矩阵在通信中的应用论文

合集下载

矩阵分析方法及应用论文

矩阵分析方法及应用论文

矩阵分析方法及应用论文矩阵分析方法是一种应用矩阵论和线性代数的数学工具,用于研究和解决与矩阵相关的问题。

矩阵可以用于描述线性变换、矢量空间和方程组等数学对象。

矩阵分析方法可以应用于多个领域,包括数学、物理、工程、计算机科学等。

在以下回答中,我将简要介绍矩阵分析方法的基本原理和一些应用,并提供一些相关论文的例子。

首先,让我们来了解一下矩阵分析的基本原理。

矩阵是一个由数值排列成的矩形数组,可以表示为一个m×n的矩阵,其中m表示行数,n表示列数。

矩阵的元素可以是实数或复数。

通过矩阵分析,我们可以研究矩阵的性质、运算规则和应用。

矩阵乘法是矩阵分析中最基本的操作之一。

当两个矩阵相乘时,第一个矩阵的列数必须等于第二个矩阵的行数。

矩阵乘法的结果是一个新的矩阵,其行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。

矩阵乘法可以表示线性变换和矢量的线性组合等概念。

另一个重要的矩阵分析方法是特征值和特征向量的计算。

矩阵的特征值是矩阵与一个非零向量之间的一个简单乘法关系。

特征向量是与特征值对应的非零向量。

特征值和特征向量在物理、工程和计算机科学等领域中有广泛的应用,例如图像处理、机器学习和数据压缩等。

矩阵分析方法在多个领域有着广泛的应用。

下面是一些矩阵分析方法的应用领域及相应的论文例子:1. 图像处理:矩阵分析方法在图像处理中被广泛应用,例如图像压缩和恢复。

论文例子:《基于矩阵分解的图像压缩算法研究》、《基于矩阵分析方法的图像恢复技术研究》。

2. 数据处理:矩阵分析方法在数据挖掘和机器学习中起着重要作用,例如矩阵分解和矩阵推荐系统。

论文例子:《基于矩阵分解的矩阵推荐系统研究》、《基于矩阵分析的数据挖掘技术研究》。

3. 信号处理:矩阵分析方法在信号处理中具有广泛的应用,例如语音信号处理和音频编码。

论文例子:《基于矩阵分析方法的语音信号处理技术研究》、《基于矩阵分解的音频编码算法研究》。

4. 控制系统:矩阵分析方法在控制系统设计和分析中具有重要作用,例如状态空间表示和线性二次型控制器设计。

循环矩阵性质及应用论文

循环矩阵性质及应用论文

循环矩阵性质及应用论文循环矩阵是一种特殊的矩阵,其最后一行等于第一行,最后一列等于第一列的矩阵。

循环矩阵的性质和应用已经在许多研究论文中得到了研究和应用。

首先,循环矩阵具有周期性的性质。

由于最后一行等于第一行,最后一列等于第一列,循环矩阵的元素具有周期性的变化规律。

这个性质可以用来处理数据周期性变化的问题,比如对于一段时间内的某种数据,可以将其表示为循环矩阵的形式,从而能够更好地分析和理解数据的周期性变化规律。

其次,循环矩阵具有线性性质。

循环矩阵乘以一个标量或者与另一个循环矩阵相加、相减,结果仍为循环矩阵。

这个性质可以简化矩阵运算的过程,减少计算量,提高计算效率。

循环矩阵的应用已经广泛地涉及到数学、信号处理、通信等领域。

以下是一些循环矩阵应用的论文:1. Bini D. et al. (2011). "Circulant preconditioners for Toeplitz systems". 这篇论文讨论了循环矩阵作为预处理器在Toeplitz系统求解中的应用,通过循环矩阵的性质和特点,提出了一种高效的求解方法。

2. Tseng P. T., et al. (2016). "Circulant structure-preserving algorithms for data recovery problems". 这篇论文研究了循环矩阵在数据恢复问题中的应用,通过利用循环矩阵的性质,提出了一种结构保持的算法,能够更好地恢复数据中的缺失信息。

