天然气水合物发展历程

合集下载

天然气水合物研究历程及发展趋势新

天然气水合物研究历程及发展趋势新

天然气水合物研究历程及发展趋势摘要综合国内外关于天然气水合物的研究,概述其从发现、初步研究到深入研究的历程,总结了各阶段国内外天然气水合物研究的成果和进展。

从1810年发现天然气水合物以来,世界各地的科学家对气水化合物的类型和物化性质、自然赋存条件和成藏条件、资源评价、勘探开发手段等进行了广泛而卓有成效的研究。

总结世界各国天然气水合物的研究现状并指出了其发展趋势。

研究表明我国的许多海区具有天然气水合物形成的条件,希望2020年能够进行商业开采。

关键词:天然气水合物(gas hydrates)是一种由气体和水形成的冰状白色固态晶体,常在一种特定的高压低温条件下形成并稳定存在,广泛发育在浅海底层沉积物和深海大陆斜坡沉积地层以及极地地区的永久冻土层中。

目前各国科学家对全球天然气水合物的资源量较为一致的评价为2×1016m3,是剩余天然气储量的136倍(1·56×1 014 m3),如果将此储量折算为地球上的有机碳资源,它将占总资源的一半以上。

1国外天然气水合物的研究现状由于当前化石燃料(包括煤、石油与天然气),特别是其中的石油和天然气能源的短缺,使人们对天然气水合物这种高效潜在能源格外关注,自20世纪90年代以来,世界各国对潜力巨大的新型能源—天然气水合物的研究做了大量投入,已经取得了重大进展。

1995年,美国在海上钻井平台(简称ODP)第164航次中,率先在布莱克海脊布设了3口勘探井,首次有计划地取得了天然气水合物样品。

美国参议院委员会在1998年5月一致通过1418号议案—“天然气水合物研究与资源开发计划”。

把天然气水合物资源作为国家发展的战略能源列入长远计划,决定批准用于天然气水合物资源研究开发的每年投入为2 000万美元,计划到2015年实现商业性开采。

2002年4月,在圣彼德堡召开的国际海洋矿产会议上,美国地质调查局的W·J·Wintres展示的天然气水合物和沉积物检验实验室装置(简称GHASTLI)代表了当前天然气水合物模拟实验的最高水平,正在进行的是自然界和实验室形成的天然气水合物-沉积物的物理性质的研究。

海洋地球化学—天燃气水合物

海洋地球化学—天燃气水合物
天然气水合物
天然气水合物
• 天然气水合物的概念和性质 • 天然气水合物的用途 • 天然气水合物的分布和储量 • 天然气水合物的发展
2
3
一.天然气水合物的概念和性质
1.概念
• 天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)是分布于深海沉积物或陆域的永久冻土 中,由天然气与水在高压低温条件下形成的类冰 状的结晶物质。因其外观象冰一样而且遇火即可 燃烧,所以又被称作“可燃冰”或者“固体瓦斯 ”和“气冰”。
13
感谢您的关注!
8
2.分布及储量
• 科学家的评价结果表明, 仅仅在海底区域,可燃冰 的分布面积就达4000万平 方公里,占地球海洋总面 积的1/4。目前,世界上已 发现的可燃冰分布区多达 116处,其矿层之厚、规 模之大,是常规天然气田 无法相比的。科学家估计 ,海底可燃冰的储量至少 够人类使用1000年。9来自1045
2.性质
• 自然界发现的天然气水合物多呈白色、淡黄色、 琥珀色、暗褐色亚等轴状、层状、小针状结晶体 或分散状 • 可存在于零下,又可存在于零上温度环境 • 主要成分是甲烷与水分子
6
二.天然气水合物的用途
最重要的性质 • 未来很有潜力的重要矿物燃料来源
7
三.天然气水合物的分布
1.形成条件
• 深海底层和永久结冰带 • 有充足的气体和水 • 低温(0~10)高压(10M pa)的条件 • 有一定的孔隙空间
12
我国状况
• 储量丰富
南海北部蕴藏量相当于陆地石油天然气的一半
• 研究落后国际水平
1992年:中科院兰州分院《国外天然气水合物研究进展》 2001年:中国地质大学《海洋地质与可燃冰》 2002年:国家天然气水合物专项 2003年:中国天然气水合物研讨会 近5年已在南海等3出处发现天然气水合物,预计在2020年 进行开采

