veilog数字电路__笔记

合集下载

第 3 章 Verilog HDL 基础知识

第 3 章    Verilog HDL 基础知识

第三章
Verilog 基础知识
module D_ff(q,data,enable,reset,clock); output q; input data,enable,reset,clock; reg q; always @(posedge clock) //时钟上升沿有效 if (reset == 0) q = 1’b0; else if (enable==1) q = data; //隐含: else q = q: endmodule
第三章
Verilog 基础知识
3) 指定位宽的基数格式 这种格式的表示形式为: <size>’<base_format><number> 参数<size>用来指定所表示数的位宽。当位宽小于数 值的实际位数时,相应的高位部分被忽略;当位宽大于数 值的实际位数,且数值的最高位是 0 或 1 时,相应的高位 部分补0;而当位宽大于数值的实际位数,但数值的最高 位是 x 或 z 时,相应的高位部分补 x 或z。二进制的一个 x 或 z 表示 1 位处于 x 或 z,八进制的一个 x 或 z 表示 3 位 二进制位都处于 x 或 z,十六进制的一个 x 或 z 表示 4 位 二进制位都处于 x 或 z。另外,数值中的 z 可以用“ ?” 来代替。
第三章
Verilog 基础知识
第3章
Verilog HDL 基础知识
希望通过本章的介绍,能够对 Verilog HDL 有初步 的了解。 (1)词法:包括间隔符与注释符、数值、字符串与关键字。 (2)数据类型:包括物理数据类型与抽象数据类型。 (3)运算符:包括算术运算符、逻辑运算符、关系运算 符、相等关系运算符、按位运算符、归约运算符、移 位运算符、条件运算符、连接与复制操作及其优先级。 (4)系统任务与系统函数:包括标准输出任务、文件管理 任务、仿真控制任务、时间函数及其他常用函数。 (5)编译指令:宏编译指令、文件包含指令、条件编译指 令、时间定标指令与工作库定义指令。

verilog 基本语法

verilog 基本语法

verilog 基本语法Verilog基本语法Verilog是一种硬件描述语言,用于描述数字电路的行为和结构。

它具有强大的建模能力,能够描述复杂的数字系统,并用于逻辑设计和硬件验证。

本文将介绍Verilog的基本语法,以帮助读者对这种语言有一个基本的了解。

1. 模块声明在Verilog中,所有的设计都是通过模块来实现的。

模块是Verilog 的基本组织单位,类似于其他编程语言中的函数或类。

模块声明由关键字module开头,后面跟着模块的名称和输入输出端口的定义。

例如:module my_module(input a, b, output c);// 模块的主体endmodule2. 端口声明在模块声明中,使用关键字input和output来声明输入和输出端口。

输入端口用于接收信号,输出端口用于输出信号。

端口可以是单个的信号,也可以是信号的数组。

例如:input a, b; // 单个输入端口output c; // 单个输出端口input [7:0] d; // 输入信号的数组3. 信号声明在Verilog中,使用关键字wire、reg、integer等来声明信号。

wire用于声明连续的信号,reg用于声明时序的信号,integer用于声明整数变量。

例如:wire a, b; // 连续信号reg [7:0] c; // 时序信号,有8位integer d; // 整数变量4. 时钟和复位在数字电路中,时钟和复位信号是非常重要的。

在Verilog中,可以使用关键字input来声明时钟和复位信号,并在模块的输入端口中定义。

例如:input clk; // 时钟信号input rst; // 复位信号5. 运算符Verilog支持各种运算符,包括算术运算符、逻辑运算符、位运算符等。

算术运算符用于执行加减乘除等操作,逻辑运算符用于执行与或非等逻辑操作,位运算符用于执行位操作。

例如:a =b + c; // 加法运算d = ~(a & b); // 与运算和非运算6. 控制结构在Verilog中,可以使用if语句、case语句等控制结构来实现条件判断和多路选择。