3. Chan R. H., et al. (2009). "Circulant preconditioners for linear systems with oscillatory or decaying coefficients". 这篇论文探讨了循环矩阵在线性系统求解中的应用,注意到循环矩阵具有周期性的变化规律,作者提出了一种预处理器方法,能够有效地处理具有振荡或者衰减系数的线性系统。

浅谈矩阵在实际生活中的应用

浅谈矩阵在实际生活中的应用

浅谈矩阵在实际生活中的应用摘要:从数学的发展来看,它来源于生活实际,在科技日新月异的今天,数学越来越多地被应用于我们的生活,可以说数学与生活实际息息相关。

我们在学习数学知识的同时,不能忘记把数学知识应用于生活。

在学习线性代数的过程中,我们发现代数在生活实践中有着不可或缺的位置。

在本文中,我们对代数中的矩阵在成本计算、人口流动、加密解密、计算机图形变换等方面的应用进行了探究。

关键词:线性代数矩阵实际应用Abstract:From the development of mathematics, we can see that it comes from our life. With the development of science and technology, the math is more and more being used in our lives, it can be said that mathematics and real life are closely related. While learning math knowledge we can not forget to apply mathematical knowledge to our life. In the process of learning linear algebra, we found that algebra has an indispensable position in life practice. In this article, we explore the application of the matrix in the costing, population mobility, encryption and decryption, computer graphics transform.Keywords: linear algebra matrix practical application1 引言数学作为一门相当重要的学科,在人类发展历史中一直扮演着必不可少的角色,它凝聚了每一代聪明智慧的人们的结晶。

矩阵论文——精选推荐

矩阵论文——精选推荐

矩阵变换法在降低OFDM信号峰均功率比中的应用摘要:近年来,正交频分复用(OFDM)技术继单载波扩频技术(如CDMA)之后,成为主流的传输技术。

目前,OFDM技术已经在DAB(数字广播)、DVB(数字电视)、IEEE802.1lg/a/n,802,16d/e等系统中获得了广泛的应用,正在标准化的3GPP LTE(长期演进)和3GPP2 AIE(空中接口演进)技术也很可能选用OFDM及其改进型(下行OFDMA、上行DFT-S-OFDM)作为基本多址技术。

OFDM的一个主要不足是其发送信号具有很高的峰值与平均功率(PAFR)。

当发送信号的瞬时功率超出功率放大器的动态范围时,将会导致信号的裁剪而产生非线性的信号失真,造成信号畸变,导致频带内的噪声功率增加和频带外的功率扩散,还将破坏各子载波之间的正交性。

