红外光谱仪价格低廉,易于购置。

4、样品用量小。

二、红外波段的划分σ=104/λ(λnm σcm-1)红外波段范围又可以进一步分为远红外、中红外、近红外波段波长nm 波数cm-1近红外0.75~2.5 13300~4000中红外 2.5~15.4 4000~650远红外15.4~830 650~12三、红外光谱的表示方法红外光谱图多以波长λ(nm)或波数σ(cm-1)为横坐标,表示吸收峰的位置,多以透光率T%为纵坐标,表示吸收强度,此时图谱中的吸收“峰”,其实是向下的“谷”。

一般吸收峰的强弱均以很强(ε大于200)、强(ε在75-200)、中(ε在25-75)、弱(ε在5-25)、很弱(ε小于5),这里的ε为表观摩尔吸收系数红外光谱中吸收峰的强度可以用吸光度(A)或透过率T%表示。

峰的强度遵守朗伯-比耳定律。

吸光度与透过率关系为A=lg( )T1所以在红外光谱中“谷”越深(T%小),吸光度越大,吸收强度越强。

第二节红外吸收光谱的基本原理一、分子的振动与红外吸收任何物质的分子都是由原子通过化学键联结起来而组成的。

分子中的原子与化学键都处于不断的运动中。

它们的运动,除了原子外层价电子跃迁以外,还有分子中原子的振动和分子本身的转动。

这些运动形式都可能吸收外界能量而引起能级的跃迁,每一个振动能级常包含有很多转动分能级,因此在分子发生振动能级跃迁时,不可避免的发生转动能级的跃迁,因此无法测得纯振动光谱,故通常所测得的光谱实际上是振动-转动光谱,简称振转光谱。

1、双原子分子的振动分子的振动运动可近似地看成一些用弹簧连接着的小球的运动。

以双原子分子为例,若把两原子间的化学键看成质量可以忽略不计的弹簧,长度为r (键长),两个原子分子量为m 1、m 2。

如果把两个原子看成两个小球,则它们之间的伸缩振动可以近似的看成沿轴线方向的简谐振动,如图3—2。

因此可以把双原子分子称为谐振子。

这个体系的振动频率υ(以波数表示),由经典力学(虎克定律)可导出:C ——光速(3×108 m/s )υ= K ——化学键的力常数(N/m ) μ——折合质量(kg ) μ= 如果力常数以N/m 为单位,折合质量μ以原子质量为单位,则上式可简化为υ=130.2 双原子分子的振动频率取决于化学键的力常数和原子的质量,化学键越强,相对原子质量越小,振动频率越高。

H-Cl 2892.4 cm -1 C=C 1683 cm -1C-H 2911.4 cm -1 C-C 1190 cm -1同类原子组成的化学键(折合质量相同),力常数大的,基本振动频率就大。

由于氢的原子质量最小,故含氢原子单键的基本振动频率都出现在中红外的高频率区。

2、多原子分子的振动(1)、基本振动的类型1πμ2c K m 1m 2m 1m2+K μ多原子分子基本振动类型可分为两类:伸缩振动和弯曲振动。

亚甲基CH 2的各种振动形式。

对称伸缩振动 不对称伸缩振动亚甲基的伸缩振动面外摇摆 扭曲变形 面内弯曲振动 面外弯曲振动亚甲基的基本振动形式及红外吸收A 、伸缩振动 用υ表示,伸缩振动是指原子沿着键轴方向伸缩,使键长发生周期性的变化的振动。

伸缩振动的力常数比弯曲振动的力常数要大,因而同一基团的伸缩振动常在高频区出现吸收。

周围环境的改变对频率的变化影响较小。

由于振动偶合作用,原子数N 大于等于3的基团还可以分为对称伸缩振动和不对称伸缩振动符号分别为υs 和υas 一般υas 比υs 的频率高。

B 、弯曲振动 用δ表示,弯曲振动又叫变形或变角振动。

一般是指基团键角发生周期性的变化的振动或分子中原子团对其余部分作相对运动。

弯曲振动的力常数比伸缩振动的小,因此同一基团的弯曲振动在其伸缩振动的低频区出现,另外弯曲振动对环境结构的改变可以在较广的波段范围内出现,所以一般不把它作为基团频率处理。

