高考数学几何概型的经典题型及答案

合集下载

高中数学概率几何概型古典概型精选题目(附答案)

高中数学概率几何概型古典概型精选题目(附答案)

高中数学概率几何概型古典概型精选题目(附答案)一、古典概型1.互斥事件与对立事件的概率(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.(2)当事件A与B互斥时,P(A+B)=P(A)+P(B),当事件A与B对立时,P(A+B)=P(A)+P(B)=1,即P(A)=1-P(B).(3)求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的和;二是先求其对立事件的概率,然后再应用公式P(A)=1-P(A)求解.2.古典概型的求法对于古典概型概率的计算,关键是分清基本事件的总数n与事件A包含的基本事件的个数m,有时需用列举法把基本事件一一列举出来,再利用公式P(A)=mn求出事件发生的概率,这是一个形象、直观的好方法,但列举时必须按照某种顺序,以保证不重复、不遗漏.1.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.[解]甲校两名男教师分别用A,B表示,女教师用C表示;乙校男教师用D 表示,两名女教师分别用E,F表示.(1)从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.从中选出的2名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共4种,所以选出的2名教师性别相同的概率为P=4 9.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.从中选出的2名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种.所以,选出的2名教师来自同一学校的概率为P=615=25.注:解决与古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.2.某导演先从2个金鸡奖和3个百花奖的5位演员名单中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为()A.13 B.110C.25 D.310解析:选D设2个金鸡奖演员编号为1,2,3个百花奖演员编号为3,4,5.从编号为1,2,3,4,5的演员中任选3名有10种挑选方法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种.其中挑选出2名金鸡奖和1名百花奖的有3种:(1,2,3),(1,2,4),(1,2,5),故所求的概率为P=3 10.3.随着经济的发展,人们生活水平的提高,中学生的营养与健康问题越来越得到学校与家长的重视.从学生体检评价报告单了解到我校3 000名学生的体重发育评价情况,得下表:0.15.(1)求x的值;(2)若用分层抽样的方法,从这批学生中随机抽取60名,问应在肥胖学生中抽多少名?(3)已知y ≥243,z ≥243,求肥胖学生中男生不少于女生的概率.解:(1)由题意得,从这批学生中随机抽取1名学生,抽到偏痩男生的概率为0.15,可知x3 000=0.15,所以x =450.(2)由题意,可知肥胖学生人数为y +z =500(人).设应在肥胖学生中抽取m 人,则m 500=603 000.所以m =10.即应在肥胖学生中抽10名.(3)由题意,可知y +z =500,且y ≥243,z ≥243,满足条件的基本事件如下: (243,257),(244,256),…,(257,243),共有15组.设事件A :“肥胖学生中男生不少于女生”,即y ≤z ,满足条件的(y ,z )的基本事件有:(243,257),(244,256),…,(250,250),共有8组,所以P (A )=815.所以肥胖学生中男生不少于女生的概率为815.二、几何概型(1)几何概型满足的两个特点:①等可能性;②无限性. (2)几何概型的概率求法公式P (A )=构成事件A 的区域长度(面积、体积)试验的全部结果长度(面积、体积).4.(1)已知平面区域D 1=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )| ⎩⎨⎧|x |<2,|y |<2,D 2={}(x ,y )|(x -2)2+(y -2)2<4.在区域D 1内随机选取一点P ,则点P 恰好取自区域D 2的概率是( )A.14 B.π4 C.π16D.π32(2)把一根均匀木棒随机地按任意点折成两段,则“其中一段长度大于另一段长度2倍”的概率为________.[解析] (1)因区域D 1和D 2的公共部分是一个半径为2的圆的14,从而所求概率P =14×22π42=π16,故选C.(2)将木棒折成两段的折点应位于距木棒两端点小于13木棒长度的区域内,故所求概率为2×13=23.[答案] (1)C (2)23 注:几何概型问题的解题方法(1)由于基本事件的个数和结果的无限性,其概率就不能应用P (A )=mn 求解,因此需转化为几何度量(如长度、面积、体积等)的比值求解.(2)在解题时要准确把握,要把实际问题作合理的转化;要注意古典概型和几何概型的区别,正确地选用几何概型的类型解题.5.如图,两个正方形的边长均为2a ,左边正方形内四个半径为a2的圆依次相切,右边正方形内有一个半径为a 的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P 1,P 2,则P 1,P 2的大小关系是( )A .P 1=P 2B .P 1>P 2C .P 1<P 2D .无法比较解析:选A 由题意知正方形的边长为2a .左图中圆的半径为正方形边长的14,故四个圆的面积和为πa 2,右图中圆的半径为正方形边长的一半,圆的面积也为πa 2,故P 1=P 2.6.在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为( )A.34B.23C.13D.14解析:选A 不等式-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1可化为log 122≤log 12⎝ ⎛⎭⎪⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.7.圆具有优美的对称性,以圆为主体元素构造的优美图案在工艺美术、陶瓷、剪纸等上有着广泛的应用,如图1,图2,图3,图4,其中图4中的3个阴影三角形的边长均为圆的半径,记图4中的阴影部分区域为M ,现随机往图4的圆内投一个点A ,则点A 落在区域M 内的概率是( )A.34πB.334πC.2πD.3π解析:选B 设圆内每一个小正三角形的边长为r , 则一个三角形的面积为12×r ×32r =34r 2, ∴阴影部分的面积为334r 2. 又圆的面积为πr 2,∴点A 落在区域M 内的概率是334r 2πr 2=334π.。

几何概型的经典例题

几何概型的经典例题

几何概型的经典例题
一、例题
在区间[ - 1,2]上随机取一个数x,则| x|≤slant1的概率为多少?
二、解析
1. 首先确定全部结果构成的区域长度
- 区间[ - 1,2]的长度为2-( - 1)=3。

2. 然后确定满足条件| x|≤slant1,即-1≤slant x≤slant1的区域长度
- 区间[ - 1,1]的长度为1-( - 1)=2。

3. 最后根据几何概型的概率公式P(A)=(构成事件A的区域长度(面积或体积))/(试验的全部结果所构成的区域长度(面积或体积))
- 这里是在数轴上的区间问题,属于长度型几何概型,所以P = (2)/(3)。

三、例题
已知正方形ABCD的边长为2,在正方形ABCD内随机取一点P,求点P到正方形各顶点的距离都大于1的概率。

四、解析
1. 首先确定全部结果构成的区域面积
- 正方形ABCD的边长为2,则其面积S = 2×2 = 4。

2. 然后确定满足条件的区域面积
- 点P到正方形各顶点的距离都大于1,那么点P在以正方形各顶点为圆心,1为半径的四个四分之一圆的外部(这些圆在正方形内部的部分)。

