人工神经网络综述论文
人工智能神经网络论文

人工智能神经网络论文随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。
以下是店铺整理分享的人工智能神经网络论文的相关资料,欢迎阅读!人工智能神经网络论文篇一人工神经网络的发展及应用摘要随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。
人工神经网络的发展经历了不同的阶段,是人工智能的重要组成部分,并且在发展过程中形成了自身独特的特点。
文章对人工神经网络的发展历程进行回顾,并对其在各个领域的应用情况进行探讨。
关键词人工神经网络;发展;应用随着科学技术的发展,各个行业和领域都在进行人工智能化的研究工作,已经成为专家学者研究的热点。
人工神经网络就是在人工智能基础上发展而来的重要分支,对人工智能的发展具有重要的促进作用。
人工神经网络从形成之初发展至今,经历了不同的发展阶段,并且在经济、生物、医学等领域得到了广泛的应用,解决了许多技术上的难题。
1人工神经网络概述关于人工神经网络,到目前为止还没有一个得到广泛认可的统一定义,综合各专家学者的观点可以将人工神经网络简单的概括为是模仿人脑的结构和功能的计算机信息处理系统[1]。
人工神经网络具有自身的发展特性,其具有很强的并行结构以及并行处理的能力,在实时和动态控制时能够起到很好的作用;人工神经网络具有非线性映射的特性,对处理非线性控制的问题时能给予一定的帮助;人工神经网络可以通过训练掌握数据归纳和处理的能力,因此在数学模型等难以处理时对问题进行解决;人工神经网络的适应性和集成性很强,能够适应不同规模的信息处理和大规模集成数据的处理与控制;人工神经网络不但在软件技术上比较成熟,而且近年来在硬件方面也得到了较大发展,提高了人工神经网络系统的信息处理能力。
2人工神经网络的发展历程2.1 萌芽时期在20世纪40年代,生物学家McCulloch与数学家Pitts共同发表文章,第一次提出了关于神经元的模型M-P模型,这一理论的提出为神经网络模型的研究和开发奠定了基础,在此基础上人工神经网络研究逐渐展开。
人工神经网络综述【范本模板】

人工神经网络综述摘要:人工神经网络是属于人工智能的一个组成部分,它的提出是基于现代神经科学的相关研究,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力.首先论述了人工神经网络的发展历程,并介绍了几种常见的模型及应用现状,最后总结了当前存在的问题及发展方向。
关键词:神经网络、分类、应用0引言多年以来,科学家们不断从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度探索人脑工作的秘密,希望能制作模拟人脑的人工神经元.特别是近二十年来. 对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在计算某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。
大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统.在研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“人工神经网络”。
神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动.1 人工神经网络概述1.1 人工神经网络的发展人工神经网络是20世纪80年代以来人工智能领域中兴起的研究热点,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。
1。
1。
1 人工神经网络发展初期1943年美国科学家家Pitts和MeCulloch从人脑信息处理观点出发,采用数理模型的方法研究了脑细胞的动作和结构及其生物神经元的一些基本生理特性,他们提出了第一个神经计算模型,即神经元的阈值元件模型,简称MP 模型,这是人类最早对于人脑功能的模仿。
他们主要贡献在于结点的并行计算能力很强,为计算神经行为的某此方面提供了可能性,从而开创了神经网络的研究.1958年Frank Rosenblatt提出了感知模型(Pereeptron),用来进行分类,并首次把神经网络的研究付诸于工程实践。
人工神经网络论文

人工神经网络论文人工神经网络及其应用1. 人工神经网络发展前景人工神经网络(Artificial Neural Networks~NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学系统。
神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学习能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。
神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。
神经网络具有非线性自适应的信息处理能力,克服了传统人工智能方法对于直觉的缺陷,因而在神经专[2]家系统、模式识别、智能控制、组合优化、预测等领域得到成功应用。
神经网络与其他传统方法相组合,将推动人工智能和信息处理技术不断发展。
近年来,神经网络在模拟人类认知的道路上更加深入发展,并与模糊系统、遗传算法、进化机制等组合,形成计算智能,成为人工智能的一个重要方向。
1.1 人工神经网络的研究背景和意义人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统[5]对真实世界物体所作出的交互反应。
人工神经网络就是模拟人思维的一种方式,是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。
虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。
近年来通过对人工神经网络的研究,可以看出神经网络的研究目的和意义有以下三点:(1)通过揭示物理平面与认知平面之间的映射,了解它们相互联系和相互作用的机理,从而揭示思维的本质,探索智能的本源。
(2)争取构造出尽可能与人脑具有相似功能的计算机,即神经网络计算机。
(3)研究仿照脑神经系统的人工神经网络,将在模式识别、组合优化和决策判断等方面取得传统计算机所难以达到的效果。
人工神经网络文献综述.

