自密实混凝土工作性能测试方法
混凝土自密实性能测试方法标准

混凝土自密实性能测试方法标准一、前言自密实混凝土是指在混凝土中添加特定的成分,使其在浇筑后能够自行充填空隙,从而达到无需人工密实的效果。
自密实混凝土具有很好的耐久性和抗渗性能,因此在工程建设中得到广泛应用。
本文对混凝土自密实性能测试方法进行详细说明,以期为混凝土工程建设提供参考。
二、密实性测试1.密实性的概念密实性是指混凝土中空隙的数量和尺寸。
密实性越高,混凝土的耐久性和力学性能就越好。
因此,密实性是衡量混凝土性能的重要参数之一。
2.测试方法(1)试件制备试件应按照规定的配合比制备,并保持充分的湿度,以确保试件的质量和性能。
(2)测试设备密实性测试采用压实度计进行测量,压实度计应符合国家标准,并应定期进行校准。
(3)测试步骤①将试件放置在压实度计的平面上,调整压实度计的高度,使其与试件接触。
②调节压实度计的压力,使其在规定的时间内施加压力,然后记录下压力值。
③计算试件的密实度,即压力与试件面积的比值。
三、抗渗性测试1.抗渗性的概念抗渗性是指混凝土的抵抗渗透的能力。
混凝土中的空隙是导致渗透的主要原因。
因此,提高混凝土的密实性可以有效提高其抗渗性能。
2.测试方法(1)试件制备试件应按照规定的配合比制备,并保持充分的湿度,以确保试件的质量和性能。
(2)测试设备抗渗性测试采用负压膜法进行测量,负压膜法应符合国家标准,并应定期进行校准。
(3)测试步骤①将试件放置在密封容器中,将容器中的水位提高至试件的表面。
②在试件的表面涂上一层膜,以保证试件的表面光滑。
③在膜层上放置一块吸水性较好的材料,并使其与试件表面紧密贴合。
④在吸水材料上施加负压,并将负压逐渐增大,记录下试件表面的渗水量。
⑤计算试件的抗渗性能,即渗水量与试件表面积的比值。
四、耐久性测试1.耐久性的概念耐久性是指混凝土在长期使用过程中的性能稳定性和抗老化能力。
混凝土中的空隙、氯离子和二氧化碳等因素会影响混凝土的耐久性能。
2.测试方法(1)试件制备试件应按照规定的配合比制备,并保持充分的湿度,以确保试件的质量和性能。
自密实混凝土实验报告

一、实验目的1. 了解自密实混凝土(Self-Compacting Concrete,SCC)的特性及其在工程中的应用。
2. 掌握自密实混凝土的配合比设计原则和方法。
3. 通过实验验证自密实混凝土的施工性能和力学性能。
二、实验材料1. 水泥:华润牌P·O42.5R水泥。
2. 粉煤灰:粒径0.125mm以下,含量为每立方米混凝土160~240升(400~600kg/m3)。
3. 矿粉:粒径0.125mm以下,含量为每立方米混凝土160~240升(400~600kg/m3)。
4. 砂:粒径介于0.125~4mm之间,含量应达到砂浆体积的38%以上。
5. 粗骨料:粒径D>4mm,含量一般为总体积的22~35%。
6. 减水剂:适量。
7. 水:符合国家标准的饮用水。
三、实验设备1. 混凝土搅拌机。
2. 混凝土试模。
3. 砂浆流动度仪。
4. 压力试验机。
5. 水泥胶砂搅拌机。
四、实验方法1. 配合比设计:根据实验要求,按照体积法设计自密实混凝土的配合比,确保水/粉料(粒径0.125mm以下的水泥、粉煤灰、矿粉、石粉等)的体积比在0.8~1.0范围,粉料(粒径0.125mm以下)含量为每立方米混凝土160~240升(400~600kg/m3),砂含量应达到砂浆体积的38%以上,粗骨料含量一般为总体积的22~35%。
水/灰比按混凝土强度、耐久性选择确定,用水量不宜超过200kg/m3。
2. 混凝土制备:将水泥、粉煤灰、矿粉、砂、粗骨料按设计配合比准确称量,放入搅拌机中,加入适量的减水剂和饮用水,进行搅拌。
3. 坍落度测试:使用砂浆流动度仪测定混凝土的坍落度和扩展度,以评估其流动性。
4. 浇筑试验:将自密实混凝土浇筑入试模中,观察其在重力作用下的填充性能。
5. 力学性能测试:按照国家标准进行混凝土的抗压强度、抗折强度等力学性能测试。
五、实验结果与分析1. 坍落度测试:实验测得自密实混凝土的坍落度为260mm,扩展度为600mm,满足实验要求。
低强度等级自密实混凝土的抗压性能试验

4 1 自密实混凝土立方体抗压强度与普通混凝土立方体 棱柱体抗压强度与立方体抗压强度的比值大约在 07 . .0—
自 密实混凝土与普通混凝土立方体抗压强度经试验测 试结果表明二者属于一个强度等级, 均为 c。 。
42 自密实混凝土棱柱体抗压强度实测值直方图 .