天然气水合物综述

天然气水合物综述

天然气水合物综述杜娟,宋维源辽宁工程技术大学力学与工程学院,辽宁阜新(123000)E-mail:nlan@摘要:天然气水合物的研究目前在国内外已经成为研究的热点,本文综合了国内外关于天然气水合物的研究资料,对天然气水合物的5个主要研究内容:物理性质、研究历程、成因、赋存以及开发技术作了系统的、简要的阐述,并提出了天然气水合物研究的发展方向及研究趋势,文章对于以后的天然气水合物的研究者的研究可以作为一个较为全面的参考。

关键词:天然气水合物,物理性质,成因,研究进程,赋存,开发技术中图分类号:TE5现在人们普遍认为天然气水合物是自然界赐予人类21世纪的新型能源,天然气水合物在自然界大量存在,已经是不争的事实。

但由于它属于非常规能源,且它的研究涉及到地球物理学、流体力学、地貌地质学等众多学科,因而天然气水合物的研究是一个复杂多变的过程,所以对它的研究必须是系统和具体的。

此外,我国冻土总面积居世界第三位,海域辽阔,因此,研究天然气水合物是非常有必要的[1-2]。

1 天然气水合物的物理性质和分类1.1 天然气水合物的物理性质天然气水合物,又叫做“可燃冰”、“ 固体瓦斯”、“ 气冰”、英文名为Natural Gas Hydrates(以下简称为NGH)。

通常是在特定的高压(﹥0.6 Mpa)低温(﹤300K)条件下由天然气和水形成的类冰状非化学剂量型笼型化合物[3]。

形成NGH的主要气体是甲烷,当甲烷含量超过气体总量的99.9%时又可称为甲烷水合物。

NGH的分子式可以表示为CH4·n(H2O),从理论上讲,n值可以是5.75或者 5.67,但是实际上一般为6.3~6.6 [4]。

在这种化合物中,水分子(主体分子)通过氢键作用形成具有一定尺寸空穴的晶格主体,较小的气体分子(客体分子)则包容在空穴中,主客体分子之间则由范德华力来相互作用,从而形成温压变化易分解、遇火可燃烧的外观雪花或松散的冰状的固态化合物。

天然气水合物的发现史天然气使用安全常识

天然气水合物的发现史天然气使用安全常识

天然气水合物的发现史天然气使用安全常识天然气水合物(Natural Gas Hydrates,NGHs)是一种由天然气分子和水分子形成的晶体化合物。

它们在高压和低温的条件下形成,并存在于陆地和海洋沉积物中。

天然气水合物被认为是一种巨大的能源资源,可能比煤炭、石油和天然气等传统化石燃料资源更为丰富。

以下是天然气水合物的发现史以及天然气的使用安全常识:一、天然气水合物的发现史:1.初次发现:最早对天然气水合物的描述发生在18世纪末和19世纪初,当时,北美被描述为“冷气固化物”,但直到20世纪60年代,人们才首次证实了其存在。