WIND一、人工神经网络理论概述 (一人工神经网络基本原理神经网络 (Artificialneuralnet work , ANN 是由大量的简单神经元组成的非线性系统,每个神经元的结构和功能都比较简单,而大量神经元组合产生的系统行为却非常复杂。
人工神经元以不同的方式,通过改变连接方式、神经元的数量和层数,组成不同的人工神经网络模型 (神经网络模型。
人工神经元模型的基本结构如图 1所示。
图中X=(x 1, x 2, … x nT∈ R n表示神经元的输入信号 (也是其他神经元的输出信号 ; w ij 表示神经元 i 和神经元 j 之间的连接强度,或称之为权值; θj 为神经元 j 的阀值 (即输入信号强度必须达到的最小值才能产生输出响应 ; y i 是神经元 i 的输出。
其表达式为 y i =f(nj =iΣw ij x j+θi式中, f (·为传递函数 (或称激活函数 ,表示神经元的输入 -输出关系。
图 1(二人工神经网络的发展人工神经网络 (ArtificialNeuralNetwork 是一门崭新的信息处理科学,是用来模拟人脑结构和智能的一个前沿研究领域,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。
人工神经网络系统理论的发展历史是不平衡的,自 1943年心理学家 McCulloch 与数学家 Pitts 提出神经元生物学模型 (简称MP-模型以来,至今已有 50多年的历史了。
在这 50多年的历史中,它的发展大体上可分为以下几个阶段。
60年代末至 70年代,人工神经网络系统理论的发展处于一个低潮时期。
造成这一情况的原因是人工神经网络系统理论的发展出现了本质上的困难,即电子线路交叉极限的困难。
这在当时条件下,对神经元的数量 n 的大小受到极大的限制,因此它不可能去完成高度智能化的计算任务。
80年代中期人工神经网络得到了飞速的发展。
这一时期,多种模型、算法与应用问题被提出,主要进展如:Boltzmann 机理论的研究, 细胞网络的提出,性能指标的分析等。
智能控制导论论文(人工神经网络)

智能控制导论论文●系别:●班级:●学号:●姓名:●日期:人工神经网络关键词:人工神经网络、产生、发展、应用内容摘要:人工神经网络是二十世纪科学技术所取得的重大成果之一,是人类认识自然道路上的又一座里程碑。
90年代以来,国际学术界掀起了研究人工神经网络的热潮,但是探讨其哲学思想方面的研究相对薄弱。
我们知道,任何一门影响巨大、意义深远的科学技术,其发展过程必然揭示了科学技术发展的基本规律以及影响其发展的主要因素。
人工神经网络(Artificial Neural Networks, ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。
人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。
人工神经网络是一门发展十分迅速的交叉学科,它是由大量处理单元组成的非线性大规模自适应动力系统,具有学习能力、记忆能力、计算能力以及智能处理能力,并在不同程度和层次上模仿人脑神经系统的信息处理、存储及检索功能。
同时,人工神经网络具有非线性、非局域性、非定常性、非凸性等特点,因此在智能控制、模式识别、计算机视觉、自适应滤波和信号处理、非线性优化、自动目标识别、连续语音识别、声纳信号的处理、知识处理、智能传感技术与机器人、生物医学工程等方面都有了长足的发展。
人工神经网络产生的背景自古以来,关于人类智能本源的奥秘,一直吸引着无数哲学家和自然科学家的研究热情。
生物学家、神经学家经过长期不懈的努力,通过对人脑的观察和认识,认为人脑的智能活动离不开脑的物质基础,包括它的实体结构和其中所发生的各种生物、化学、电学作用,并因此建立了神经元网络理论和神经系统结构理论,而神经元理论又是此后神经传导理论和大脑功能学说的基础。
人工神经网络模型算法和应用的综述

人工神经网络模型算法和应用的综述人工神经网络(Artificial Neural Network,ANN)是一种模仿生物神经网络的计算模型,由许多人工神经元节点组成。
它通过模拟人类神经系统的工作方式,实现对信息的处理和学习能力。