(2)、分子的振动自由度多原子分子的振动比双原子振动要复杂的多。

双原子分子只有一种振动方式(伸缩振动),所以可以产生一个基本振动吸收峰。

而多原子分子随着原子数目的增加,振动方式也越复杂,因而它可以出现一个以上的吸收峰,并且这些峰的数目与分子的振动自由度有关。

在研究多原子分子时,常把多原子的复杂振动分解为许多简单的基本振动(又称简正振动),这些基本振动数目称为分子的振动自由度,简称分子自由度。

分子自由度数目与该分子中各原子在空间坐标中运动状态的总和紧紧相关。

经典振动理论表明,含N 个原子的线型分子其振动自由度3N —5,非线型分子其振动自由度为3N —6。

每种振动形式都有它特定的振动频率,也即有相对应的红外吸收峰,因此分子振动自由度数目越大,则在红外吸收光CC CC +++谱中出现的峰数也就越多。

二、红外吸收光谱产生条件分子在发生振动能级跃迁时,需要一定的能量,这个能量通常由辐射体系的红外光来供给。

由于振动能级是量子化的,因此分子振动将只能吸收一定的能量,即吸收与分子振动能级间隔E振的能量相应波长的光线。

如果光量子的能量为E L=hυL(υL是红外辐射频率),当发生振动能级跃迁时,必须满=E L足E振分子在振动过程中必须有瞬间偶极矩的改变,才能在红外光谱中出现相对应的吸收峰,这种振动称为具有红外活性的振动。

例如CO2(4种振动形式)2349cm-1、667cm-1三、红外吸收峰的强度分子振动时偶极矩的变化不仅决定了该分子能否吸收红外光产生红外光谱,而且还关系到吸收峰的强度。

根据量子理论,红外吸收峰的强度与分子振动时偶极矩变化的平方成正比。

因此,振动时偶极矩变化越大,吸收强度越强。

而偶极矩变化大小主要取决于下列四种因素。

1、化学键两端连接的原子,若它们的电负性相差越大(极性越大),瞬间偶极矩的变化也越大,在伸缩振动时,引起的红外吸收峰也越强(有费米共振等因素时除外)。

2、振动形式不同对分子的电荷分布影响不同,故吸收峰强度也不同。

通常不对称伸缩振动比对称伸缩振动的影响大,而伸缩振动又比弯曲振动影响大。

3、结构对称的分子在振动过程中,如果整个分子的偶极矩始终为零,没有吸收峰出现。

4、其它诸如费米共振、形成氢键及与偶极矩大的基团共轭等因素,也会使吸收峰强度改变。

红外光谱中吸收峰的强度可以用吸光度(A)或透过率T%表示。

峰的强度遵守朗伯-比耳定律。

吸光度与透过率关系为A=lg( )T1所以在红外光谱中“谷”越深(T%小),吸光度越大,吸收强度越强。

四、红外吸收光谱中常用的几个术语1、基频峰与泛频峰当分子吸收一定频率的红外线后,振动能级从基态(V0)跃迁到第一激发态(V1)时所产生的吸收峰,称为基频峰。

如果振动能级从基态(V0)跃迁到第二激发态(V2)、第三激发态(V3)….所产生的吸收峰称为倍频峰。

通常基频峰强度比倍频峰强,由于分子的非谐振性质,倍频峰并非是基频峰的两倍,而是略小一些(H-Cl 分子基频峰是2885.9cm-1,强度很大,其二倍频峰是5668cm-1,是一个很弱的峰)。