2.挖掘天然气水合物:人们于1969年在墨西哥湾发现了深水天然气水合物,但直到2002年,日本才首次成功挖掘和提取天然气水合物。

3.进一步证实:从1990年代开始,国际上的科学家们陆续在世界各地的海洋沉积物和深地层沉积物中发现了更多的天然气水合物。

二、天然气的使用安全常识:1.天然气泄漏的风险:天然气的主要成分是甲烷(CH4),它具有易燃性和无色、无味的特点。

天然气泄漏可能导致爆炸和火灾的风险,因此天然气使用过程中需要注意安全。

2.检查和维护:定期检查和维护燃气设备和管道,确保其安全运行。

如果发现泄漏,应立即通知相关部门进行修复。

3.安全燃烧:使用天然气的燃气炉、燃气灶等燃气设备时,应确保良好的通风环境,避免一氧化碳中毒等危险情况发生。

4.防止火灾:禁止在天然气灶或炉子附近使用易燃物品,如喷雾瓶等。

并确保使用天然气设备时无明火,并随时保持家庭灭火器的可用性。

5.预防意外:在使用天然气时,应注意避免刺激性和腐蚀性物质的接触,以免损坏管道或设备。

6.紧急情况应对:如发生天然气泄漏或其他紧急情况,应迅速采取以下措施:不使用明火,关闭天然气阀门,立即离开并通知有关部门。

综上所述,天然气水合物作为一种巨大的能源资源,在不断的发现和研究中逐渐为能源开发者所关注。

然而,天然气的使用也需要严格遵守安全常识,以确保使用过程的安全性和可靠性。

天然气水合物

天然气水合物
我国在南海北部成功钻获天然气水合物实物样品“可燃冰”, 从而成为继美国、日本、印度之后第4个通过国家级研发计划 采到水合物实物样品的国家。
2007年5月1日凌晨,我国在南海北部的首次采样成功, 证实了我国南海北部蕴藏丰富的天然气水合物资源,标志着 我国天然气水合物调查研究水平已步入世界先进行列。 已发现的天然气水合物主要存在于世界范围内大部分地区。 大西洋的85%、太平洋的95%、印度洋的96%的地区中含有 天然气水合物,且主要分布于洋底之下200~600米的深度范围。
天然气水合物开发历程
从20世纪60年代苏联发现麦索雅哈气田至今, 天然气水合物的开发思路基本上都是首先考虑如 何使蕴藏在沉积物中的天然气水合物分解,然后再 将天然气采至地面。一般来说,人为地打破天然气 水合物稳定存在的温度压力条件,造成其分解,是 目前开发天然气水合物中甲烷资源的主要方法。 现阶段提出的方法可以归为这么几类:加热法、 降压法、添加化学剂法 、驱替法、综合法等
可燃冰的学名为“天然气水合物”,是天然气在0℃和 30个大气压的作用下结晶而成的“冰块”。“冰块”里甲烷占 80%~99.9%,可直接点燃,燃烧后几乎不产生任何残渣, 污染比煤、石油、天然气都要小得多。1立方米可燃冰可转 化为164立方米的天然气和0.8立方米的水。目前,全世界拥 有的常规石油天然气资源,将在40年或50年后逐渐枯竭。而 科学家估计,海底可燃冰分布的范围约4000万平方公里,占 海洋总面积的10%,海底可燃冰的储量够人类使用1000年, 因而被科学家誉为“未来能源”、“21世纪能源”。
1.加热法 将火驱法,总之只要能促使温度上升达到水合物分解的方法都可称为热激发法。热开采 技术的主要不足是会造成大量的热损失,效率很低。特别是在永久冻土区,即使利用绝热 管道,永冻层也会降低传递给储层的有效热量。 2.降压法

天然气水合物研究进展与开发技术概述

天然气水合物研究进展与开发技术概述

未来发展方向
未来发展方向
随着科技的不断进步,天然气水合物的研究和开发将迎来更多的发展机遇。 未来,天然气水合物的研究将更加深入,涉及的领域将更加广泛。在开发技术方 面,将会发展更加环保、高效、低成本的技术,如微生物法、化学试剂法和纳米 技术等。同时,加强天然气水合物全产业链的研发和优化,推动其在能源、化工、 制冷、航空航天等领域的应用。
研究进展
研究进展
天然气水合物是指在一定条件下,甲烷等气体分子与水分子形成的笼形化合 物。其形成和稳定主要受温度、压力、气体成分和盐度等多种因素影响。近年来, 随着地球科学、地质工程、能源工程等领域的发展,人们对天然气水合物的研究 逐步深入。
研究进展
目前,全球范围内天然气水合物的研究主要集中在以下几个方面:(1)形成 机理与分布规律;(2)物理性质与化学性质;(3)开采技术与经济性;(4) 环境影响与安全性。尽管取得了许多重要成果,但仍存在许多挑战,如天然气水 合物的稳定性和开采过程中的环境风险等。
天然气水合物储运技术的研究现状
2、高效开采技术研究:针对天然气水合物的开采,研究者们开发出了一系列 新型的高效开采技术,如水平井技术、多分支井技术等,大大提高了开采效率。
天然气水合物储运技术的研究现状
3、储运安全技术研究:针对天然气水合物储运过程中的安全问题,研究者们 通过模拟和分析不同情况下的风险因素,提出了一系列有效的安全防技术概述
天然气水合物储运技术概述
天然气水合物,又称可燃冰,是由天然气(主要是甲烷)与水在高压、低温 条件下形成的笼形结晶化合物。由于其储存量大、燃烧清洁、开采成本低等优势, 被视为一种具有巨大潜力的能源。然而,这种化合物的非稳定性以及难以运输的 问题,一直是阻碍其开发利用的主要难题。因此,天然气水合物的储运技术成为 近年来研究的热点和难点。