Verilog笔记.5.同步、异步

Verilog笔记.5.同步、异步

Verilog笔记.5.同步、异步在数字电路中经常有同步synchronism、异步asynchronism的概念。

异步指输⼊信号和时钟⽆关;同步指输⼊信号和时钟信号有关,实际上就是输⼊信号和时钟信号进⾏了与运算或者与⾮运算。

实际开发中,经常有同步清零、异步清零、同步复位、异步复位等概念,下⾯就给与相关代码演⽰。

简单的异步复位1always @ (posedge clk or negedge rst_n)2if(!rst_n) b <= 1'b0;3else b <= a;简单的同步复位1always @ (posedge clk)2if(!rst_n) b <= 1'b0;3else b <= a;PS:同步复位信号RST必须⾄少长于⼀个时钟周期CLK,否则,这个复位信号引起的变化是不会被检测到的!异步复位、同步释放1always @ (posedge clk)2 rst_nr <= rst_n; //现将异步复位信号⽤同步时钟打⼀拍34always @ (posedge clk or negedge rst_nr)5if(!rst_nr) b <= 1'b0;6else b <= a;78always @ (posedge clk or negedge rst_nr)9if(!rst_nr) c <= 1'b0;10else c <= b;同步复位和异步复位的区别就在于前者的复何信号不能出现在always语句的敏感信号表中,⽆论是同步复位还是异步复位,always语句的结构都是if(Reset)...else... ,否则,综合⼯具将不能正确的综合所有always语句中的赋值最好采⽤⾮阻塞赋值语,否则,可能会导致仿真与综合的不⼀致”。

Verilog所有知识点

Verilog所有知识点

Verilog基础:1.间隔符:空格〔\b〕,Tab〔\t〕,换行符〔\n〕,换页符。

2.注释:/**/ //3.标识符,关键词:标识符由英文字母、数字、$符、下划线组成,以英文字母或下划线开头。

4.逻辑值:0:逻辑假1:逻辑真x或X:不确定状态z或Z:高阻态5.常量:<1>格式:<+/-><位宽>’<基数符号><数值>b/o/d/h:二、八、十、十六进制<2>数字可加下划线:8’b1001_1001表示8位二进制数10011001<3>科学计数:5E-4: 5*10^4<4>利用参数定义语句来定义一个标识符表示常量:parameter 参数名1=常量1,参数名2=常量2;例:parameter BIT=1,BYTE=8;6.字符串:双撇号内的字符序列,不能分多行书写,表达式或赋值语句中字符串要换成无符号整数,用8位ASCII码表示,一个8位ASCII码表示一个字符变量的数据类型:1.线网〔net type〕类型:线网类被定义后假设没有被元件驱动,则默认值为高阻态关键词:wire:wire[n-1:0]变量名1,变量名2,…,变量名n;除wire外还有wand、wor、tri、triand、trior、trireg2.寄存器类型:寄存器型变量只能在initial或always内被赋值,没被赋值默认为x状态。

4种类型的寄存器变量:<1>reg:行为描述中对寄存器型变量说明<2>integer:32位有符号整数型<3>real:64位有符号实型变量〔默认值是0〕<4>time:64位无符号时间型①reg:格式:reg[n-1:0]变量名1,…,变量名n;例:integer counter;initial //initial是过程语句结构,赋值给寄存器类型变量counter=-1;③real:通常用于对实数型常量进行储存运算例:real delta;initialbegindelta=4e10;delta=2.13endinteger i;initial i=delta; //i得到的值为2④time:主要用于储存仿真时间,只储存无符号整数,常调用系统函数$time例:time current_time;initialcurrent_time=$time;Verilog 基本结构module 模块名〔端口名1,端口名2,…〕端口类型说明〔input,output,inout〕//inout是双向端口参数定义;//将常量用符号常量代替,非必须结构数据类型定义〔wire,reg等〕实例化底层模块和基本门级元件;连续赋值语句〔assign〕;过程块结构〔initial和always〕;行为描述语句;endmodule描述方式:①结构描述方式:调用其他已定义好的底层模块对整个电路进行描述,或直接调用基本门级元件描述。

《verilog_数字系统设计课程》(第二版)思考题答案

《verilog_数字系统设计课程》(第二版)思考题答案

绪论1.什么是信号处理电路?它通常由哪两大部分组成?信号处理电路是进行一些复杂的数字运算和数据处理,并且又有实时响应要求的电路。

它通常有高速数据通道接口和高速算法电路两大部分组成。

2.为什么要设计专用的信号处理电路?因为有的数字信号处理对时间的要求非常苛刻,以至于用高速的通用处理器也无法在规定的时间内完成必要的运算。

通用微处理器芯片是为一般目的而设计的,运算的步骤必须通过程序编译后生成的机器码指令加载到存储器中,然后在微处理器芯片控制下,按时钟的节拍,逐条取出指令分析指令和执行指令,直到程序的结束。