的普通混凝土, 取棱柱体强度与立方体强度的比值为07。 .6 这说明与普通混凝土相 比, 低强度 自密实混凝土棱柱体抗 压强度与立方体抗压强度的比值略低。当然本文仅做五组
2 3 试验 结果 .
面的结构十分致密, 渗透性低, 提高了其耐久性。
2 立方体抗压性能试验
所谓立方体抗压强度是按 G 524— 2 混凝土结构 B00 9《
普通混凝土的立方体抗压强度和自密实混凝土立方体
工程施工及验收规范》制作以边长为 10m , 5 m标准立方体 抗压强度试验测试结果见表 1 。
个角落 , 具有均匀的自密实成型性能, 同时保证混凝土硬化
后具有很好的力学性能和优异的耐久性能 ; 且在硬化后表
( ) : 0m 10m 10m ; 1试模 1 m× 5 m× 5 m 5 () 2 压力试验机 ; ( ) : 3 m, 3 钢尺 量程 0m 最小刻度 : m 。 1 m
试件 , 而且每组抗压强度的实测值离散性较大, 因此, 这只
自 密实混凝土棱柱体抗压强度实测结果见图 1 。
一 抗压 强 度 ( p ) 1 i4
是一种现象, 要真正找出 自密实混凝土的棱柱体抗压强度 与立方体抗压强度的比值规律, 还需要做大量试验 , 进行统
计分析找出它们之间的规律。这也是我们今后要做的工作
()A 50 2Y w一00型电液伺服压力试验机;
() 3 钢尺: 3 m, 量程 0 m 最小刻度: m 1 m。
自密实混凝土在建筑工程中的应用

自密实混凝土在建筑工程中的应用摘要:自密实混凝土目前作为一种新型材料在建筑工程中被广泛采用。
本文主要介绍了自密实混凝土在两类工程中的应用——钢管自密实混凝土及纤维自密实混凝土。
通过工程实例分析了自密实混凝土优良的工程实用价值和广阔的应用前景,为自密实混凝土的工程实际应用提供参考。
关键词:自密实混凝土;钢管混凝土;高性能;试验方法1、前言自密实高性能混凝土是在较低水灰比条件下,通过掺入高效减水剂,合理使用活性掺合料,优化混凝土集料的级配而配制出的新型混凝土材料。
与普通混凝土相比,自密实混凝土的性能具有以下特点:1)自密实混凝土比一般高流态混凝土的流动性更好,穿越钢筋的能力和抗离析能力更强。
在施工过程中无需振捣,仅靠自重就能自由流动穿过密集钢筋及复杂形体并填充到模板内的各个角落;2)自密实混凝土在施工过程中可大大降低施工噪声、减少能源消耗;3)自密实混凝土在施工过程中可减轻施工强度,最大限度地减少建筑工人在狭小空间的劳动时间,加快施工速度,保证和提高施工质量;4)自密实混凝土的均质性好,蜂窝、孔洞等缺陷少,所以混凝土硬化后具有优良的力学性能和耐久性能。
自密实混凝土这一概念最早由日本学者Okamura于1986 年提出。
随后,东京大学的Ozawa等开展了自密实混凝土的研究。
1988 年,自密实混凝土第一次使用市售原材料研制成功,获得了满意的性能,包括适当的水化放热、良好的密实性以及其他性能。
近20 年来,由于自密实混凝土的优越性,自密实混凝土的研究与应用实践在世界范围内广泛展开。
为促进我国自密实混凝土技术的发展,中南大学等单位于2005 年在湖南长沙举办了我国第一次自密实混凝土技术方面的国际研讨会,综合评述了自密实混凝土的设计方法与配制技术、拌合物性能与硬化性能及其工程应用等方面的研究进展,并对其未来的发展与应用前景进行了展望,自密实混凝土已经成为高性能混凝土发展的热门课题之一。
2、自密实混凝土工作性能试验方法混凝土拌合物的工作性能与其工程应用实践存在直接联系。
混凝土自密实性能评定标准

混凝土自密实性能评定标准一、前言混凝土自密实性能是混凝土结构中一个非常重要的性能指标。
混凝土自密实性能的好坏直接影响混凝土的质量和使用寿命。
在混凝土工程中,自密实性能评定标准是非常重要的,本文将从混凝土自密实性能的定义、影响因素、测试方法、评定标准等方面进行详细阐述。