- 四个四分之一圆的面积之和相当于一个半径为1的圆的面积,即
S_1=π×1^2=π。

- 满足条件的区域面积S_2=4 - π。

3. 最后根据几何概型的概率公式
- 这里是平面区域问题,属于面积型几何概型,所以P=frac{S_2}{S}=(4 - π)/(4)。

高一 几何概型知识点+例题+练习 含答案

高一 几何概型知识点+例题+练习 含答案

1.几何概型的概念设D是一个可度量的区域(例如线段、平面图形、立体图形等),每个基本事件可以视为从区域D内随机地取一点,区域D内的每一点被取到的机会都一样;随机事件A的发生可以视为恰好取到区域D内的某个指定区域d中的点.这时,事件A发生的概率与d的测度(长度、面积、体积等)成正比,与d的形状和位置无关.我们把满足这样条件的概率模型称为几何概型.2.几何概型的概率计算公式一般地,在几何区域D中随机地取一点,记事件“该点落在其内部一个区域d内”为事件A,则事件A发生的概率P(A)=d的测度D的测度.3.要切实理解并掌握几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性.4.随机模拟方法(1)使用计算机或者其他方式进行的模拟试验,以便通过这个试验求出随机事件的概率的近似值的方法就是模拟方法.(2)用计算机或计算器模拟试验的方法为随机模拟方法.这个方法的基本步骤是①用计算器或计算机产生某个范围内的随机数,并赋予每个随机数一定的意义;②统计代表某意义的随机数的个数M和总的随机数个数N;③计算频率f n(A)=MN作为所求概率的近似值.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)在一个正方形区域内任取一点的概率是零.(√)(2)几何概型中,每一个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每一点被取到的机会相等.( √ )(3)在几何概型定义中的区域可以是线段、平面图形、立体图形.( √ ) (4)随机模拟方法是以事件发生的频率估计概率.( √ ) (5)与面积有关的几何概型的概率与几何图形的形状有关.( × ) (6)从区间[1,10]内任取一个数,取到1的概率是P =19.( × )1.(教材改编)在线段[0,3]上任投一点,则此点坐标小于1的概率为________. 答案 13解析 坐标小于1的区间为[0,1],长度为1,[0,3]区间长度为3,故所求概率为13.2.(2015·山东改编)在区间[0,2]上随机地取一个数x ,则事件“-1≤12log ⎝⎛⎭⎫x +12≤1”发生的概率为________. 答案 34解析 ∵由-1≤12log ⎝⎛⎭⎫x +12≤1,得12≤x +12≤2, ∴0≤x ≤32.∴由几何概型的概率计算公式得所求概率 P =32-02-0=34.3.(2014·辽宁改编)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是________. 答案 π4解析 设质点落在以AB 为直径的半圆内为事件A , 则P (A )=阴影面积长方形面积=12π·121×2=π4.4.(2014·福建)如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.答案 0.18解析 由题意知,这是个几何概型问题, S 阴S 正=1801 000=0.18, ∵S 正=1,∴S 阴=0.18.5.(教材改编)如图,圆中有一内接等腰三角形.假设你在图中随机撒一把黄豆,则它落在阴影部分的概率为________. 答案 1π解析 设圆的半径为R ,由题意知圆内接三角形为等腰直角三角形,其直角边长为2R ,则所求事件的概率为: P =S 阴S 圆=12×2R ×2R πR 2=1π.题型一 与长度、角度有关的几何概型例1 (1)(2015·重庆)在区间[0,5]上随机地选择一个数p ,则方程x 2+2px +3p -2=0有两个负根的概率为________.(2)(2015·烟台模拟)在区间[-π2,π2]上随机取一个数x ,则cos x 的值介于0到12之间的概率为________. 答案 (1)23 (2)13解析 (1)方程x 2+2px +3p -2=0有两个负根,则有⎩⎪⎨⎪⎧Δ≥0,x 1+x 2<0,x 1·x 2>0,即⎩⎪⎨⎪⎧4p 2-4(3p -2)≥0,-2p <0,3p -2>0,解得p ≥2或23<p ≤1,又p ∈[0,5],则所求概率为P =3+135=1035=23.(2)当-π2≤x ≤π2时,由0≤cos x ≤12,得-π2≤x ≤-π3或π3≤x ≤π2,根据几何概型概率公式得所求概率为13.(3)如图所示,在△ABC 中,∠B =60°,∠C =45°,高AD =3,在∠BAC 内作射线AM 交BC 于点M ,求BM <1的概率. 解 因为∠B =60°,∠C =45°,所以∠BAC =75°. 在Rt △ABD 中,AD =3,∠B =60°, 所以BD =AD tan 60°=1,∠BAD =30°.记事件N 为“在∠BAC 内作射线AM 交BC 于点M ,使BM <1”,则可得∠BAM <∠BAD 时事件N 发生.由几何概型的概率公式,得:P (N )=30°75°=25.引申探究1.本例(2)中,若将“cos x 的值介于0到12”改为“cos x 的值介于0到32”,则概率如何?解 当-π2≤x ≤π2时,由0≤cos x ≤32,得-π2≤x ≤-π6或π6≤x ≤π2,根据几何概型概率公式得所求概率为23.2.若本例(3)中“在∠BAC 内作射线AM 交BC 于点M ”改为“在线段BC 上找一点M ”,求BM <1的概率.解 依题意知BC =BD +DC =1+3,P (BM <1)=11+3=3-12.思维升华 求解与长度、角度有关的几何概型的方法求与长度(角度)有关的几何概型的概率的方法是把题中所表示的几何模型转化为长度(角度),然后求解.要特别注意“长度型”与“角度型”的不同.解题的关键是构建事件的区域(长度或角度).(1)如图,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA ,则射线OA 落在∠yOT 内的概率为________.(2)已知集合A ={x |-1<x <5},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -23-x >0,在集合A 中任取一个元素x ,则事件“x ∈(A ∩B )”的概率是________. 答案 (1)16 (2)16解析 (1)如题图,因为射线OA 在坐标系内是等可能分布的,所以OA 落在∠yOT 内的概率为60°360°=16. (2)由题意得A ={x |-1<x <5},B ={}x | 2<x <3,故A ∩B ={x |2<x <3}.由几何概型知,在集合A 中任取一个元素x ,则x ∈(A ∩B )的概率为P =16.题型二 与面积有关的几何概型命题点1 与平面图形面积有关的问题例2 (2015·福建改编)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于________. 答案 14解析 由图形知C (1,2),D (-2,2),∵S 四边形ABCD =6,S 阴=12×3×1=32.∴P =326=14.命题点2 与线性规划知识交汇命题的问题例3 (2014·重庆)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________. 答案932解析 设小张与小王的到校时间分别为7:00后第x 分钟,第y 分钟,根据题意可画出图形,如图所示,则总事件所占的面积为(50-30)2=400.小张比小王至少早5分钟到校表示的事件A ={(x ,y )|y -x ≥5,30≤x ≤50,30≤y ≤50},如图中阴影部分所示,阴影部分所占的面积为12×15×15=2252,所以小张比小王至少早5分钟到校的概率为P (A )=2252400=932.思维升华 求解与面积有关的几何概型的注意点求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到全部试验结果构成的平面图形,以便求解.(1)在区间[-π,π]内随机取出两个数分别记为a ,b ,则函数f (x )=x 2+2ax -b 2+π2有零点的概率为________.(2)(2014·湖北改编)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 (1)1-π4 (2)78解析 (1)由函数f (x )=x 2+2ax -b 2+π2有零点, 可得Δ=(2a )2-4(-b 2+π2)≥0,整理得a 2+b 2≥π2, 如图所示,(a ,b )可看成坐标平面上的点,试验的全部结果构成的区域为 Ω={(a ,b )|-π≤a ≤π,-π≤b ≤π}, 其面积S Ω=(2π)2=4π2. 事件A 表示函数f (x )有零点,所构成的区域为M ={(a ,b )|a 2+b 2≥π2}, 即图中阴影部分,其面积为S M =4π2-π3,故P (A )=S M S Ω=4π2-π34π2=1-π4.(2)如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C (-12,32),故由几何概型的概率公式,得所求概率P =S 四边形OACD S △OAB =2-142=78.题型三 与体积有关的几何概型例4 在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1 内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 1-π12解析 V 正=23=8,V 半球=12×43π×13=23π,V 半球V 正=2π8×3=π12, 故点P 到O 的距离大于1的概率为1-π12.思维升华 求解与体积有关问题的注意点对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.如图,在长方体ABCD -A 1B 1C 1D 1中,有一动点在此长方体内随机运动,则此动点在三棱锥A -A 1BD 内的概率为________.