微处理器芯片中的内部总线和运算部件也是为通用目的而设计,即使是专为信号处理而设计的通用微处理器,因为它的通用性也不可能为某一特殊的算法来设计一系列的专用的运算电路而且其内部总线的宽度也不能随便的改变,只有通过改变程序,才能实现这个特殊的算法,因而其算法速度也受到限制所以要设计专用的信号处理电路。

3.什么是实时处理系统?实时处理系统是具有实时响应的处理系统。

4.为什么要用硬件描述语言来设计复杂的算法逻辑电路?因为现代复杂数字逻辑系统的设计都是借助于EDA工具完成的,无论电路系统的仿真和综合都需要掌握硬件描述语言。

5.能不能完全用C语言来代替硬件描述语言进行算法逻辑电路的设计?不能,因为基础算法的描述和验证通常用C语言来做。

如果要设计一个专用的电路来进行这种对速度有要求的实时数据处理,除了以上C语言外,还须编写硬件描述语言程序进行仿真以便从电路结构上保证算法能在规定的时间内完成,并能通过与前端和后端的设备接口正确无误地交换数据。

6.为什么在算法逻辑电路的设计中需要用C语言和硬件描述语言配合使用来提高设计效率?首先C语言很灵活,查错功能强,还可以通过PLI编写自己的系统任务,并直接与硬件仿真器结合使用。

C语言是目前世界上应用最为广泛的一种编程语言,因而C程序的设计环境比Verilog HDL更完整,此外,C语言有可靠地编译环境,语法完备,缺陷缺少,应用于许多的领域。

FPGA笔记之verilog语言(基础语法篇)

FPGA笔记之verilog语言(基础语法篇)

FPGA笔记之verilog语言(基础语法篇)笔记之verilog语言(基础语法篇)写在前面:verilogHDL语言是面对硬件的语言,换句话说,就是用语言的形式来描述硬件线路。

因此与等软件语言不同,假如想要在实际的中实现,那么在举行verilog语言编写时,就需要提前有个硬件电路的构思和主意,同时,在编写verilog语言时,应当采纳可综合的语句和结构。

1. verilog 的基础结构1.1 verilog设计的基本单元——module在数字电路中,我们经常把一些复杂的电路或者具有特定功能的电路封装起来作为一个模块用法。

以后在运用这种模块化的封装时,我们只需要知道:1.模块的输入是什么;2.模块的输出是什么;3.什么样的输入对应什么样的输出。

而中间输入是经过什么样的电路转化为输出就不是我们在用法时需要特殊重视的问题。

当无数个这样的模块互相组合,就能构成一个系统,解决一些复杂的问题。

verilog语言的基础结构就是基于这种思想。

verilog中最基本的模块是module,就可以看做是一个封装好的模块,我们用verilog来写无数个基本模块,然后再用verilog描述多个模块之间的接线方式等,将多个模块组合得到一个系统。

那么一个module应当具有哪些要素呢?首先对于一个module,我们应当设计好其各个I/O,以及每个I/O的性质,用于与模块外部的信号相联系,让用法者知道如何连线。

第二,作为开发者,我们需要自己设计模块内部的线路来实现所需要的功能。

因此需要对模块内部浮现的变量举行声明,同时通过语句、代码块等实现模块的功能。

综上所述,我们把一个module分成以下五个部分:模块名端口定义I/O解释第1页共9页。

基于Verilog的数字电路设计与模拟

基于Verilog的数字电路设计与模拟数字电路设计是现代电子领域中至关重要的一部分,它涉及到数字系统中各种逻辑门、寄存器、计数器等元件的设计和实现。

而Verilog作为一种硬件描述语言,被广泛应用于数字电路设计中,能够帮助工程师们更高效地进行数字电路的建模、仿真和验证。

本文将介绍基于Verilog的数字电路设计与模拟的相关内容,包括Verilog语言基础、数字电路设计流程、常用的数字电路元件设计以及Verilog仿真工具的使用等方面。