二、混凝土自密实性能的定义混凝土自密实性能是指混凝土在浇筑后,在没有外力作用下,自行形成一定的密实度的能力。
混凝土自密实性能好,可以有效的防止水分、气体、盐等有害物质进入混凝土内部,从而提高混凝土的耐久性和使用寿命。
三、混凝土自密实性能的影响因素1.混凝土配合比:混凝土配合比是影响混凝土自密实性能的主要因素。
当水胶比过高时,混凝土容易出现裂缝,自密实性能不佳。
因此,在混凝土设计中应根据具体情况合理调整水胶比。
2.混凝土材料:混凝土中的水泥、砂子、骨料等材料对混凝土自密实性能也有一定的影响。
水泥的种类、品牌、强度等因素都会直接影响混凝土的自密实性能。
砂子的粗细程度、骨料的种类、粒径等也都会对混凝土自密实性能产生一定的影响。
3.养护条件:混凝土的养护条件对自密实性能的影响也是非常大的。
如果混凝土在养护期间受到过度干燥、过度潮湿、过度震动等不良环境因素的影响,就会影响混凝土的自密实性能。
四、混凝土自密实性能的测试方法混凝土自密实性能的测试方法有很多种,其中较为常用的有压汞法、气渗透法、X射线衍射法等。
1.压汞法:压汞法是一种比较常见的混凝土自密实性能测试方法。
该方法是通过将混凝土样品置于密封的测试设备中,通过施加一定的压力将汞压入混凝土内部,然后测量压缩汞的体积,从而计算出混凝土的孔隙率和自密实性能指标。
2.气渗透法:气渗透法是一种比较新的混凝土自密实性能测试方法。
该方法是通过将混凝土样品置于一定的气压下,观察气体在混凝土内部的渗透情况,从而计算出混凝土的孔隙率和自密实性能指标。
3.X射线衍射法:X射线衍射法是一种非破坏性的混凝土自密实性能测试方法。
自密实混凝土

通过拔出实验,研究自密实混凝土中不同形状钢纤维的拔出行为发现:由于 自密实混凝土明显改善了钢纤维与基体之间的界面结构,使得自密实混凝土 中钢纤维的粘结行为明显好于普通混凝土中的情况。
自密实混凝土的配制
自密实混凝土原材料包括:粗细骨料、胶凝材料、超塑化剂等。为了获得满意 的性能,必须采取相应的技术途径,对自密实混凝土进行精心设计,确定各特 定性质组成材料的合理比例。实践表明:混凝土拌合物的性能取决于浆体和骨 料的性质与含量。当骨料性质与含量一定时,优化浆体的粘度、屈服剪切应力, 即可获得满意的拌合物工作性。
第三种方法是为了解决前两种方法存在的问题而提出的,但是这种方法工作 量非常巨大,需要进行大范围的相关数据的收集累积,建立相关的数据库, 以提高模型的普适性。
综上所述,由于已有的设计方法在全面反映自密实混凝土拌合物性能的真正 内涵及其在体现混凝土工作性、强度等级与耐久性之间的相互协调关系或是 实用性等方面存在差距,目前还缺乏被广泛认同接受的自密实混凝土设计方 法。
650~800mm
600~750mm
硬化自密实混凝土的力学性能
混凝土的性能取决于新拌混凝土的质量、施工过程中振捣密实程度、养护条 件及龄期等。自密实混凝土由于具有优异的工作性能,在同样的条件下,其 硬化混凝土的力学性能将能得到保证。
通过模拟足尺梁、柱构件实验研究表明:自密实混凝土表现出良好的匀质性。 采用自密实混凝土制作的构件,其不同部位混凝土强度的离散性要小于普通 振捣混凝土构件。
存在的问题
第一种方法是一种经验模型,很难用数学公式对其自由水含量、固体颗粒的 有效表面积等参数进行精确量化,而且仅以泌水量反映拌合物的离析性能缺 乏足够的说服力。
自密实混凝土-百度百科

中文名称:自密实混凝土英文名称:self-compacting concrete其他名称:高流态混凝土定义:既有高度流动度,又不离析,具有均匀性、稳定性,浇筑依靠自重流动,无需振捣而达到密实的混凝土。
所属学科:电力(一级学科);水工建筑(二级学科)本内容由全国科学技术名词审定委员会审定公布自密实混凝土(Self Compacting Conctete 或Self-Consolidating Concrete 简称SCC)是指在自身重力作用下,能够流动、密实,即使存在致密钢筋也能完全填充模板,同时获得很好均质性,并且不需要附加振动的混凝土。