随着计算机科学和人工智能领域的发展,人工神经网络模型算法和应用得到了广泛的研究和应用。
本文将对人工神经网络模型算法以及其在各个领域中的应用进行综述。
一、人工神经网络模型算法1. 感知器模型感知器模型是最早应用于人工神经网络中的一种模型。
它由多个输入节点和一个输出节点组成,通过对输入节点和权重的线性组合,利用激活函数将结果转化为输出。
感知器模型的简单结构和快速训练特性使得它在二分类问题中得到广泛应用。
2. 多层前馈神经网络(Feedforward Neural Network,FNN)多层前馈神经网络是一种典型的人工神经网络模型。
它由多个神经元层组成,每一层的神经元与上一层的神经元全连接。
信息在网络中只向前传递,从输入层经过隐藏层最终到达输出层。
多层前馈神经网络通过反向传播算法进行训练,可以应用于各种复杂的非线性问题。
3. 循环神经网络(Recurrent Neural Network,RNN)循环神经网络是一种具有反馈环的神经网络模型。
它在网络中引入了记忆机制,使得信息可以在网络中进行循环传播。
循环神经网络适用于序列数据的处理,如自然语言处理和时间序列预测等任务。
4. 卷积神经网络(Convolutional Neural Network,CNN)卷积神经网络是一种专门用于图像识别和处理的人工神经网络模型。
它通过卷积层、池化层和全连接层等组件,实现对图像中特征的提取和分类。
卷积神经网络在计算机视觉领域中具有重要的应用,如图像分类、目标检测和语义分割等任务。
二、人工神经网络的应用1. 自然语言处理人工神经网络在自然语言处理中具有广泛的应用。
例如,利用循环神经网络可以实现语言模型和机器翻译等任务;利用卷积神经网络可以进行文本分类和情感分析等任务。
神经网络与人工神经网络控制综述
神经网络与人工神经网络控制综述摘要:本文阐述了人工神经网络和神经网络控制的基本概念、特点以及两者之间的关系,着重介绍了人工神经网络的工作原理和神经网络控制技术的应用,并对该技术的发展趋势做出了预测。
关键词:神经元;人工神经网络;神经网络控制;应用Abstract:It expounds the basic concepts, characteristics of the artificial neural network and neural network control and the relationship between them, and the basic principle of artificial neural networks and applications of neural network control technology are emphatically introduced, then the development trend of the technology has been forecasted.Keyword: Nerve Cell; Artificial Neural Networks; Neural Network Control; Application 1 人工神经网络与神经网络控制的基本概念和特点人工神经网络是由大量处理单元互联组成的非线性、自适应信息处理系统。
它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。
基于人工神经网络的控制(ANN—based Control)简称神经网络控制(Neural Control)。
[1]1.1人工神经网络1.1.1 生物神经元模型自20世纪40年代,随着神经解剖学、神经生理学以及神经元的电生理过程等的研究取得突破性进展,人们对人脑的结构、组成及最基本工作单元有了越来越充分的认识。
人工神经网络论文