答案 16解析 因为11A A BD A ABD V V --==13·S △ABD ·AA 1=16·S矩形ABCD ·AA 1=16V 长方体,故所求概率为1A A BD V V -长方体=16.12.混淆长度型与面积型几何概型致误典例 (14分)在长度为1的线段上任取两点,将线段分成三段,试求这三条线段能构成三角形的概率.易错分析 不能正确理解题意,无法找出准确的几何度量来计算概率. 规范解答解 设x 、y 表示三段长度中的任意两个. 因为是长度,所以应有0<x <1,0<y <1,0<x +y <1,即(x ,y )对应着坐标系中以(0,1)、(1,0)和(0,0)为顶点的三角形内的点,如图所示.[6分]要形成三角形,由构成三角形的条件知 ⎩⎪⎨⎪⎧x +y >1-x -y ,1-x -y >x -y ,1-x -y >y -x ,所以x <12,y <12,且x +y >12,故图中阴影部分符合构成三角形的条件.[10分] 因为阴影部分的三角形的面积占大三角形面积的14,故这三条线段能构成三角形的概率为14.[14分]温馨提醒 解决几何概型问题的易误点:(1)不能正确判断事件是古典概型还是几何概型,导致错误.(2)利用几何概型的概率公式时,忽视验证事件是否具有等可能性,导致错误.[方法与技巧]1.区分古典概型和几何概型最重要的是看基本事件的个数是有限个还是无限个. 2.转化思想的应用对一个具体问题,可以将其几何化,如建立坐标系将试验结果和点对应,然后利用几何概型概率公式.(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在坐标轴上即可; (2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型;(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系建立与体积有关的几何概型. [失误与防范]1.准确把握几何概型的“测度”是解题关键;2.几何概型中,线段的端点、图形的边框是否包含在事件之内不影响所求结果.A 组 专项基础训练 (时间:40分钟)1.(2014·湖南改编)在区间[-2,3]上随机选取一个数X ,则X ≤1的概率为________. 答案 35解析 在区间[-2,3]上随机选取一个数X ,则X ≤1,即-2≤X ≤1的概率为P =35.2.在区间[-1,4]内取一个数x ,则2x -x 2≥14的概率是________.答案 35解析 不等式22x x -≥14,可化为x 2-x -2≤0, 则-1≤x ≤2,故所求概率为2-(-1)4-(-1)=35.3.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为__________. 答案 12解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B 、E 点)上时,△ABD 为钝角三角形;当BF =4时,∠BAF 为直角,则点D在线段CF (不包含C 、F 点)上时,△ABD 为钝角三角形.所以△ABD 为钝角三角形的概率为1+26=12. 4.设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是__________.答案 1-π4解析 如图所示,正方形OABC 及其内部为不等式组表示的区域D ,且区域D 的面积为4,而阴影部分表示的是区域D 内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是1-π4. 5.已知一只蚂蚁在边长分别为5,12,13的三角形的边上随机爬行,则其恰在离三个顶点的距离都大于1的地方的概率为________.答案 45解析 由题意可知,三角形的三条边长的和为5+12+13=30,而蚂蚁要在离三个顶点的距离都大于1的地方爬行,则它爬行的区域长度为3+10+11=24,根据几何概型的概率计算公式可得所求概率为2430=45. 6.有一个底面圆的半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________.答案 23解析 V 圆柱=2π,V 半球=12×43π×13=23π, V 半球V 圆柱=13, 故点P 到O 的距离大于1的概率为23.7.在区间[1,5]和[2,4]上分别各取一个数,记为m 和n ,则方程x 2m 2+y 2n 2=1表示焦点在x 轴上的椭圆的概率是________. 答案 12 解析 ∵方程x 2m 2+y 2n2=1表示焦点在x 轴上的椭圆,∴m >n . 如图,由题意知,在矩形ABCD 内任取一点Q (m ,n ),点Q 落在阴影部分的概率即为所求的概率,易知直线m =n 恰好将矩形平分,∴所求的概率为P =12. 8.随机地向半圆0<y <2ax -x 2(a 为正常数)内掷一点,点落在圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于π4的概率为______. 答案 12+1π解析 半圆域如图所示:设A 表示事件“原点与该点的连线与x 轴的夹角小于π4,由几何概型的概率计算公式得P (A )=A 的面积半圆的面积=14πa 2+12a 212πa 2=12+1π. 9.随机向边长为5,5,6的三角形中投一点P ,则点P 到三个顶点的距离都不小于1的概率是________.答案 24-π24解析 由题意作图,如图则点P 应落在深色阴影部分,S 三角形=12×6×52-32=12,三个小扇形可合并成一个半圆,故其面积为π2,故点P 到三个顶点的距离都不小于1的概率为12-π212=24-π24. 10.已知向量a =(-2,1),b =(x ,y ).(1)若x ,y 分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足a ·b =-1的概率;(2)若x ,y 在连续区间[1,6]上取值,求满足a ·b <0的概率.解 (1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6×6=36(个); 由a ·b =-1有-2x +y =-1,所以满足a ·b =-1的基本事件为(1,1),(2,3),(3,5),共3个;故满足a ·b =-1的概率为336=112. (2)若x ,y 在连续区间[1,6]上取值,则全部基本事件的结果为Ω={(x ,y )|1≤x ≤6,1≤y ≤6};满足a ·b <0的基本事件的结果为A ={(x ,y )|1≤x ≤6,1≤y ≤6且-2x +y <0};画出图形如图,矩形的面积为S 矩形=25,阴影部分的面积为S 阴影=25-12×2×4=21, 故满足a ·b <0的概率为2125. B 组 专项能力提升(时间:30分钟)11.一个长方体空屋子,长,宽,高分别为5米,4米,3米,地面三个角上各装有一个捕蝇器(大小忽略不计),可捕捉距其一米空间内的苍蝇,若一只苍蝇从位于另外一角处的门口飞入,并在房间内盘旋,则苍蝇被捕捉的概率是________.答案 π120解析 屋子的体积为5×4×3=60立方米,捕蝇器能捕捉到的空间体积为18×43π×13×3=π2立方米.故苍蝇被捕捉的概率是π260=π120. 12.(2015·湖北改编)在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≤12”的概率,p 2为事件“xy ≤12”的概率,则下列正确的是________. ①p 1<p 2<12 ②p 2<12<p 1③12<p 2<p 1 ④p 1<12<p 2 答案 ④ 解析 在直角坐标系中,依次作出不等式组⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤1,x +y ≤12,⎩⎪⎨⎪⎧ 0≤x ≤1,0≤y ≤1,xy ≤12的可行域如图所示:依题意,p 1=S △ABOS 四边形OCDE ,p 2=S 曲边多边形OEGFC S 四边形OCDE , 而12=S △OEC S 四边形OCDE ,所以p 1<12<p 2. 13.如图,已知点A 在坐标原点,点B 在直线y =1上,点C (3,4),若AB ≤10,则△ABC 的面积大于5的概率是________.答案 524解析 设B (x,1),根据题意知点D (34,1),若△ABC 的面积小于或等于5,则12×DB ×4≤5,即DB ≤52,此时点B 的横坐标x ∈[-74,134],而AB ≤10, 所以点B 的横坐标x ∈[-3,3],所以△ABC 的面积小于或等于5的概率为P =3-(-74)6=1924, 所以△ABC 的面积大于5的概率是1-P =524. 14.已知集合A =[-2,2],B =[-1,1],设M ={(x ,y )|x ∈A ,y ∈B },在集合M 内随机取出一个元素(x ,y ).(1)求以(x ,y )为坐标的点落在圆x 2+y 2=1内的概率;(2)求以(x ,y )为坐标的点到直线x +y =0的距离不大于22的概率.解 (1)集合M 内的点形成的区域面积S =8.因圆x 2+y 2=1的面积S 1=π,故所求概率为S 1S =π8. (2)由题意|x +y |2≤22,即-1≤x +y ≤1,形成的区域如图中阴影部分,阴影部分面积S 2=4, 所求概率为S 2S =12.15.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达该码头的时刻是等可能的.如果甲船停泊时间为1 h ,乙船停泊时间为2 h ,求它们中的任意一艘都不需要等待码头空出的概率.解 设甲、乙两艘船到达码头的时刻分别为x 与y ,记事件A 为“两船都不需要等待码头空出”,则0≤x ≤24,0≤y ≤24,要使两船都不需要等待码头空出,当且仅当甲比乙早到达1 h 以上或乙比甲早到达2 h 以上,即y -x ≥1或x -y ≥2.故所求事件构成集合A ={(x ,y )|y -x ≥1或x -y ≥2,x ∈[0,24],y ∈[0,24]}.A 为图中阴影部分,全部结果构成集合Ω为边长是24的正方形及其内部.所求概率为P (A )=A 的面积Ω的面积=(24-1)2×12+(24-2)2×12242 =506.5576=1 0131 152.。