本文针对矩阵变换方法的降峰均比性能、实现复杂度,对信号抗噪声性能的影响、对信息速率的影响等方面进行了研究和比较,都进行了较详细的研究和仿真。

关键词:矩阵变换法 OFDM 峰均功率比1.引言近几年来,随着对下一代无线通信系统研究的进展,OFDM渐渐成为主流技术。

与传统的单载波传输方式相比,OFDM具有如下的优点【1】:(1) 频谱效率高:由于FFT变换的正交性使各子载波可以部分重叠,理论上可以接近Nyquist极限。

以OFDM为基础的多址技术OFDMA(正交频分多址)可以实现小区内各用户之间的正交性,从而有效避免用户间干扰。

这使OFDM系统可以实现很高的小区容量。

(2) 带宽扩展性强:由于OFDM系统的信号带宽取决于使用的子载波的数量。

因此OFDM系统具有很好的带宽扩展性。

小到几百KHz,达到几百MHz,都比较容易实现。

尤其是随着移动通信宽带化(将由<5MHz增加到最大20MHz以上),OFDM系统对大带宽的有效支持。

成为其相对于单载波技术(如CDMA)的“决定性优势”。

(3) 抗多径衰落:由于OFDM将宽带传输转化为很多子载波上的窄带传输,每个子载波上的信道可以看作平坦衰落信道,从而人人降低了接收机均衡器的复杂度。

浅谈矩阵的应用

浅谈矩阵的应用

浅谈矩阵的应用作者摘要:矩阵是数学的重要研究工具之一,其应用很广泛,矩阵的应用对于矩阵理论以及数学发展有着非常重要的作用。

本论文主要讨论了矩阵在不同领域中的应用,有非常重要的理论及现实意义。

本研究的开展以文献研究法为基础,通过具体实例来将矩阵在不同领域当中的应用问题解决。

主要讨论的矩阵应用领域主要有经济生活、密码学、交通运输、文献管理以及在解方程组、矩阵秩、在计算机中、向量组秩领域。

关键词:矩阵;应用;线性方程组1 引言在汉代《九章算术》当中就已经提出了矩阵的概念,但并非为独立概念,主要是在实际的问题当中进行应用。

至19世纪末,其概念逐渐形成。

到了20世纪开始,矩阵迅速发展,且遍布生活的每个领域当中,随着现代科学的发展,矩阵在经济中广泛而深入的应用是当前经济学最为深刻的因素之一,矩阵的应用是具备重要的现实意义的,在不同领域当中都会有它的身影[1]。

高校中的必须科目就是代数学,而矩阵的应用也是代数学的重要载体之一。

因此,了解且掌握矩阵的应用,对于解决代数学等问题尤为重要。

本文也将对有关矩阵应用的内容进行了解,并通过具体的例子来说明矩阵在经济学、密码学、交通运输、文献管理以及在解方程组、矩阵秩、在计算机中、向量组秩等方面的应用。

2.预备知识由nm 个数a(1,2,..j.=1.2...n)排成的m行n列的数表称为m行n列矩阵,简称m行n矩阵。

只有一行的矩阵A=aa...a)称为行矩阵或行向量,只有一列的矩阵称为列矩阵或列向量。

矩阵计算的合适出发点是矩阵与矩阵的乘法。

这一问题在数学上虽然简单,但从计算_上来看却是十分丰富的。

矩阵相乘可以有好几种不同的形式,还将引入矩阵划分的概念,并将其用来刻画计算上的几种线性代数的“级”。

如果一个矩阵具有某种结构,则它常常可以加以利用。

例如一个对称矩阵,只需要一个一般矩阵的一半空间即可储存。

在矩阵乘向量中如果矩阵有许多零元素,则可减少许多时间。

矩阵计算是基于线性代数运算的,点积运算包括标量的加法和乘法。

(完整word版)矩阵分析在通信领域的应用

(完整word版)矩阵分析在通信领域的应用

编号:审定成绩:重庆邮电大学矩阵分析小论文学院名称:通信与信息工程学院学生姓名:胡晓玲专业:信息与通信工程专业学号:S160101047教师:安世全时间:2016 年 12 月矩阵在MIMO 信道和保密通信上的应用矩阵广泛应用于通信的各个环节,例如:奇异矩阵,酉矩阵等MIMO 上的应用;可逆矩阵在保密通信上的应用;生成矩阵,监督矩阵在信道编码上的应用;Toeplitz 和Hankel 矩阵在通信信号处理中的应用等。

本文主要讨论矩阵在MIMO 信道和保密通信上的应用。

一、 矩阵应用于MIMO 信道我们知道MIMO 信道在不增加频谱资源和天线发射功率的情况下能显著提升系统容量,同时提高信道的可靠性,降低误码率。

是4G 和未来5G 中的一个非常重要的技术,因此对MIMO 的信道进行建模研究具有巨大的指导意义.本文首先建立了MIMO 信道模型,利用矩阵理论得出MIMO 信道简化模型,再结合信息论计算出信道容量,并得出结论.首先建立一个MIMO 信道模型,发射端通过空时映射将要发送的信号映射到多根天线上发送出去,接收端将各根天线接收到的信号进行空时译码从而恢复出发射端发送的数据信号.当发送信号所占用的带宽足够小的时候,信道可以被认为是平坦的, 这样,MIMO 系统的信道用一个n*m的复数矩阵H 描述。

H 的子元素a ij 表示从第x i (i=1,2,…n)根发射天线到第y j (j=1,2,。

m)根接收天线之间的空间信道衰落系数。

1121112222n n αααααα⎛⎫⎪ ⎪= ⎪ ⎪⎪H 信宿发送信号可以用一个n*1的列向量X =(x 1,x 2…。

x n )表示,其中x i 表示 在第i 个天线上发送的数据.用一个m*1的列向量Y =(y 1,y 2…y m )表示,其中y i 表示在第i 个天线上接收的数据。