Verilog语言基础Verilog是一种硬件描述语言(HDL),它可以描述数字系统中的行为和结构,是数字电路设计中常用的编程语言之一。

Verilog包括结构化Verilog和行为Verilog两种描述方式,结构化Verilog主要用于描述数字系统的结构,而行为Verilog则用于描述数字系统的行为。

在Verilog中,最基本的单元是模块(module),一个模块可以包含输入端口、输出端口以及内部逻辑。

示例代码star:编程语言:verilogmodule and_gate(input a, input b, output y);assign y = a & b;endmodule示例代码end上面是一个简单的AND门模块的Verilog描述,其中input表示输入端口,output表示输出端口,assign用于赋值操作。

通过这样的描述,我们可以实现各种逻辑门、寄存器、计数器等数字电路元件。

数字电路设计流程在进行数字电路设计时,通常需要遵循一定的设计流程,以确保设计的正确性和可靠性。

典型的数字电路设计流程包括需求分析、概念设计、详细设计、验证和实现等阶段。

在Verilog中,我们可以通过编写相应的代码来完成这些阶段的工作。

需求分析:明确设计的功能需求和性能指标。

概念设计:根据需求设计数字系统的整体结构和功能模块。

详细设计:对各个功能模块进行详细设计,包括内部逻辑和接口定义。

verilog基本电路设计(包括:时钟域同步、无缝切换、异步fifo、去抖滤波))

Verilog基本电路设计(包括:时钟域同步、无缝切换、异步FIFO、去抖滤波))Verilog基本电路设计共包括四部分:单bit跨时钟域同步时钟无缝切换异步FIFO去抖滤波Verilog基本电路设计之一: 单bit跨时钟域同步(帖子链接:/thread-605419-1-1.html)看到坛子里不少朋友,对于基本数字电路存在这样那样的疑惑,本人决定开贴,介绍数字电路最常见的模块单元,希望给初学者带来帮助,也欢迎大佬们前来拍砖。

如果想要做数字设计,下面这些电路是一定会碰到的,也是所有大型IP,SOC设计必不可少的基础,主要包括异步信号的同步处理,同步FIFO,异步FIFO,时钟无缝切换,信号滤波debounce等等,后面会根据大家反馈情况再介绍新电路。

首先介绍异步信号的跨时钟域同步问题。

一般分为单bit的控制信号同步,以及多bit的数据信号同步。

多bit的信号同步会使用异步FIFO完成,而单bit的信号同步,又是时钟无缝切换电路以及异步FIFO电路的设计基础,这里先介绍单bit信号同步处理。

clka域下的信号signal_a,向异步的clkb域传递时,会产生亚稳态问题。

所有的亚稳态,归根结底就是setup/hold时间不满足导致。

在同一个时钟域下的信号,综合以及布线工具可以在data路径或者clock路径上插入buffer使得每一个DFF的setup/hold时间都满足;但是当signal_a在clkb域下使用时,由于clka与clkb异步,它们的相位关系不确定,那么在clkb的时钟沿到来时,无法确定signal_a此时是否处于稳定无变化状态,也即setup/hold时间无法确定,从而产生亚稳态。

这种异步信号在前后端流程里面是无法做时序分析的,也就是静态时序分析里常说的false_path。

消除亚稳态,就是采用多级DFF来采样来自另一个时钟域的信号,级数越多,同步过来的信号越稳定。

对于频率很高的设计,建议至少用三级DFF,而两级DFF同步则是所有异步信号处理的最基本要求。

verilog教程

verilog教程当您开始学习Verilog时,以下是一些重要的基础知识和概念。

1. Verilog是一种硬件描述语言(HDL),用于描述和设计数字电路。

它可以用于模拟、合成和验证电路。

2. Verilog使用模块化的设计风格。

每个设计都由一个或多个模块组成,每个模块有自己的输入和输出。

3. 使用`module`关键字定义一个模块,并在其后给出模块的名称。

```verilogmodule my_module;// 模块主体endmodule```4. 模块内部包含用`input`和`output`声明的端口,用于与其他模块进行通信。

```verilogmodule my_module(input wire a,input wire b,output wire c);// 模块主体endmodule```5. `wire`关键字用于声明连接不同模块的导线。