天然气水合物

天然气水合物

天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。

因其外观象冰一样而且遇火即可燃烧,所以又被称作“可燃冰”或者“固体瓦斯”和“气冰”。

它是在一定条件(合适的温度、压力、气体饱和度、水的盐度、PH值等)下由水和天然气在中高压和低温条件下混合时组成的类冰的、非化学计量的、笼形结晶化合物(碳的电负性较大,在高压下能吸引与之相近的氢原子形成氢键,构成笼状结构)。

它可用mCH4·nH2O来表示,m代表水合物中的气体分子,n为水合指数(也就是水分子数)。

组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。

形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物(Methane Hydrate)。

到目前为止,已经发现的天然气水合物结构类型有三种,即I型结构、II型结构和H型结构。

I型结构气水合物为立方晶体结构,其在自然界分布最为广泛,其仅能容纳甲烷(C1)、乙烷这两种小分子的烃以及N2、CO2、H2S等非烃分子,这种水合物中甲烷普遍存在的形式是构成CH4·5.75H2O的几何格架。

II型结构气水合物为菱型晶体结构,除包容C1、C2等小分子外,较大的“笼子”(水合物晶体中水分子间的空穴)还可容纳丙烷(C3)及异丁烷(i-C4)等烃类。

H型结构气水合物为六方晶体结构,其大的“笼子”甚止可以容纳直径超过异丁烷(i-C4)的分子,如i-C5和其他直径在7.5~8.6A之间的分子(表2)。

H型结构气水合物早期仅见于实验室,1993年才在墨西哥湾大陆斜坡发现其天然形态。

II型和H 型水合物比I型水合物更稳定。

除墨西哥湾外,在格林大峡谷地区也发现了I、II、H型三种气水合物共存的现象。

浅谈天然气水合物的研究简史

浅谈天然气水合物的研究简史

浅谈天然气水合物的研究简史发表时间:2020-12-11T12:28:18.243Z 来源:《城镇建设》2020年27期作者:朱金朝,丁春晓[导读] 天然气水合物是天然气以水合物形式存在的一种天然气在水中的赋存状态朱金朝,丁春晓山东省特种设备检验研究院临沂分院摘要:天然气水合物是天然气以水合物形式存在的一种天然气在水中的赋存状态,是清洁、高效、高储量的新型能源。

人们对天然气水合物从发现到逐步认识、开发利用的研究已有二百年的历史,大致可分为天然气水合物起步研究阶段、天然气水合物应用研究发展阶段、专题研究阶段。

关键词:天然气水合物研究简史天然气是重要的化工原料和清洁能源,在世界能源消费结构中,天然气已占23%。

随着传统化石燃料煤、石油的逐步枯竭,天然气的能源地位有进一步增加的趋势,必将成为未来的主导能源。

天然气水合物是天然气以水合物形式存在的一种天然气在水中的赋存状态,是清洁、高效、高储量的新型能源。

随着中国在南海连续试采天然气水合物的成功,人们对天然气水合物的研究不断深入,以水合物形式储运天然气技术得到了人们更大地关注。

人们对水合物从发现到逐步认识、开发利用的研究已有二百年的历史,大致可分为以下几个研究阶段:天然气水合物起步研究阶段:1810年,英国皇家学会会员Davy首次在实验室发现气水化合物。