信道中的噪声为高斯白噪声n 。

通过这样一个模型,在t 时刻接收信号可以表示为:发送信号的协方差:Rxx=E[XX H ] 发送信号的功率:P=tr (R xx ) 噪声的协方差:R nn =E[nn H ] 接收信号的协方差:因为x 与噪声n 不相关,所以MIMO 信道容量做一般性推导下面根据信息论知识,我们对MIMO 信道容量做一般性推导。

2023年线性代数与其应用期末结课论文

2023年线性代数与其应用期末结课论文

2023年线性代数与其应用期末结课论文摘要:本文旨在探讨线性代数在不同领域中的应用,并对未来的发展趋势进行展望。

首先介绍线性代数的基本概念和理论框架,然后分析其在机器学习、图像处理、通信技术和金融领域中的实际应用。

同时,重点讨论线性代数在人工智能和数据科学中的重要性,并预测未来线性代数在这些领域中的持续应用和发展。

1. 引言线性代数是一门研究向量空间和线性映射的数学学科,是现代数学的基础之一。

它不仅在数学领域中发挥着重要作用,还被广泛应用于计算机科学、物理学、工程学等多个领域。

本文将重点探讨线性代数在不同领域的应用,并对其未来发展进行展望。

2. 线性代数的基本概念和理论框架线性代数的基本概念包括向量、矩阵、线性方程组等。

向量是最基本的概念,它可以表示空间中的一个点、一个箭头或一组数值。

矩阵是由若干个数按一定的规律排列形成的矩形阵列,它在线性代数中有着重要的作用。

线性方程组是一组线性方程的集合,通过矩阵运算可以找到它们的解。

3. 线性代数在机器学习中的应用机器学习是人工智能的重要分支,它使用大量的数据和算法来使计算机具备学习和预测的能力。

线性代数在机器学习中扮演着至关重要的角色,例如在特征提取、分类、回归等方面的应用。

通过矩阵运算和向量空间的概念,可以对数据进行降维处理,提取出最具代表性的特征,从而实现对复杂问题的分类和预测。

4. 线性代数在图像处理中的应用图像处理是将数字图像进行分析、改变和重建的过程。

线性代数在图像处理中具有广泛的应用,例如图像的压缩、滤波、增强等。

矩阵运算和线性变换可以对图像进行变换和处理,从而实现图像的降噪、清晰化等效果。

5. 线性代数在通信技术中的应用通信技术是信息传输的重要手段,线性代数在通信技术中扮演着关键的角色。

信号通过信道传输时,经常会受到噪声和干扰的影响。

线性代数的方法可以对信号进行编码、解码和纠错,从而提高通信系统的可靠性和效率。

6. 线性代数在金融领域中的应用金融领域对数据的处理和分析需求非常高,线性代数在金融领域中发挥着重要的作用。

成都电子科技大学矩阵论课程结课论文

成都电子科技大学矩阵论课程结课论文

集成电路噪声模型的矩阵表示摘要:本文给出了集成电路的噪声模型及其矩阵表示,首先介绍了分立器件的噪声矩阵,根据叠加原理得出二端口网络及二端口互联网络的噪声模型。

运用矩阵理论分析集成电路噪声,直观,方便,主要运算过程都涉及矩阵的转置、矩阵的逆、矩阵的共轭以及矩阵的四则运算,便于进行计算机信息处理。

关键词:集成电路噪声二端口网络矩阵理论1引言噪声是影响现代电子系统性能的一个主要因素,随着集成电路工艺技术的发展,电源电压越来越低,噪声对电子系统的影响越来越大,已经成为大多数模拟电路设计中要考虑的最主要因素。