可以将导线看作是用于传输数字信号的线。

6. 在模块主体中,可以使用`assign`关键字创建逻辑连接。

逻辑连接使用`=`运算符连接输入和输出。

```verilogmodule my_module(input wire a,input wire b,output wire c);assign c = a & b;endmodule```7. 除了逻辑连接外,可以在模块内部使用`always`块创建组合和时序逻辑。

```verilogmodule my_module(input wire a,input wire b,output wire c);reg d;always @(a or b)d = a | b;assign c = d;endmodule```8. Verilog还支持使用`if-else`语句,`case`语句和循环结构等常见的编程结构。

9. 为了模拟和验证设计,可以使用Verilog仿真工具,如ModelSim、VCS等。

verilog hdl数字集成电路设计与原理

verilog hdl数字集成电路设计与原理 数字集成电路是现代电子技术中的重要组成部分,其设计与原理对于电子工程师来说至关重要。

本文将以Verilog HDL为工具,介绍数字集成电路的设计与原理。

一、数字集成电路的概述 数字集成电路是由稳定的电气或电子器件组成的,能够执行数字逻辑操作的电路。

它们以二进制表示,通过与、或、非等逻辑门实现简单或复杂的数字逻辑功能。

数字集成电路的设计与原理是研究数字逻辑电路的基础,是实现数字系统的关键。

二、Verilog HDL的介绍 Verilog HDL是硬件描述语言(Hardware Description Language )的一种,广泛应用于数字电路设计领域。

它不仅可以用于描述数字电路的结构和功能,还可以用于验证和仿真电路的行为。

Verilog HDL 为数字集成电路设计与原理提供了一种高效的工具和方法。

三、数字集成电路的设计步骤 1. 确定需求:在进行数字集成电路的设计之前,首先要明确电路的需求和功能。

例如,设计一个加法器电路,需要明确输入和输出的位数,以及所需的运算规则。

2. 设计逻辑功能:根据电路的需求和功能,使用Verilog HDL描述电路的逻辑功能。

例如,使用逻辑门和寄存器等基本组件,以及运算、比较和控制逻辑来实现增加和溢出处理。

3. 进行仿真:使用Verilog HDL工具进行电路的仿真,验证设计的正确性。

通过使用测试输入数据,观察输出是否符合预期结果。

如果有错误或问题,需要进行调试和修改。

4. 进行综合:将Verilog HDL代码综合为门级电路。

综合工具会将Verilog HDL描述的逻辑电路转化为实际的门级电路,包括各种逻辑门、寄存器和其他组件。

5. 进行布局布线:将综合后的电路进行物理设计,包括电路的布局和布线。

布局布线工具将综合后的门级电路映射到实际器件上,并进行连线等工作,以满足电路的时序和功耗要求。

6. 进行验证:验证设计的正确性和性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Verilog HDL的基本语法■Verilog HDL既是一种行为描述的语言也是一种结构描述的语言。

这也就是说,既可以用电路的功能描述也可以用元器件和它们之间的连接来建立所设计电路的Verilog HDL模型。

■抽象的级别和它们对应的模型类型共有以下五种:•系统级(system):用高级语言结构实现设计模块的外部性能的模型。

•算法级(algorithm):用高级语言结构实现设计算法的模型。

• RTL级(Register Transfer Level):描述数据在寄存器之间流动和如何处理这些数据的模型。

•门级(gate-level):描述逻辑门以及逻辑门之间的连接的模型。

•开关级(switch-level):描述器件中三极管和储存节点以及它们之间连接的模型。

■其语法结构非常适合于算法级和RTL级的模型设计。

这种行为描述语言具有以下功能:•可描述顺序执行或并行执行的程序结构。

•用延迟表达式或事件表达式来明确地控制过程的启动时间。

•通过命名的事件来触发其它过程里的激活行为或停止行为。

•提供了条件、if-else、case、循环程序结构。

•提供了可带参数且非零延续时间的任务(task)程序结构。

•提供了可定义新的操作符的函数结构(function)。

•提供了用于建立表达式的算术运算符、逻辑运算符、位运算符。

• Verilog HDL语言作为一种结构化的语言也非常适合于门级和开关级的模型设计。

因其结构化的特点又使它具有以下功能:−提供了完整的一套组合型原语(primitive);−提供了双向通路和电阻器件的原语;−可建立MOS器件的电荷分享和电荷衰减动态模型。