人工神经网络学号:7学生所在学院:信息工程学院学生姓名:李建建任课教师:聂文滨教师所在学院:信息工程学院2009年12月目录第一部分:绪论31.1人工神经网络的定义31.2人工神经网络的基本原理31.3生物神经元31.4人工神经元模型41.5人工神经网络模型51.6.常见神经元响应函数71.7.神经网络基本学习算法81.7.1有教师学习(监督学习)81.7.2无教师学习(无监督学习)81.7.3强化学习(再励学习)8第二部分:反向传播网络92.1 BP网络92.1.1BP网络主要应用:92.1.2BP网络特点92.1.3多层BP网络简介102.2三层BP网络102.2.1三层BP网络结构图102.2.2三层BP网络学习算法112.2.3三层BP网络设计需要考虑的问题11 第三部分:自适应竞争神经网络123.1自组织网络123.1.1网络类型123.1.2网络学习规则133.2竞争网络133.2.1网络结构133.2.2竞争网络原理143.2.3网络工作方式143.2.4 网络训练153.2.5竞争网络的局限性15第四部分:地震预报的MATLAB实现154.1基于人工神经网络的地震预测研究背景154.2模型的建立164.3自适应竞争网络对地震等级进行预测164.3.1数据处理164.3.2自适应竞争网络设计174.4BP网络对地震的大小进行预测184.4.1数据处理184.4.2BP网络的设计19第五部分:作业21第一部分:绪论1.1人工神经网络的定义人工神经网络的定义不是统一的,T.Koholen对人工神经网络的定义:“人工神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。
”1.2人工神经网络的基本原理人工神经网络(articles neural network,ANN)结构和工作机理基本上以人脑的组织结构(大脑神经元网络)和活动规律为背景的,它反映了人脑的某些基本特征,但并不是要对人脑部分的真实再现,可以说它是某种抽象、简化或模仿。
人工神经网络论文2
人工神经网络学院:信息与通信工程学院班级:自动化班***名:***学号:***********摘要人工神经网络是对人脑功能的某些程度的反映,具有自适应和自学习的能力,可通过对模式样本的自学习,从中获取特征,并能将学习获得的知识应用到图像、文字等识别中。
本文对人工神经网络做了简要的概述,重点讲述了两种应用最广泛的神经网络模型:BP神经网络和Hopfield 神经网络。
对BP神经网络作了详细的介绍,重点在于三层BP网络的学习。
Hopfield神经网络应用非常广泛,本文用Hopfield神经网络进行英文字母识别。
关键词人工神经网络,BP神经网络,三层BP网络, Hopfield神经网络,模式识别AbstractArtificial neural network is to the brain function, some degree of reflect with adaptive and self-learning ability, but through the study of pattern samples from, obtain characteristics, and can be applied to study the knowledge obtained recognition of images and text.Based on artificial neural network did briefly, focused on the two kinds of the most widely used neural network model: BP neural network and Hopfield neural networks.On BP neural network is analyzed in detail, the emphasis is on three layers of BP neural network learning.Hopfield neural network is used extensively, this article with the Hopfield neural network for English letters recognition.Keywords artificial neural network, the BP neural network, and the third floor Hopfield neural network BP network, pattern recognition一绪论1.1人工神经网络的定义和应用人工神经网络(artificial neural network,ANN)是一个用大量简单处理单元经广泛链接而组成的人工网络,是对人脑或生物神经网络若干基本特性的抽象和模拟。