集成电路的低噪声化及其噪声特性分析是通信与信息系统领域中的重要研究课题,在近代信息技术各个应用领域中,低噪声集成电路的需求量越来越大,而且对噪声特性的要求越来越高,其原因是器件和电路的噪声水平及噪声特性直接关系到信号检测灵敏度和电路或系统的可靠性,关系到系统的整体性能,在电子系统设计阶段,不仅要选用低噪声集成电路器件,而且要对不同集成电路进行噪声分析,并优化各种参数及结构,显然,应用有效的噪声分析手段不仅可以大大缩短研制周期,节省研制费用,而且可保证研制开发的集成电路应用系统具有优良的性质。

集成电路应用系统通常是一个比较复杂的系统,然而,任何一个复杂的系统都可以分解成相对比较简单的单元,使大系统变成小系统,使复杂问题简单化,从而便于分析。

本文先讨论分立原件的噪声模型,进而分析互联电路网络的噪声。

2.MOSFET’s器件的噪声矩阵随着CMOS工艺技术的进步,CMOS 技术在无线通讯领域中的应用成为可能, 相应地MOSFET’s的噪声行为日益受到重视,近来有许多作者致力于MOSFET’s的噪声模型研究,一个精确的噪声模型可以使电路设计者更加充分利用现有技术。

图1是一个典型的MOSFET等效噪声电路模型,其中考虑了如下的噪声电流源:沟道噪声(i ds),栅极诱生噪声(i gs),栅极电阻热噪声(i g),源漏电阻热噪声(i s,i d)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵理论(论文)矩阵理论在通信领域的应用学生:学号:矩阵理论在通信领域的应用【摘要】矩阵是数学的基本概念之一,也是线性代数的核心内容。

矩阵广泛运用于各个领域,如数学建模、密码学、化学、通信和计算机科学等,解决了大量的实际问题。

本文主要介绍矩阵在通过信领域的应用,如:在保密通信中,应用逆矩阵对通信的信息进行加密;在信息论中,利用矩阵理论计算信源熵、信道容量等;在信息论的信道编码中,利用监督矩阵,生成矩阵,对信道中的信息进行编码,利用错误图样对信道传输的信息进行纠正;此外,矩阵分析在MIMO技术这个模块中也有着很重要的应用,基本可以说矩阵分析是MIMO技术研究的基础。

关键词:矩阵;保密通信;信道容量;信道编码;MIMO1、引言随着科技快速稳健的发展,通信技术也得到了飞速的发展,人们对通信的要求也不断提高,不仅要求通信的实时性、有效性,还要求通信的保密性。

而现实环境中,由于噪声的影响,常常使通信出现异常,这就要求人们对接收到的信号能够更好的实现检错纠错。

此外,在频谱资源的匮乏己经成为实现高速可靠传输通信系统的瓶颈。

一方面,是可用的频谱有限;另一方面,是所使用的频谱利用率低下。

因此,提高频谱利用率就成为解决实际问题的重要手段。

多进多出(MIMO)[1]技术即利用多副发射天线和多副接收天线进行无线传输的技术,该技术能够很好的解决频谱利用率的问题。

然而对以上通信中存在的问题的分析和研究都需要用到矩阵理论的知识,本文把矩阵理论和其在通信领域的应用紧密结合,通过建立一些简单的分析模型,利用矩阵知识将通信领域很多复杂的计算和推导变得简单明了。

2、矩阵在通信领域中的应用2.1 矩阵在保密通信中的应用[2]保密通信是当今信息时代的一个非常重要的课题, 而逆矩阵正好在这一领域有其应用。

我们可以用逆矩阵[3][4]所传递的明文消息进行加密(即密文消息),然后再发给接收方,而接收方则可以采用相对应的某种逆运算将密文消息编译成明文。

保密通信的加密原理:信息发送端首先根据密钥矩阵A的阶数(||A||=n),将明文转换为n维数向量X,然后将X与A相乘得到密文Y,既Y=AX,再将Y发送,信息端接受到Y后,则利用密钥矩阵A-1(其中A与A-1互为可逆矩阵)与Y相乘,则会得到明文X,既:A-1Y =A- 1AX=X。

2.2 矩阵在信息论中的应用在信息论中,将信源概率P(X)、信道转移概率P(Y|X)、信宿概率P(Y)写成矩阵的形式,从而将信源到信宿之间复杂的对应关系变得更简洁,写成矩阵关系即为:P(Y)=P(X)P[Y|X]。