Verilog HDL的构造性语句可以精确地建立信号的模型。

这是因为在Verilog HDL中,提供了延迟和输出强度的原语来建立精确程度很高的信号模型。

信号值可以有不同的的强度,可以通过设定宽范围的模糊值来降低不确定条件的影响。

■模块的结构Verilog的基本设计单元是“模块”(block)。

一个模块是由两部分组成的,一部分描述接口,另一部分描述逻辑功能,即定义输入是如何影响输出的程序模块描述了电路图符号所实现的逻辑功能。

上面的Verilog设计中,模块中的第二、第三行说明接口的信号流向,第四、第五行说明了模块的逻辑功能。

以上就是设计一个简单的Verilog程序模块所需的全部内容。

★每个Verilog程序包括四个主要部分:端口定义、I/O说明、内部信号声明、功能定义。

★模块的端口定义:模块的端口声明了模块的输入输出口。

其格式如下:module 模块名(口1,口2,口3,口4, ………);模块内容模块的内容包括I/O说明、内部信号声明、功能定义。

I/O说明的格式如下:输入口: input 端口名1,端口名2,………,端口名i; //(共有i个输入口)输出口: output 端口名1,端口名2,………,端口名j; //(共有j个输出口)I/O说明也可以写在端口声明语句里。

其格式如下:module module_name(input port1,input port2,…output port1,output port2… );●内部信号说明:在模块内用到的和与端口有关的wire 和reg 变量的声明。

如:reg [width-1 : 0] R变量1,R变量2 。

;wire [width-1 : 0] W变量1,W变量2 。

;●功能定义:模块中最重要的部分是逻辑功能定义部分。

有三种方法可在模块中产生逻辑。

1).用“assign”声明语句如: assign a = b & c;这种方法的句法很简单,只需写一个“assign”,后面再加一个方程式即可。

例子中的方程式描述了一个有两个输入的与门。

2).用实例元件如: and and_inst( q, a, b );采用实例元件的方法象在电路图输入方式下,调入库元件一样。

键入元件的名字和相连的引脚即可,表示在设计中用到一个跟与门(and)一样的名为and_inst的与门,其输入端为a, b,输出为q。

要求每个实例元件的名字必须是唯一的,以避免与其他调用与门(and)的实例混淆。

3).用“always”块如:always@(posedge clk or posedge clr)beginif(clr) q <= 0;else if(en) q <= d;end采用“assign”语句是描述组合逻辑最常用的方法之一。

而“always”块既可用于描述组合逻辑也可描述时序逻辑。

上面的例子用“always”块生成了一个带有异步清除端的D触发器。

“always”块可用很多种描述手段来表达逻辑,例如上例中就用了if...else语句来表达逻辑关系。

如按一定的风格来编写“always”块,可以通过综合工具把源代码自动综合成用门级结构表示的组合或时序逻辑电路。

注意:如果用Verilog模块实现一定的功能,首先应该清楚哪些是同时发生的,哪些是顺序发生的。

上面三个例子分别采用了“assign”语句、实例元件和“always”块。

这三个例子描述的逻辑功能是同时执行的。

也就是说,如果把这三项写到一个 VeriIog 模块文件中去,它们的次序不会影响逻辑实现的功能。

这三项是同时执行的,也就是并发的。

然而,在“always”模块内,逻辑是按照指定的顺序执行的。

“always”块中的语句称为“顺序语句”,因为它们是顺序执行的。

请注意,两个或更多的“always”模块也是同时执行的,但是模块内部的语句是顺序执行的。

看一下“always”内的语句,你就会明白它是如何实现功能的。

if..else… if必须顺序执行,否则其功能就没有任何意义。

如果else语句在if语句之前执行,功能就会不符合要求!为了能实现上述描述的功能,“always”模块内部的语句将按照书写的顺序执行。

◆数据类型及其常量、变量:数据类型:是用来表示数字电路硬件中的数据储存和传送元素的。

重点考查:reg型、wire型、integer型、parameter型Verilog HDL中总共有十九种数据类型:large型、medium型、scalared型、time型、small型、tri型、trio型、tri1型、triand型、trior型、trireg型、vectored型、wand型、wor型。