浙江新高考数学理科一轮复习创新方案热点题型10.6几何概型(含答案详析)

浙江新高考数学理科一轮复习创新方案热点题型10.6几何概型(含答案详析)

第六节 几何概型高频考点 考点一 与长度相关的几何概型1.与长度相关的几何概型是高考命题的热门,多以选择题或填空题的形式体现,试题难度不大,多为简单题或中档题.2.高考对与长度相关的几何概型的考察主要有以下几个命题角度:(1) 与线段长度相关的几何概型; (2) 与曲线长度相关的几何概型; (3) 与时间相关的几何概型;(4) 与不等式相关的几何概型.[例 1] (1)(2013 福·建高考 )利用计算机产生 0~ 1 之间的平均随机数a ,则事件“ 3a -1<0 ”发生的概率为 ________.(2)在区间π π x ,则 cos x 的值介于 0 到1之间的概率为 ________.- ,上随机取一个数22211[自主解答 ] (1)由 3a - 1<0,得 a<3,而 0~ 1 的长度为 1,故所求概率为 3.π π 1 π π π π≤x ≤2时,由 0≤ cos x ≤ 2,得- ≤ x ≤ -≤ x ≤2,依据几何概型概率公式(2)当- 2 23或3得所求概率为 13.1 1[答案 ] (1)3 (2)3【互动研究】本例 (2)中,若将“ cos x 的值介于 0 到12”改为“ cos x 的值介于0 到 23”,则概率怎样?ππ解: 当- 2≤ x ≤ 2时, 由 0≤cos x ≤ 3,2π π ππ 得- ≤ x ≤ - 或 ≤ x ≤ ,26622依据几何概型概率公式得所求概率为3.与长度相关的几何概型的常有种类及解题策略(1)与线段长度相关的几何概型.利用几何概型公式求解,直接利用两线段的长度之比即可.(2)与曲线长度相关的几何概型.利用几何概型公式,求曲线的长度之比即可.(3)与时间相关的几何概型.利用几何概型公式,求时间段之比即可.(4)与不等式相关的几何概型.利用几何概型公式,求两实数之间距离之比即可.1. (2013·北高考湖)在区间[- 2,4] 上随机取一个数x,若x 知足 |x|≤ m的概率为56,则m= ________.2m5分析:由 |x|≤ m,得- m≤ x≤ m,当 m≤ 2 时,由题意得=,解得m= 2.5,矛盾,舍去.m-- 25当 2<m<4 时,由题意得6=6,解得 m= 3.答案: 3x-22.已知会合 A= { x|- 1<x<5} , B= x 3-x>0,在会合 A 中任取一个元素x,则事件“ x∈ A∩B”的概率是 ________.分析:由题意得 A= { x|- 1<x<5} ,B={ x|2<x<3} ,由几何概型知,在会合 A 中任取一个元素 x,则 x∈A∩ B 的概率为P=1 6 .答案:16考点二与面积相关的几何概型[例2](1)(2013陕·西高考)如图,在矩形地区ABCD的A,C两点处各有一个通讯基站,假定其信号的覆盖范围分别是扇形地区ADE和扇形地区CBF (该矩形地区内无其余信号来源,基站工作正常).若在该矩形地区内随机地选一地址,则该地址无信号的概率是()A . 1-π π C . 2-ππ4B. -12 D.24(2)(2013 四·川高考 )节日前夜,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮互相独立, 且都在通电后的4 秒内任一时辰等可能发生,而后每串彩灯以 4 秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时辰相差不超出2 秒的概率是 ()1 1 3 7A. 4B.2C.4D. 8[自主解答 ](1)依题意知,有信号的地区面积为ππ× 2 = ,矩形面积为 2,故无信号的422- π2π概率P = 2=1-4.0≤ x ≤4, (2)设第一串彩灯亮的时辰为x ,第二串彩灯亮的时辰为 y ,则0≤ y ≤4,0≤x ≤ 4,要使两串彩灯亮的时辰相差不超出2 秒,则 0≤ y ≤4,- 2≤ x - y ≤ 2.0≤ x ≤ 4,0≤ x ≤ 4,如下图,不等式组所表示的图形面积为16,不等式组 0≤ y ≤ 4,0≤y ≤ 4- 2≤ x - y ≤2所表示的六边形OABCDE 的面积为 16- 4= 12,12 3由几何概型的概率公式可得P =16= 4.[答案 ] (1)A (2)C【方法例律】求解与面积相关的几何概型的注意点求解与面积相关的几何概型时,重点是弄清某事件对应的面积,以求面积, 必需时可根据题意结构两个变量, 把变量当作点的坐标, 找到试验所有结果组成的平面图形, 以便求解.浙江新高考数学理科一轮复习创新方案热门题型10.6几何概型(含答案详析)1.(2014邛·崃模拟 )已知一个三角形的三边长分别是5,5,6,一只蚂蚁在其内部爬行,若不考虑蚂蚁的大小,则某时辰该蚂蚁距离三角形的三个极点的距离均超出2的概率是 ()ππππA. 2-3B. 1-6C.2-2D. 1-12分析:选 B 如图,当蚂蚁距离三角形的三个极点的距离均超出 2 时,蚂蚁要在图中的空白区域内,△ABC 为等腰三角形,假定 AB= AC= 5,易知 AD= 4,△ABC 的面积是12,因为三角形内角和等于π,图中的三个扇形的面积之和等于一个半径为 2 的圆的面积的一半,即三个12- 2ππ扇形的面积之和等于 2π,故空白地区的面积是 12- 2π,所求的概率为12= 1-6.2.