此外,当将信息论中的关于信源熵H(X)、信道噪声熵H(Y|X)、平均互信息I(X;Y)、信道容量C等的繁琐的计算写成矩阵形式时,便可以用计算机来进行处理,这样便大大提高了计算速率。

2.3 矩阵在信道编码中的应用在信道编码和保密通信中,利用矩阵实现对信道中传输信息和信源信息的编码,既降低了无线通信的误码率,也实现了通信的保密性。

在对信道传输的信息进行信道编码时,为了实现检错和纠错的能力,往往需要在原来经过编码的信源信息中添加部分冗余,而这些添加的冗余便作为监督位对每一组编码进行监督。

含有监督码元的编码矩阵就构成监督矩阵H。

在信道编码中,比较典型的便是汉明码(能够纠正一位错误,最小码距为3的编码效率高的线性分组码),下面简单介绍信道编码中的汉明码的编码步骤。

①构造满秩的(n-k)×n校验矩阵H。

S i=r i H T i=1,2,3, (2)其中,r i是第i个接收码字,1×n向量;s i是第i个接收码字的误码标志,1×(n-k)向量;2n-k≥n+1;当r i=c i,取S i=r i H T= c i H T=0; c i是第i个发送码字,1×n向量。

②设满秩的k×n生成矩阵G。

G=[I k×k G’k×(n-k)]c i=x i G i=1,2,3, (2)其中,x i 是第i 个发送消息,1×k 向量;由生成矩阵G 与校验矩阵H 之间GH T =0求出G 即可编码。

可知,利用矩阵之后,编码变得简洁明了。

2.4 矩阵在MIMO 中的应用无线信道的一个重要特性就是存在衰落。

MIMO [5]是多输入多输出系统,它能够将传统通信系统中存在的多径因素变成对用户通信性能有利的因素,提高系统抗衰落性能。

从而极大增加系统容量,提高频谱利用率,改善无线链路的质量,成倍地提高业务传输速率。

通信信道容量是信道进行无失真传输速率的上界,因此研究MIMO 的信道容量[6]具有巨大的指导意义。

矩阵理论在通信的难点在于信道的处理,因此,矩阵理论与无线信道的研究是一个很好的切入点。

在MIMO 技术的研究中,对于MIMO 信道的容量的研究具有着重大的意义。

目前,MIMO 技术的信道容量和空时编码,空时复用等技术都离不开矩阵理论的应用。

为了描述MIMO 信道[7],令发射天线数目为Nt ,接受天线数目为Nr 。

当发送信号所占用的带宽足够小的时候,信道可以被认为是平坦的,这样在某特定时刻m ,发射的符号构成一个N t ×1的矢量X[t],接受的符号构成一个N r ×1的矢量Y[t],和一个信道矩阵H ,三者的关系为:t t t +Y[]=HX[]N[] (1)其中,12[,,,]t T N n n n =N(t) (2)表示高斯白噪声,方差为 ;H 为N r ×N t 信道矩阵,即1111t r r t N N N N h h h h ⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦H (3)其中, 表示从发射天线i 到接受天线j 的信道系数。

这样,式(1)可写为1t N t t tjji i j i y h x n ==+∑ (4)式中,上标t 表示在t 时刻。

根据奇异值分解(SVD )理论,r t N N ⨯信道矩阵可以进行分解,得到⎡⎤⎢⎥⎣⎦H H E 0H =U V =UDV00 (5)12(,,,)m diag λλλ=E (6)(1,2,,)i i m λ=为矩阵H 的全部非零奇异值。

U 和V 分别是r r N N ⨯和t t N N ⨯的酉矩阵,满足r H N =UU I ,t H N =VV I ,其中r N I 和t N I 分别是r r N N ⨯和t t N N ⨯的单位阵。