◆常量概念:在程序运行过程中,其值不能被改变的量称为常量。

在Verilog HDL语言中使用的数字及其表示方式进行介绍。

整数:在Verilog HDL中,整型常量即整常数有以下四种进制表示形式:1) 二进制整数(b或B)2) 十进制整数(d或D)3) 十六进制整数(h或H)4) 八进制整数(o或O)数字表达方式有以下三种:1) <位宽><进制><数字>这是一种全面的描述方式。

2) <进制><数字>在这种描述方式中,数字的位宽采用缺省位宽(这由具体的机器系统决定,但至少32位)。

3) <数字>在这种描述方式中,采用缺省进制十进制。

例如:8'b10101100 //位宽为8的数的二进制表示, 'b表示二进制8'ha2 //位宽为8的数的十六进制,'h表示十六进制。

x和z值:在数字电路中,x代表不定值,z代表高阻值。

一个x可以用来定义十六进制数的四位二进制数的状态,八进制数的三位,二进制数的一位。

z的表示方式同x类似。

z还有一种表达方式是可以写作?。

在使用case表达式时建议使用这种写法,以提高程序的可读性。

见下例:4'b10x0 //位宽为4的二进制数从低位数起第二位为不定值4'b101z //位宽为4的二进制数从低位数起第一位为高阻值12'dz //位宽为12的十进制数其值为高阻值(第一种表达方式)12'd? //位宽为12的十进制数其值为高阻值(第二种表达方式)8'h4x //位宽为8的十六进制数其低四位值为不定值负数: 一个数字可以被定义为负数,只需在位宽表达式前加一个减号减号必须写在数字定义表达式的最前面。

注意减号不可以放在位宽和进制之间也不可以放在进制和具体的数之间。

见下例:-8'd5 //这个表达式代表5的补数(用八位二进制数表示)8'd-5 //非法格式下划线(underscore_):下划线可以用来分隔开数的表达以提高程序可读性。

但不可以用在位宽和进制处,只能用在具体的数字之间。

见下例:16'b1010_1011_1111_1010 //合法格式8'b_0011_1010 //非法格式当常量不说明位数时,默认值是32位,每个字母用8位的ASCII值表示。

例:10=32’d10=32’b1010■参数(Parameter)型在Verilog HDL中用parameter来定义常量,即用parameter来定义一个标识符代表一个常量,称为符号常量,即标识符形式的常量,采用标识符代表一个常量可提高程序的可读性和可维护性。

其说明格式如下:parameter 参数名1=表达式,参数名2=表达式, …,参数名n=表达式;parameter是参数型数据的确认符,确认符后跟着一个用逗号分隔开的赋值语句表。

在每一个赋值语句的右边必须是一个常数表达式。

也就是说,该表达式只能包含数字或先前已定义过的参数。

见下列:parameter msb=7; //定义参数msb为常量7parameter e=25, f=29; //定义二个常数参数parameter r=5.7; //声明r为一个实型参数parameter byte_size=8, byte_msb=byte_size-1; //用常数表达式赋值parameter average_delay = (r+f)/2; //用常数表达式赋值■变量wire型数据常用来表示用于以assign关键字指定的组合逻辑信号。

Verilog程序模块中输入输出信号类型缺省时自动定义为wire型。

wire型信号可以用作任何方程式的输入,也可以用作“assign”语句或实例元件的输出。

wire型信号的格式同reg型信号的很类似。

其格式如下:wire [n-1:0] 数据名1,数据名2,…数据名i; //共有i条总线,每条总线内有n条线路wire [n:1] 数据名1,数据名2,…数据名i;wire是wire型数据的确认符,[n-1:0]和[n:1]代表该数据的位宽,即该数据有几位。

最后跟着的是数据的名字。

如果一次定义多个数据,数据名之间用逗号隔开。

声明语句的最后要用分号表示语句结束。

看下面的几个例子。

wire a; //定义了一个一位的wire型数据wire [7:0] b; //定义了一个八位的wire型数据wire [4:1] c, d; //定义了二个四位的wire型数据■ reg型寄存器是数据储存单元的抽象。

相关文档
最新文档