已知平面地区 U ={( x,y)|x+ y≤ 6,x≥0,y≥ 0} ,A={( x,y)|x≤ 4,y≥ 0,x- 2y≥ 0} ,若向地区 U 内随机投一点 P,则点 P 落入地区 A 的概率为 ________.分析:依题意可在平面直角坐标系中作出会合U 与 A 所表示的平面地区(如图 ),由图可知S U S A2= 18, S A= 4,则点 P 落入地区 A 的概率为P=S U=9.答案:29考点三与角度相关的几何概型[例 3]如下图,在△ ABC中,∠ B=60°,∠ C=45°,高AD=3,在∠ BAC 内作射线 AM 交 BC 于点 M,求 BM<1 的概率.[ 自主解答 ]因为∠B=60°,∠C=45°,所以∠ BAC=75°.在 Rt△ABD 中, AD= 3,∠B=60°,所以 BD=AD=1,∠BAD = 30°. tan 60 °记事件 N 为“在∠BAC 内作射线AM 交 BC 于点 M,使 BM<1”,则可得∠ BAM<∠BAD时势件 N 发生.30° 2由几何概型的概率公式,得P(N)==.75° 5【互动研究】若本例中“在∠ BAC 内作射线 AM 交 BC 于点 M”改为“在线段BC 上找一点 M”,求BM <1 的概率.解:依题意知 BC=BD + DC = 1+3,1=3- 1P(BM<1) =2.1+3【方法例律】与角度相关的几何概型当波及射线的转动,扇形中相关落点地区问题时,应以角的大小作为地区胸怀来计算概率,且不行用线段的长度取代,这是两种不一样的胸怀手段.提示:有时与长度或角度相关的几何概型,题干其实不直接给出,而是将条件隐蔽,与其他知识综合考察.1. 如图,在直角坐标系内,射线OT 落在 30°角的终边上,任作一条射线OA,则射线OA 落在∠ yOT 内的概率为 ________.分析:如题图,因为射线 OA 在座标系内是等可能散布的,则OA 落在∠yOT 内的概率60°1为=6.360°1答案:62.如图, M 是半径为 R 的圆周上一个定点,在圆周上等可能地任取一点N,连结 MN,则弦 MN 的长度超出2R 的概率是 ________.分析:连结圆心O 与 M 点,作弦MN 使∠MON = 90°,这样的点有两个,分别记为N1,N2,仅当点 N 在不包括点M 的半圆弧上取值时,知足MN >2180° 1R,此时∠N1ON2= 180°,故所求的概率为=.360° 2答案:12————————————[讲堂概括——通法意会 ]————————————————1 条规律——对几何概型概率公式中“ 测度” 的认识几何概型的概率公式中的“ 测度” 只与大小相关,而与形状和地点没关,在解题时,要掌握“ 测度” 为长度、面积、体积、角度等常有的几何概型的求解方法.2 种方法——判断几何概型中的几何胸怀形式的方法(1)当题干是两重变量问题,一般与面积相关系.(2)当题干是单变量问题,要看变量能够等可能抵达的地区:若变量在线段上挪动,则几何胸怀是长度;若变量在平面地区(空间地区 )内挪动,则几何胸怀是面积(体积 ),即一个几何胸怀的形式取决于该胸怀能够等可能变化的地区.前沿热门 (十七 )几何概型与线性规划问题的交汇1.几何概型常常与组成该事件地区的长度、面积、体积或角度等相关,在高考取常常波及面积地区的问题,而面积地区确实定又与线性规划相关.所以,高考命题常常在此交汇.2.因为面积常常波及一个关闭图,解题时必定要注意各界限对应的直线(或曲线 )方程,各端点的坐标,求面积时,还要注意对图形的切割等.[典例 ] (2012 北·京高考 )设不等式组0≤ x≤ 2,D .在地区 D 内随机表示的平面地区为0≤ y≤ 2取一个点,则此点到坐标原点的距离大于2的概率是 ()ππ- 2π4-πA. 4B.2C.6D.4[解题指导]先画出平面地区 D ,再找出几何地区的形状,剖析其几何概型所对应的量,而后解决问题.[分析 ] 不等式组0≤x≤ 2,表示坐标平面内的一个正方形地区,设地区内点的坐标0≤y≤ 2为 (x, y),则在地区内取点,此点到坐标原点的距离大于 2 表示的地区就是圆 x2+ y2= 4 的4-π外面,即图中的暗影部分,故所求的概率为4.[答案] D[名师评论] 1.此题有以下创新点:(1)考察方式的创新:由惯例方式变换为以线性规划为载体考察几何概型的计算;(2)考察内容的创新:此题将几何概型与线性规划及圆求面积完满联合起来,角度独到,形式新奇,又不失综合性.2.在解决以几何概型为背景的创新交汇问题时,应注意以下两点:(1)要正确判断一种概率模型是不是几何概型,为此一定认识几何概型的含义及特点;(2)运用几何概型的概率公式时,要注意考证事件能否具备等可能性.2x- y+ 2≥0,已知实数x∈ [- 1,1],y∈ [0,2] ,则点P(x,y)落在地区x- 2y+ 1≤0,内的概率为()x y 203333A. 16B.8C.4D. 2分析:选B不等式组表示的平面地区如下图(暗影部分),其面积为1× 3× 2- 1× 3×1 223=3,则所求概率为23=22× 28.。