SCC的硬化性能与普通混凝土相似,而新拌混凝土性能则与普通混凝土相差很大。
自密实混凝土的自密实性能主要包括流动性、抗离析性和填充性。
每种性能均可采用坍落扩展度试验、V漏斗试验(或T50试验)和U型箱试验等一种以上方法检测。
早在20世纪70年代早期,欧洲就已经开始使用轻微振动的混凝土,但是直到20世纪80年代后期,SCC才在日本发展起来。
日本发展SCC的主要原因是解决熟练技术工人的减少和混凝土结构耐久性提高之间的矛盾。
欧洲在20世纪90年代中期才将SCC第一次用于瑞典的交通网络民用工程上。
随后EC建立了一个多国合作SCC指导项目。
从此以后,整个欧洲的SCC 应用普遍增加。
EFCA技术委员会主席Dr. Bert Kilanowski在其《SCC在欧洲的实际地位(及将来发展)》文章中给出了SCC在欧洲预拌混凝土中的比重,并且估计不同国家的SCC在预制混凝土的比重分别是意大利大约30%,芬兰大约30%,西班牙25-30%;美国10-40%。
自密实混凝土被称为‘近几十年中混凝土建筑技术最具革命性的发展’,因为自密实混凝土拥有众多优点:· 保证混凝土良好地密实。
· 提高生产效率。
由于不需要振捣,混凝土浇筑需要的时间大幅度缩短,工人劳动强度大幅度降低,需要工人数量减少。
C50自密实混凝土配合比设计及性能研究

C50自密实混凝土配合比设计及性能研究摘要:我国对高性能混凝土的研究和应用较晚, 20 世纪 80 年代初高性能混凝土首先在预应力混凝土桥梁中得到应用。
到 21 世纪,随着高性能混凝土技术和大跨径桥梁建设的发展, C50 ~ C80 超高强度的自密实型高性能混凝土的应用也将越来越广。
对于某些重载、大跨径特殊建筑物,其结构复杂、配筋稠密,普通混凝土很难满足其使用要求。
所以,为了满足建筑物个性化外形和复杂内部结构要求,一种高流动度、高稳定性的自密实混凝土被开发出来。
关键词:C50 自密实混凝土;配合比设计;强度性能自密实高性能混凝土是具有典型自密性和填充性的特种混凝土, 其组成材料比例对技术性能和应用效果影响显著。
混凝土每年的需求量巨大。
自密实混凝土拥有众多优点,在工程中得到了广泛应用,目前国内很多学者都对其进行了研究,自密实混凝土对原材料有着较高的要求。
配合比设计时要考虑原材料检验结果,不同地区在原材料上存在一定程度的差异,所以应该根据本地区材料性能,通过在原材料的选择和优化设计参数上配制出了 C50 自密实混凝土,并对其主要性能进行分析。
一、自密实高性能混凝土配合比设计原则自密实高性能混凝土是一种新型高性能混凝土,其新拌混凝土具有很高的流动性, 不泌水、不离析,流动性经时损失小,可不振捣而达到自流平的效果,并能充满模板和包裹钢筋。
与普通混凝土相比 ,自密实高性能混凝土原材料组分多 ,均匀性与致密性高 ,技术性能明显改善。
大量研究表明,采用多功能复合型外加剂、超细矿质掺合料及合理比例的组成材料,是获得自密实高性能混凝土的重要技术途径。
因此 ,自密实高性能混凝土配合比设计显得更为复杂和重要。
通常自密实高性能混凝土配合比设计应遵守以下原则:(1)选择优质的原材料, 包括水泥品种和性能,砂石材料规格和级配等。
(2)满足工作性的条件下 ,采用尽可能小的水胶比、最优的砂率及适量外加剂。
(3)满足强度的前提下 ,使水泥或胶凝材料的用量尽量小 ,即混凝土浆体体积率应尽可能小(全部胶凝材料与水的体积占混凝土总体积的百分比),最好不超过 35 %。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自密实混凝土工作性能测试方法