人工神经网络发展综述
人工神经网络发展综述人工神经网络发展综述1 绪论人工神经网络(Artificial Neural Network, ANN)是由大量处理单元互联组成的非线性、自适应信息处理系统。
它是在现代神经科学研究成果的基础上提出的,试图通过模拟大脑神经网络处理、记忆信息的方式进行信息处理。
ANN 通过模仿人类大脑的结构和功能,并借鉴生物神经科学的研究成果,实现对信息的处理,是一种新兴的交叉学科,不但推动了智能化计算的应用和发展,同时也为信息科学和神经生物学的研究方法带来革命性的变化,现已成功应用于脑科学,认知科学,模式识别,智能控制,计算机科学等多个领域。
在实际应用中,人工神经网络的选取通常包括适当的神经网络模型,合理的网络结构及快速有效的网络参数训练算法。
而针对某一特定网络模型,ANN的研究主要集中在结构的调整和训练算法的改进两个方面。
所谓神经网络训练,也就是网络参数的学习和调整,是一个反复调节节点之间权值和阈值的过程,其学习可以分成三类,即有监督学习,无监督学习和强化学习,本文基于有监督和无监督学习进行分类,分别分析了前馈神经网络的特点及研究现状、递归神经网络的特点及研究现状。
2 前馈神经网络2.1 前馈神经网络的特点前馈神经网络的主要种类包括:感知器,线性神经网络,BP 网络,径向基网络(RBF)等。
其训练算法主要采用梯度下降法,包括:误差反向传播算法,改进的BP算法,Levenberg -Marquardt 法(LM)等。
前馈神经网络具有学习简单,收敛较快等优点,因此在实际应用中,一般选取三层或以上的网络结构,神经网络的任意逼近定理指出,训练合适的多层前馈神经网络能够以任意精度逼近任意连续函数。
当网络结构已知的情况下,训练前馈神经网络的本质就是确定最优权值和阈值的方法,前馈神经网络的训练方式一般采用网络理想输出和实际输出的误差作为权值调整信号,解空间一般是多峰函数,由于训练过程中很容易陷入局部极小,因此网络的训练目标就是求解一组最优的权值,使误差达到最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人工神经网络的最新发展综述摘要:人工神经网络是指模拟人脑神经系统的结构和功能,运用大量的处理部件,由人工方式建立起来的网络系统。
该文首先介绍了神经网络研究动向,然后介绍了近年来几种新型神经网络的基本模型及典型应用,包括模糊神经网络、神经网络与遗传算法的结合、进化神经网络、混沌神经网络和神经网络与小波分析的结合。
最后,根据这几种新型神经网络的特点,展望了它们今后的发展前景。
关键词:模糊神经网络;神经网络与遗传算法的结合;进化神经网络;混沌神经网络;神经网络与小波分析。
The review of the latest developments in artificial neuralnetworksAbstract:Artificial neural network is the system that simulates the human brain’s structure and function, and uses a large number of processing elements, and is manually established by the network system. This paper firstly introduces the research trends of the neural network, and then introduces several new basic models of neural networks and typical applications in recent years, including of fuzzy neural network, the combine of neural network and genetic algorithm, evolutionary neural networks, chaotic neural networks and the combine of neural