(完整word版)2019届高考数学专题二十几何概型总结练习题及答案

(完整word版)2019届高考数学专题二十几何概型总结练习题及答案

专题二十 几何概型1.长度类几何概型 例1:已知函数()22f x x x =--,[]5,5x ∈-,在定义域内任取一点0x ,使()00f x ≤的概率是( ) A .110 B .23C .310D .45【答案】C【解析】先解出()00f x ≤时0x 的取值范围:22012x x x --≤⇒-≤≤,从而在数轴上[]1,2-区间长度占[]5,5-区间长度的比例即为事件发生的概率,∴310P =,故选C .2.面积类几何概型 (1)图形类几何概型例2-1:如图所示,在矩形ABCD 中,2AB a =,AD a =,图中阴影部分是以AB 为直径的半圆,现在向矩形ABCD 内随机撒4000粒豆子(豆子的大小忽略不计),根据你所学的概率统计知识,下列四个选项中最有可能落在阴影部分内的豆子数目是( )A .1000B .2000C .3000D .4000【答案】C【解析】在矩形ABCD 中,2AB a =,AD a =,面积为22a ,半圆的面积为212a π, 故由几何概型可知,半圆所占比例为4π,随机撒4000粒豆子,落在阴影部分内的豆子数目大约为3000,故选C . (2)线性规划类几何概型例2-2:甲乙两艘轮船都要在某个泊位停靠6小时,假定他们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停泊位时必须等待的概率( ) A .14 B.13C .34D .716【答案】D【解析】设甲船到达的时间为x ,乙船到达的时间为y ,则所有基本事件构成的区域满足024024x y ≤≤≤≤⎧⎨⎩,这两艘船中至少有一艘在停泊位时必须等待包含的基本事件构成的区域A 满足0240246x y x y ⎧≤≤⎪≤≤⎨⎪-≤⎩,作出对应的平面区域如图所示:这两艘船中至少有一艘在停泊位时必须等待的概率为()181871242416S P A S Ω⨯==-=⨯阴,故选D .(3)利用积分求面积例2-3:如图,圆222:O x y +=π内的正弦曲线sin y x =与x 轴围成的区域记为M (图中阴影部分),随机往圆O 内投一个点A ,则点A 落在区域M 内的概率是( )A .24π B .34πC .22πD .32π【答案】B【解析】构成试验的全部区域为圆内的区域,面积为3π, 正弦曲线sin y x =与x 轴围成的区域记为M ,根据图形的对称性得:面积为002sin dx 2cos 4S x x ππ==-=⎰,由几何概率的计算公式可得,随机往圆O 内投一个点A ,则点A 落在区域M 内的概率34P =π,故选B .3.体积类几何概型例3:一个多面体的直观图和三视图所示,M 是AB 的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,由它飞入几何体F AMCD -内的概率为( )A .34 B .23C .13D .12【答案】D【解析】所求概率为棱锥F AMCD -的体积与棱柱ADF BCE -体积的比值. 由三视图可得AD DF CD a ===,且AD ,DF ,CD 两两垂直, 可得31122ADF BCE ADF V SDC AD DF DC a -=⋅=⋅⋅=, 棱锥体积13F AMCD ADMC V DF S -=⋅,而()21324ADCMS AD AM CD a =⋅+=, ∴214F AMCD V a -=.从而12F AMCD ADF BCEV P V --==.故选D .一、单选题1.如图,边长为2的正方形中有一阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23.则阴影区域的面积约为( )A .23 B .43C .83D .无法计算【答案】C【解析】设阴影区域的面积为s ,243s =,∴83s =.故选C .2.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为( )A .110B .16C .15D .56【答案】B【解析】由题意,此人在50分到整点之间的10分钟内到达,等待时间不多于10分钟,∴概率101606P ==.故选B .3.一只蚂蚁在边长为4的正三角形区域内随机爬行,则它在离三个顶点距离都大于2的区域内的概率为( ) A .31-π B .34C .3π D . 14【答案】A【解析】满足条件的正三角形如图所示:其中正三角形ABC 的面积31643S ==三角形满足到正三角形ABC 的顶点A ,B ,C 的距离都小于2的平面区域如图中阴影部分所示,则2S =π阴,则使取到的点到三个顶点A ,B ,C 的距离都大于2的概率为:31143P ==.故选A .4.在区间[]0,1上随机取两个数x ,y ,记P 为事件2""3x y +≤的概率,则P =( )A .23 B .12C .49D .29【答案】D【解析】如图所示,01x ≤≤,01y ≤≤表示的平面区域为ABCD ,平面区域内满足23x y +≤的部分为阴影部分的区域APQ ,其中203P ⎛⎫⎪⎝⎭,,203Q ⎛⎫⎪⎝⎭,,结合几何概型计算公式可得满足题意的概率值为1222233119p ⨯⨯==⨯,故选D .5.在区间[]02,上随机取一个数,sin 2x π的值介于0到12之间的概率为( )A .13B .2πC .12D .23【答案】A【解析】由10sin 22x π≤≤,得026x ππ≤≤,或562x ππ≤≤π,∴103x ≤≤或523x ≤≤, 记sin 2A x =π的值介于0到12之间,则构成事件A 的区域长度为15202333-+-=;全部结果的区域[]02,长度为2;∴()21323P A ==,故选A .6.点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离1PA <的概率为( ) A .14 B .12C .π4D .π【答案】C【解析】满足条件的正方形ABCD ,如图所示:其中满足动点P 到定点A 的距离1PA <的平面区域如图中阴影部分所示,则正方形的面积1S=正,阴影部分的面积14S=π阴.故动点P到定点A的距离1PA<的概率π4SPS==阴正.故选C.7.如图所示,在椭圆2214xy+=内任取一个点P,则P恰好取自椭圆的两个端点连线与椭圆围成阴影部分的概率为()A.1142-πB.1144-πC.18D.1188-π【答案】A【解析】先求椭圆面积的14,由2214xy+=知214xy=-,∴22220011dx4dx442S xx=-=-⎰⎰椭圆,而224dxx-⎰表示24y x=-与0x=,2x=围成的面积,即圆224x y+=面积的14,∴224dxx-=π⎰,∴2214dx422Sxπ=-=⎰椭圆,∴2S=π椭圆,∴概率1112242Pπ-==-ππ,故选A.8.