还有组频峰,它包括合频峰及差频峰,它们的强度更弱,一般不易辨认。

倍频峰、差频峰及合频峰总称为泛频峰。

2、特征峰与相关峰红外光谱的最大特点是具有特征性。

复杂分子中存在许多原子基团,各个原子团在分子被激发后,都会发生特征的振动。

分子的振动实质上是化学键的振动。

通过研究发现,同一类型的化学键的振动频率非常接近,总是在某个范围内。

例如CH3-NH2中NH2基具有一定的吸收频率而很多含有NH2基的化合物,在这个频率附近(3500—3100cm-1)也出现吸收峰。

因此凡是能用于鉴定原子团存在的并有较高强度的吸收峰,称为特征峰,对应的频率称为特征频率,一个基团除有特征峰外,还有很多其它振动形式的吸收峰,习惯上称为相关峰。

五、红外吸收峰减少的原因1、红外非活性振动,高度对称的分子,由于有些振动不引起偶极矩的变化,故没有红外吸收峰。

2、不在同一平面内的具有相同频率的两个基频振动,可发生简并,在红外光谱中只出现一个吸收峰。

3、仪器的分辨率低,使有的强度很弱的吸收峰不能检出,或吸收峰相距太近分不开而简并。

4、有些基团的振动频率出现在低频区(长波区),超出仪器的测试范围。

六、红外吸收峰增加的原因1、倍频吸收2、组合频的产生一种频率的光,同时被两个振动所吸收,其能量对应两种振动能级的能量变化之和,其对应的吸收峰称为组合峰,也是一个弱峰,一般出现在两个或多个基频之和或差的附近(基频为ν1、ν2的两个吸收峰,它们的组频峰在ν1+ν2或ν1-ν2附近)。

3、振动偶合相同的两个基团在分子中靠得很近时,其相应的特征峰常会发生分裂形成两个峰,这种现象称为振动偶合(异丙基中的两个甲基相互振动偶合,引起甲基的对称弯曲振动1380cm-1处的峰裂分为强度差不多的两个峰,分别出现在1385~1380cm-1及1375~1365cm-1)。

4、弗米共振倍频峰或组频峰位于某强的基频峰附近时,弱的倍频峰或组频峰的强度会被大大的强化,这种倍频峰或组频峰与基频峰之间的偶合,称为弗米共振,往往裂分为两个峰(醛基的C-H伸缩振动2830~2965cm-1和其C-H 弯曲振动1390cm-1的倍频峰发生弗米共振,裂分为两个峰,在2840cm-1和2760cm-1附近出现两个中等强度的吸收峰,这成为醛基的特征峰)。

第三节红外吸收光谱与分子结构的关系一、红外吸收光谱中的重要区段在红外光谱中吸收峰的位置和强度取决于分子中各基团的振动形式和所处的化学环境。

只要掌握了各种基团的振动频率及其位移规律,就可应用红外光谱来鉴定化合物中存在的基团及其在分子中的相对位置。

常见的基团在波数4000—670 cm-1范围内都有各自的特征吸收,这个红外范围又是一般红外分光光度计的工作测定范围。

在实际应用时,为了便于对红外光谱进行解析,通常将这个波数范围划分为以下几个重要的区段,参考此划分,可推测化合物的红外光谱吸收特征;或根据红外光谱特征,初步推测化合物中可能存在的基团。

1、O-H、N-H伸缩振动区(3750—3000 cm-1)不同类型的O-H、N-H伸缩振动列于表3-3中。

2、C-H伸缩振动区(3300—3000 cm-1)不同类型的化合物C-H的伸缩振动在3300—3000区域中出现不同的吸收峰,见表3-4。

不饱和碳上的C-H伸缩振动(三键和双键、苯环)3、C-H伸缩振动区(3000—2700 cm-1)饱和碳上的C-H伸缩振动(包括醛基上的C-H)4、叁键和累积双键区(2400—2100 cm-1)在IR光谱中,波数在2400—2100 cm-1区域内的谱带较少,因为含三键和累积双键的化合物,遇到的不多。

相关文档
最新文档