networks and wavelet analysis. Finally, their future prospects are predicted based on the characteristics of these new neural networks in the paper.Key words: Fuzzy neural network; Neural network and genetic algorithm; Evolutionary neural networks; Chaotic neural networks; Neural networks and wavelet analysis1 引言人工神经网络的研究始于20世纪40年代初。
半个多世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的曲折道路。
人工神经网络具有自组织、自学习、联想存储的功能和高速寻找优化解的能力,在模式识别、信号处理、自动控制、人工智能、自适应的人机接口、优化计算、通信等领域有广泛的应用。
神经网络虽已在许多领域应用中取得了广泛的成功,但其发展还不十分成熟,还有一些问题需进一步研究。
(1)神经计算的基础理论框架以及生理层面的研究仍需深入。
这方面的工作虽然很困难,但为了神经计算的进一步发展却是非做不可的。
(2)除了传统的多层感知机、径向基函数网络、自组织特征映射网络、自适应谐振理论网络、模糊神经网络、循环神经网络之外,一些新的模型和结构很值得关注,例如最近兴起的脉冲神经网络和支持向量机。
(3)增强神经网络的可理解性是神经网络界需要解决的一个重要问题。
这方面的工作在今后若干年中仍然会是神经计算和机器学习界的一个研究热点。
(4)监督学习仍有很多值得研究的问题,但应该认识到非监督学习具有很大的潜力。
相对于监督学习来说,由于非监督学习的研究起步较晚,其研究空间比前者更大。
(5)神经计算技术与其他技术尤其是进化计算技术的结合以及由此而来的混合方法和混合系统,正成为一大研究热点。
(6)神经网络用于控制时还有许多问题值得研究:现行的学习算法收敛速度低,存在局部最优问题;分布式并行处理方式的网络内部机理并不清楚,选择网络层数、每层神经元个数,还得凭经验;泛化能力不足,制约了控制系统的鲁棒性;需要创造更适合于控制的专用神经网络;网络建立模算法和控制系统的收敛性与稳定性需进一步研究。
(7)神经网络的应用领域将不断扩大,在未来的几年中有望在一些领域取得更大的成功,特别是多媒体技术、医疗、金融、电力系统等领域。
2 几种新型的神经网络2.1模糊神经网络模糊神经网络这一新兴领域的开拓者是美国南加利福尼亚大学信号和图像处理研究所长B.kosko教授。
1987年,B.kosko率先将模糊数学与神经网络相结合,提出了模糊神经网络的概念。
模糊神经网络主要有三种结构(1)输入信号为普通变量,连接权为模糊变量;(2)输入信号为模糊变量,连接权为普通变量;(3)输入信号与连接权均为模糊变量。
根据网型及学习算法中的点积运算是使用模糊逻辑运算还是使用模糊算术运算,而分成常规型(regular)和混合型( hybrid)模糊神经网络。
近年来,模糊神经网络的研究已取得了一些成果,主要体现在以下几个方面:(1)模糊系统与神经网络系统作为一般自适应模型无关估计的研究。
我们所处理的任何过程与系统均可用激励与响应的映射来表征,即任何对象都可以用一自适应模型无关函数估计器特性来概述。
神经网络作为一般函数估计器,已被广泛地适用于各种应用领域。
模糊系统作度逼近一个紧致域上的任意连续函数,Wang利用Stone - Weiestrass定理证明了具有积推理、中心反模糊化、高斯型隶属函数的模糊系统也能以任意的精度逼近任一闭子集上的实连续函数。
(2)利用神经网络对模糊控制规则的获取、细化等方面的研究。
模糊控制器设计的关键就是模糊建模然而经典方法都很难有效地辨识规则和细调隶属函数,对于专家难以表达的可采用聚类(或矢量量化)的方法从专家的行为特性中获取有用的启发知识Kosko利用矢量量化对积空间进行聚类,以获得模糊规则。
在专家知识无法用语言表达时,采用无导师的规则聚类算法从经验数据中获取知识是十分必要的这就使得研究成功的规则获取算法成为目前模糊神经网络研究的重要方法之一。