如图,若在矩形OABC中随机撒一粒豆子,则豆子落在图中阴影部分的概率为()A .21-π B .2πC .22πD .221-π【答案】A【解析】1S =π⨯=π矩形,又()00sin dx cos cos cos02x ππ=-=-π-=⎰,∴2S =π-阴影,∴豆子落在图中阴影部分的概率为221π-=-ππ.故选A .9.把不超过实数x 的最大整数记为[]x ,则函数()[]f x x =称作取整函数,又叫高斯函数,在[]14,上任取x ,则[]2x x ⎡⎤=⎣⎦的概率为( )A .14 B .13C .12D .23【答案】D【解析】当[)12x ∈,时,则21x ⎡⎤=⎣⎦,满足[]2x x ⎡⎤=⎣⎦;当[)2,3x ∈时,[]2x =,)22,6x ⎡∈⎣,则22x ⎡⎤=⎣⎦,满足[]2x x ⎡⎤=⎣⎦; 当[)3,4x ∈时,[]3x =,)2622x ⎡∈⎣,,则22x ⎡⎤=⎣⎦不满足[]2x x ⎡⎤=⎣⎦;当4x =时,[]4x =,222x =,则22x ⎡⎤=⎣⎦,不满足[]2x x ⎡⎤=⎣⎦.综上,满足[]2x x ⎡⎤=⎣⎦的[)1,3x ∈,则[]2x x ⎡⎤=⎣⎦的概率为312413--=, 故选D .10.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对()x y ,,再统计其中能与1构成钝角三角形三边的数对()x y ,的个数m ,最后根据统计个数m 估计π的值.如果统计结果是34m =,那么可以估计π的值为( ) A .227B .4715C .5116D .5317【答案】B【解析】由题意,120对都小于的正实数()x y,,满足0101xy<<⎧⎨<<⎩,面积为1,两个数能与1构成钝角三角形的三边的数对()x y,,满足221x y+<且0101xy<<⎧⎨<<⎩,面积为142π-,∵统计两数能与1构成钝角三角形三边的数对()x y,的个数为34m=,则34112042π=-,∴4715π=,故选B.11.为了节省材料,某市下水道井盖的形状如图1所示,其外围是由以正三角形的顶点为圆心,正三角形的边长为半径的三段圆弧组成的曲边三角形,这个曲边三角形称作“菜洛三角形”.现有一颗质量均匀的弹珠落在如图2所示的莱洛三角形内,则弹珠恰好落在三角形ABC内的概率为()A3223π-B3223π+C3D.31【答案】A【解析】弹珠落在莱洛三角形内的每一个位置是等可能的,由几何概型的概率计算公式可知所求概率:222212sin60321112233222sin602sin602322ABCABCSPSπ⨯⨯===⎛⎫π-⨯⨯⨯-⨯⨯⨯+⨯⨯⎪⎝⎭ou u u u u u o ou r△△(ABCS u u u u u u u r△为莱洛三角形的面积),故选A.12.下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为I ,黑色部分记为II ,其余部分记为III .在整个图形中随机取一点,此点取自I ,II ,III 的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+【答案】A【解析】设AC b =,AB c =,BC a =,则有222b c a +=, 从而可以求得ABC △的面积为112S bc =,黑色部分的面积为22222221122224442c b a c b a S bc bc ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=π⋅+π⋅-π⋅-=π+-+⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦22211422c b a bc bc +-=π⋅+=,其余部分的面积为223112242a a S bc bc π⎛⎫=π⋅-=- ⎪⎝⎭,∴有12S S =,根据面积型几何概型的概率公式,可以得到12p p =,故选A .二、填空题13.在区间[]02,内任取一个实数a ,则使函数()()21log a f x x -=在()0+∞,上为减函数的概率是___________.【答案】14【解析】∵函数()()21log a f x x -=在()0+∞,上为减函数,∴0211a <-<,112a <<,因此所求概率为1112204-=-.14.记集合(){}2216A x y xy =+≤,,集合()(){}40, B x y x y x y A =+-≤∈,,表示的平面区域分别为1Ω,2Ω.若在区域1Ω内任取一点()P x y ,,则点P 落在区域2Ω中的概率为__________. 【答案】324π+π【解析】画出(){}2216A x y x y =+≤,表示的区域1Ω,即图中以原点为圆心,半径为2的圆;集合()(){}40, B x y x y x y A =+-≤∈,,表示的区域2Ω,即图中的阴影部分. 由题意可得116S Ω=π,231164412842S Ω=⨯π+⨯⨯=π+,根据几何概型概率公式可得所求概率为21324S P S ΩΩπ+==π.15.如图,曲线sin32xy π=+把边长为4的正方形OABC 分成黑色部分和白色部分.在正方形内随机取一点,则此点取自黑色部分的概率是__________.【答案】14【解析】由题意可知,阴影部分的面积4410 024sin3dx cos422xS x x⎡π⎤π⎛⎫⎛⎫=-+=-⨯=⎪ ⎪⎢⎥π⎝⎭⎝⎭⎣⎦⎰,正方形的面积:24416S=⨯=,由几何概型计算公式可知此点取自黑色部分的概率:1241 164SpS===.16.父亲节小明给爸爸从网上购买了一双运动鞋,就在父亲节的当天,快递公司给小明打电话话说鞋子已经到达快递公司了,马上可以送到小明家,到达时间为晚上6点到7点之间,小明的爸爸晚上5点下班之后需要坐公共汽车回家,到家的时间在晚上5点半到6点半之间.求小明的爸爸到家之后就能收到鞋子的概率(快递员把鞋子送到小明家的时候,会把鞋子放在小明家门口的“丰巢”中)为__________.【答案】18【解析】设爸爸到家时间为x,快递员到达时间为y,以横坐标表示爸爸到家时间,以纵坐标表示快递送达时间,建立平面直角坐标系,爸爸到家之后就能收到鞋子的事件构成区域如下图:根据题意,所有基本事件构成的平面区域为() 5.5 6.567x x y y ⎧⎫≤≤⎧⎪⎪⎨⎨⎬≤≤⎩⎪⎪⎩⎭,,面积1S =,爸爸到家之后就能收到鞋子的事件,构成的平面区域为() 5.5 6.5670x x y y x y ⎧⎫≤≤⎧⎪⎪⎪≤≤⎨⎨⎬⎪⎪⎪-≥⎩⎩⎭,, 直线0x y -=与直线 6.5x =和6y =交点坐标分别为()66,和()6.56.5,,2111228S ⎛⎫=⨯= ⎪⎝⎭阴影, 由几何概型概率公式可得,爸爸到家之后就能收到鞋子的概率:18S P S==阴影. 故答案为18.。

几何概型例题分析及习题(含答案)

几何概型例题分析及习题(含答案)

几何概型例题分析及练习题 (含答案)[例1] 甲、乙两人约定在下午4:00~5:00间在某地相见他们约好当其中一人先到后一定要等另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。