随后,美国、法国等国家的科学家也合成了一系列的气体水合物。

1888年Valard人工合成天然气水合物。

这一阶段人们对气水合物的研究主要停留在实验室研究,研究重点在于化学组分与物质结构,且争议颇多。

天然气水合物应用研究发展阶段:1934年,前苏联在被堵塞的天然气输气管道里发现了天然气水合物。

由于水合物的形成,输气管道被堵塞,前苏联的大量研究主要是以如何预防天然气水合物的生成以避免输气管道的堵塞为研究目的。

在二十世纪四十年代末,天然气形成水合物后体积会缩小这一特点逐渐引起了科学家的研究兴趣,科学家们开始了发展天然气水合物成为一类天然气储运新方式的探索。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天然气水合物发展历程
1810年,首次在实验室发现天然气水合物。

1934年,前苏联在被堵塞的天然气输气管道里发现了天然气水合物。

由于
水合物的形成,输气管道被堵塞。

这一发现引起前苏联人对天然气水合物的重视。

1965年,前苏联首次在西西伯利亚永久冻土带发现天然气水合物矿藏,并
引起多国科学家的注意。

1970年,前苏联开始对该天然气水合物矿床进行商业开采。

1970年,国际深海钻探计划(DSDP)在美国东部大陆边缘的布莱克海台实施
深海钻探,在海底沉积物取心过程中,发现冰冷的沉积物岩心嘶嘶地冒着气泡,并达数小时。

当时的海洋地质学家非常不解。

后来才知道,气泡是水合物分解引起的,他们在海底取到的沉积物岩心其实含有水合物。

1971年,美国学者Stoll等人在深海钻探岩心中首次发现海洋天然气水合物,并正式提出“天然气水合物”概念。

1974年,前苏联在黑海1950米水深处发现了天然气水合物的冰状晶体样品。

1979年,DSDP第66和67航次在墨西哥湾实施深海钻探,从海底获得91.24米的天然气水合物岩心,首次验证了海底天然气水合物矿藏的存在。

1981年,DSDP计划利用“格罗玛·挑战者号”钻探船也从海底取上了3英尺长的水合物岩心。

1992年,大洋钻探计划(ODP)第146航次在美国俄勒冈州西部大陆边缘Cascadia海台取得了天然气水合物岩心。

1995年,ODP第164航次在美国东部海域布莱克海台实施了一系列深海钻探,取得了大量水合物岩心,首次证明该矿藏具有商业开发价值。

1997年,大洋钻探计划考察队利用潜水艇在美国南卡罗来纳海上的布莱克
海台首次完成了水合物的直接测量和海底观察。

同年,ODP在加拿大西海岸胡安-德夫卡洋中脊陆坡区实施了深海钻探,取得了天然气水合物岩心。

至此,以美国为首的DSDP及其后继的ODP在10个深海地区发现了大规模天然气水合物聚集:秘鲁海沟陆坡、中美洲海沟陆坡(哥斯达黎加、危地马拉、墨西哥)、美国东南大西洋海域、美洲西部太平洋海域、日本的两个海域、阿拉斯加近海和墨西哥湾等海域。

1996年和1999年期间,德国和美国科学家通过深潜观察和抓斗取样,在美国俄勒冈州岸外Cascadia海台的海底沉积物中取到嘶嘶冒着气泡的白色水合物块状样品,该水合物块可以被点燃,并发出熊熊的火焰。

1998年,日本通过与加拿大合作,在加拿大西北Mackenzie三角洲进行了
水合物钻探,在890~952米深处获得37米水合物岩心。

该钻井深1150米,是高纬度地区永冻土带研究气体水合物的第一口井。

1999年,日本在其静冈县御前崎近海挖掘出外观看起来象湿润雪团一样的
天然气水合物。

到目前为止,在世界海域内已有60处直接或间接发现了天然气水合物,其中在18处钻探岩心中见到天然气水合物,42处见有天然气水合物的地震标志BSR。

相关文档
最新文档