然后,还要利用实际目标系统对所获得的规则进行细化。
(3)在神经网络学习算法中引入模糊控制技术的研究。
传统的神经网络学习算法(特别是BP算法)存在学习周期长,甚至常常陷入局部极小值点的缺陷,为了加快学习速度,改善学习算法的性能,可以对网络的学习性能进行分析,利用获取适当的启发式知识来控制学习算法,在学习算法中引入模糊控制技术,就能动态地调整网络的学习过程,使传统的静态学习算法动态化。
模糊神经控制包括两个方面:(1)基于神经网络的模糊控制。
它将模糊系统设计方法与神经网络的连接主义结构和学习方法结合起来,把模糊系统表达成连接主义方式的网络结构,模糊控制的模糊化、模糊推理和解模糊化三个基本过程全都用神经网络来实现;(2)模糊神经网络。
它在传统的神经网络中增加一些模糊部分,除了具有神经网络的功能外,还能处理模糊信息,完成模糊推理功能。
模糊神经控制的未来研究应集中于以下几个方面:(1)研究模糊逻辑与神经网络的对应关系,将对模糊控制器的调整转化为等价的神经网络的学习过程,用等价的模糊逻辑来初始化神经网络;(2)完善模糊神经控制的学习算法,以提高控制算法的速度与性能,可引入遗传算法、BC 算法中的模拟退火算法等,以提高控制性能;(3)模糊控制规则的在线优化,可提高控制器的实时性与动态性能;(4)需深入研究系统的稳定性、能控性、能观性以及平衡吸引子、混沌现象等非线性动力学特性。
2.2神经网络与遗传算法的结合遗传算法是1962年由美国的Hollad提出的。
遗传算法是基于自然选择和基因遗传学原理的全局优化搜索算法,因其简单通用,鲁棒性强,适于并行处理,已成为人们用来解决高度复杂问题的一个新思路和新方法。
目前已被广泛用于许多实际问题。
遗传算法与神经网络的结合主要体现在以下几个方面:网络连接权重的进化训练;网络结构的进化计算;网络结构和连接权重的同时进化;训练算法的进化设计。
基于进化计算的神经网络设计和实现已在众多领域得到应用,如模式识别)%"+、机器人控制、财政预测等,并取得了较传统神经网络更好的性能和结果。
但从总体上看,这方面研究还处于初期阶段,理论方法有待于完善规范,应用研究有待于加强提高。
神经网络与进化算法相结合的其他方式也有待于进一步研究和挖掘。
2.3进化神经网络近年来,越来越多的研究人员正在从事神经网络(NN)与进化算法( EA)相结合的研究工作,从而开辟了新的进化神经网络研究领域。
可以说它是神经网络与进化算法的跨学科结合的产物,尽管它们的思想都萌芽于20世纪中叶,但二者的结合却是20世纪末的事情。
人们想通过研究进化神经网络更好地理解学习与进化的相互关系,并且这一主题已成为人工生命领域中十分活跃的课题。
进化神经网络的主要研究内容为:如何对神经网络的结构进行编码,即网络参数编码的确定,包括选择待编码的参数、为各参数分配串长、定义串值与参数值之间的映射关系等。
基于传统BP神经网络存在的问题,本文将遗传算法与BP网络有机结合起来,提出了进化神经网络学习算法。
该算法主要按照传统BP学习算法的过程进行学习,当学习过程处于局部极小时,就开始使用遗传算法产生新的子代,从这些新的子代和他们的父代中选择一个具有最优适合度的染色体作为新的起点,经过交叉、变异得出新的权值,实现搜索全局最优解。
由此可见,该算法的复杂度并没有太大的增加,同时又保证了学习过程的全局收敛性,大大加快了学习的收敛速度2.4混沌神经网络简单地说,混沌是一种确定的系统中出现的无规则的运动。
混沌理论所讨论的是非线性动力学混沌,目的是揭示貌似随机的现象背后可能隐藏的简单规律,以求发现一大类复杂问题普遍遵循的共同规律。
当神经网络实际应用中,网络输入发生较大变异时,应用网络的固有容错能力往往感到不足,经常会发生失忆现象。
混沌神经网络动态记忆属于确定性动力学运动,记忆发生在混沌吸引子的轨迹上,通过不断地运动(回忆过程),一一联想到记忆模式,特别对于那些状态空间分布得较接近或者发生部分重叠的记忆模式,混沌神经网络总能通过动态联想记忆加以重现和辨识,而不发生混淆,这是混沌神经网络所特有的性能,它将大大改善神经网络的记忆能力。
混沌吸引子的吸引域存在,形成了混沌神经网络固有容错功能。
以上性能提高了混沌神经网络的实用性,这将对复杂的模式识别、图像处理等工程应用发挥重要作用。