自密实混凝土是高性能混凝土发展方向,国内外对自密实混凝土的测试方法开展研究,并制定相应的标准,测试方法种类和评价标准种类繁多,尚未取得统一。
本文着重阐述了自密实混凝土工作性能的测试方法,分别对工作性能的流动性、填充性、黏聚力、钢筋通过性能、抗离析性的测试方法和控制指标做了详细分析和论述。
自密实混凝土区别于普通混凝土的最大特点在于对拌合物工作性能的要求,主要包括流动性、填充性、黏聚力、钢筋间隙通过性和抗离析性等,通常这几项指标并不需要同时达到最佳,而是根据自密实混凝土应用特点着重对其中一项或者几项做主要要求。
由于工作性能的显著差异,仅仅采用普通混凝土工作性能测试方法和指标(如坍落度和针入度)已经不能完全满足需要,目前实验室和施工现场通常采用坍落度、坍落扩展度、T50cm时间、L 型仪、U 型仪、V 型漏斗、筛分法等其中的一种或几种组合控制自密实混凝土工作性能。
流动性与填充性能:主要方法为坍落度和坍落扩展直径测试,简单易行,试验装置和方法与普通混凝土基本相同,只是混凝土装入坍落度筒时不振捣,以坍落扩展直径、坍落度作为控制指标。
坍落扩展直径有4 种级别:(1)坍落扩展直径在550~650 mm 之间,主要用于不配筋或者配筋量很少的结构,并且混凝土从上至下浇筑;(2)坍落扩展直径为660~750 mm,主要用于普通钢筋混凝土结构,如墙、柱等;(3)坍落扩展直径为760~850mm,此时石子最大粒径
宜小于16 mm,主要用于密集配筋、形状复杂或者从模板下面浇筑的结构。
(4)坍落扩展直径大于850 mm,主要用于一些对混凝土流动性和填充性要求更高的部位和结构,如加固修补等。
混凝土最大骨料粒径宜小于12 mm,并且要特别注意保证高流动下的抗离析性。
黏聚力与流动性:主要测试方法有T50cm时间、V 型漏斗和O 型漏斗等方法。
T50 cm时间是以混凝土从坍落度筒中流出摊平为直径50 cm 范围的时间作为评价指标,对T50cm时间的控制有2 个级别:(1)T50cm流动时间在2 s 以内,这样的自密实混凝土有很好的表面特征与良好的填充性,但拌合物容易发生离析;(2) T50cm 流动时间大于2 s,这种混凝土可能会受表面气泡影响,表面常有孔洞现象,抗离析性好,对模板侧压力也比较小。
一般高砂率、粗骨料粒径较小情况下,T50cm流动时间宜控制得小一些,以减少表面孔洞;反之,T50cm时间宜控制得大些,以增加抗离析性。
钢筋通过性能:自密实混凝土应用于配筋密集结构时需测试钢筋通过性,扁平构件中钢筋净距大于80 mm 或其他结构中钢筋净距大于100 mm 时,可不做该项要求。
钢筋通过性测试方法有L 型筒试验、U 型筒试验J 型环试验以及方筒填充试验,常用的是L 型筒试验和U 型筒试验。
L 型筒试验可以分为筒口放置2 根钢筋和3 根钢筋两种方法,用混凝土流过钢筋后水平筒终止端和起始端混凝土高度比衡量钢筋通过性,控制目标为H2/H1>0.8。
当构件钢筋间距为80~100 mm时,宜采用2 根钢筋的L 型筒;当构件钢筋
间距为60~80 mm 时,宜采用3 根钢筋的L 型筒;当钢筋间距小于60 mm 时,除了要求H2/H1>0.8 外,同时限制石子最大粒径,并且要求目测钢筋出口处没有堵塞现象。
抗离析性能:流动性过大必然造成抗离析性差,要专门测试自密实混凝土抗离析性,在流动性和稳定性之间找到合理的平衡。
抗离析首先要求目测混凝土坍落度试验中坍落扩展的混凝土中间是否有石子堆积、边缘泌水现象。
此外还有筛分析法,采用5 mm 方孔直径为350 mm 的标准筛,用筛通过量反映抗离析性,具体做法是从预拌混凝土中取10 L 左右置于桶中,静置15 min 后将桶上部4.8 kg 左右的混凝土倒入方孔筛,称重,120 s后把筛及其中混凝土移走,称量筛孔流下的水泥浆重量,二者之比即为筛通过率,要求筛通过率小于20%;当抗离析性要求严格时,筛通过率应小于15%。