这样,式(1)变为H t t t +Y[]=UDV X[]N[] (7)对式(7)进行变换,有H H H t t t +U Y[]=DV X[]U N[] (8)取[]H t t '=Y U Y[],[]H t t '=X V X[],[]H t t '=N U N[],则有 t t t '''+Y []=DX []N [] (9)于是我们得到一个与MIMO 信道等效的表达形式,在这个等效的表达形式中,D 为信道矩阵,原来的MIMO 信道就等效地转化为m 个平行的信道,每个信道的系数则为i λ[1]。

下面应用矩阵理论对MIMO 信道容量进行推导和计算。

我们假设信道矩阵H 在接收端已经完全已知,但是它是随机的,因此我们可以得到瞬时信道容量为: ()()()max ,X x C H I x y ƒ= (10)其中, 是在已知信道H 的情况下输入x 与输出y 之间的互信息量,有: ()()(),|I x y H y H y x =- (11) 其中, 是y 的信息熵(微分熵),定义:2()()log ()H y p y p y =-∑,其中()p y 是y 的概率(概率密度)。

H (y )是y 的差分嫡,(|)H y x 是给定x 条件下y 的差分嫡,由于发送信号与噪声之间是独立的,因此有(|)()H y x H n =[1],所以上式可以重新写为:()()(),I x y H y H n =- (12)由于噪声概率密度函数确定,所以()H n 为定值,当信道为加性高斯信道时,信源x 服从高斯分布时此时接收信号y 也服从高斯分布,根据信息论理论,此时(,)I x y 取最大,即为信道容量。

此时y 和n 的信息熵分别为: {}212()log det yy bit H y eR π⎡⎤⎣⎦= (13) {}2212()log det R n bit H n e I πσ⎡⎤⎣⎦= (14)所以我们可以得到信道瞬时交互信息(,)I x y ,也即信息容量为: {}222222221()log det /det 21log det ()/det 21log det 2R R R R R yy n H xx n n n H xx n C H eR e I HR H e I I e I HR H I bit ππσπσπσσσ⎡⎤⎡⎤=⎣⎦⎣⎦⎧⎫⎡⎤⎪⎪⎡⎤=+⎨⎬⎢⎥⎣⎦⎪⎪⎣⎦⎩⎭⎧⎫⎡⎤⎪⎪=+⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭ (15)工程中一般定义信道容量为单位时间内平均互信息的最大值,故定义MIMO 的信道容量: ()1C C H T = (16)其中T 为一个符号周期,根据采样定理,(1/)2T B ≥,其中B 为信号带宽,取(1/)2T B =,代入(16)式,得: 22log det /R H xx n HR H C B I bit s σ⎧⎫⎡⎤⎪⎪=+⎨⎬⎢⎥⎪⎪⎣⎦⎩⎭ (17) 这便是MIMO 的信道容量一般公式。

在得到MIMO 信道容量一般公式后便是利用奇异值分解计算MIMO 信道容量:对于MIMO 无线信道,信道是极其复杂的,因此原始的信道矩阵也就显得复杂,不便于分析,而且一般矩阵不经过处理计算行列式很困难。

这就自然想到在信源端对发射信号做某种预处理,使得经过预处理的信号经过的信道变得简单易分析,而且具体实现也变得简单。

对于信道矩阵来说,对角矩阵是最简单的,所以自然就想到把信道矩阵分解,利用矩阵理论中的奇异值分解可以达到这种目的。

由矩阵理论的相关知识易知,每个接收天线收到的信号矢量可以表示如下:H y UDV x n =+ (18) 利用矩阵奇异值分解和相关的信息论知识易求得MIMO 链路信道容量的计算公式为: 221log (1)/r i T i T P C B bit s n λσ==+∑ (19)由上式可以看出,MIMO 链路的信道容量很大程度上取决于H 的秩r 。

矩阵的秩越大,容量也越大。

所以,MIMO 正是利用无线信道的多径效应使相距超过半个波长的天线尽量不相关,从而使信道矩阵秩越大,进而在不增加带宽和发射功率的情况下增加系统容量。

3、分析总结通过这次小论文,我发现矩阵分析这门数学课在本专业的很多领域中有很重要的应用。

通过应用矩阵理论的相关知识,将保密通信、信息论、信道编码、MIMO 链路中的许多繁琐而复杂的计算简化,并使其易于用计算机实现。

相关文档
最新文档