解:设x 为甲到达时间,y 为乙到达时间.建立坐标系,如图15||≤-y x 时可相见,即阴影部分167604560222=-=P[例2] 设A 为圆周上一定点,在圆周上等可能任取一点与A 连接,求弦长超过半径2倍的概率。

解:R AC AB 2||||==. ∴ 212===⋂R R BCDP ππ圆周[例3] 将长为1的棒任意地折成三段,求三段的长度都不超过21的概率。

解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为y x --1,则基本事件组所对应的几何区域可表示为 }10,10,10|),{(<+<<<<<=Ωy x y x y x ,即图中黄色区域,此区域面积为21。

事件“三段的长度都不超过21”所对应的几何区域可表示为Ω∈=),(|),{(y x y x A ,}211,21,21<--<<y x y x 即图中最中间三角形区域,此区域面积为81)21(212=⨯ 此时事件“三段的长度都不超过21”的概率为412181==P[例4] 两对讲机持有者张三、李四,为卡尔货运公司工作,他们对讲机的接收范围是25,下午3:00张三在基地正东30内部处,向基地行驶,李四在基地正北40内部处,向基地行驶,试问下午3:00,他们可以交谈的概率。

解:设y x ,为张三、李四与基地的距离]30,0[∈x ,]40,0[∈y ,以基地为原点建立坐标系.他们构成实数对),(y x ,表示区域总面积为1200,可以交谈即2522≤+y x故19225120025412ππ==P [例5] 在区间]1,1[-上任取两数b a ,,运用随机模拟方法求二次方程02=++b ax x 两根均为正数的概率。

高考数学最新真题专题解析—古典概型与几何概型(理科)

高考数学最新真题专题解析—古典概型与几何概型(理科)

高考数学最新真题专题解析—古典概型与几何概型考向一 古典概型【母题来源】2022年高考全国甲卷(理科)【母题题文】 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________. 【答案】635. 【试题解析】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===.故答案为:635. 【命题意图】本题主要考查古典概型的的概率计算公式,属于基础题.【命题方向】这类试题在考查题型上主要以选择填空形式出现,试题难度不大,多为抵挡题目,是历年高考的热点. 常见的命题角度有:(1)列举法求古典概型的概率;(2)树状图法求古典概型的概率. 【得分要点】(1)理解古典概型及其概率计算公式.(2)会计算一些随机事件所含的基本事件数及事件发生的概率. 考向二 几何概型【母题来源】2021年高考全国卷(理科)【母题题文】在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为( )A .79B .2332C .932D .29【答案】B【试题解析】设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y⎧⎫=<<<+⎨⎬⎩⎭,分别求出,A Ω对应的区域面积,根据几何概型的的概率公式即可解出. 【详解】 如图所示:设从区间()()0,1,1,2中随机取出的数分别为,x y ,则实验的所有结果构成区域为(){},01,12x y x y Ω=<<<<,其面积为111S Ω=⨯=.设事件A 表示两数之和大于74,则构成的区域为()7,01,12,4A x y x y x y ⎧⎫=<<<+⎨⎬⎩⎭,即图中的阴影部分,其面积为133********A S =-⨯⨯=,所以()2332A S P A S Ω== 【命题意图】本题主要考查几何概型的的概率计算公式,属于基础题.【命题方向】这类试题在考查题型上主要以选择填空形式出现,试题难度不大,多为抵挡题目,是历年高考的热点. 常见的命题角度有:(1)由长度比求几何概型的概率;(2)由面积比求几何概型的概率;(3)由体积比求几何概型的概率; (4)由角度比求几何概型的概率. 【得分要点】(1)能运用模拟方法估计概率. (2)了解几何概型的意义.真题汇总及解析 一、单选题1.(2022·河南许昌·高二期末(理))若分配甲、乙、丙、丁四个人到三个不同的社区做志愿者,每个社区至少分配一人,每人只能去一个社区.若甲分配的社区已经确定,则乙与甲分配到不同社区的概率是( ) A .14B .56C .13D .512【答案】B 【解析】 【分析】计算出甲单独去分配的社区,甲和乙,丙,丁三人的一人去分配的社区,从而得到总的分配方法,再计算出甲乙分配到同一舍去的方法,得到乙与甲分配到不同社区的方法,根据古典概型求概率公式进行计算. 【详解】甲单独去分配的社区,有将乙,丙,丁三人分为两组,再和另外两个社区进行全排列,有212312C C A 6 种方法;甲和乙,丙,丁三人的一人去分配的社区,其余两人和另外两个社区进行全排列,有1232C A 6=种方法;其中甲乙分配到同一社区的方法有22A 2=种,则乙与甲分配到不同社区的方法有66210+-=种, 所以乙与甲分配到不同社区的概率是105666=+ 故选:B2.(2022·广东茂名·二模)甲、乙、丙三人是某商场的安保人员,根据值班需要甲连续工作2天后休息一天,乙连续工作3天后休息一天,丙连续工作4天后休息一天,已知3月31日这一天三人均休息,则4月份三人在同一天工作的概率为( ) A .13B .25C .1130D .310【答案】B 【解析】 【分析】列举出三人所有工作日,由古典概型公式可得. 【详解】解:甲工作的日期为1,2,4,5,7,8,10,...,29. 乙工作的日期为1,2,3,5,6,7,9,10,...,30. 丙工作的日期为1,2,3,4,6,7,8,9, (29)在同一天工作的日期为1,2,7,11,13,14,17,19,22,23,26,29 ∴三人同一天工作的概率为122305P ==. 故选:B .3.(2022·辽宁实验中学模拟预测)某国计划采购疫苗,现在成熟的疫苗中,三种来自中国,一种来自美国,一种来自英国,一种由美国和德国共同研发,从这6种疫苗中随机采购三种,若采购每种疫苗都是等可能的,则买到中国疫苗的概率为( ) A .16B .12C .910D .1920【答案】D 【解析】 【分析】由对立事件的概率公式计算. 【详解】没有买到中国疫苗的概率为13611C 20P ==,所以买到中国疫苗的概率为119120P P =-=. 故选:D .4.(2022·河南安阳·模拟预测(文))为推动就业与培养有机联动、人才供需有效对接,促进高校毕业生更加充分更高质量就业,教育部今年首次实施供需对接就业育人项目.现安排甲、乙两所高校与3家用人单位开展项目对接,若每所高校至少对接两家用人单位,则两所高校的选择涉及到全部3家用人单位的概率为( ) A .12 B .23C .34D .1316【答案】D 【解析】【分析】由古典概型与对立事件的概率公式求解即可【详解】因为每所高校至少对接两家用人单位,所以每所高校共有2333314C C+=+=种选择,所以甲、乙两所高校共有4416⨯=种选择,其中甲、乙两所高校的选择涉及两家用人单位的情况有233C=种,所以甲、乙两所高校的选择涉及到全部3家用人单位的概率为31311616P=-=,故选:D5.(2022·全国·模拟预测(理))2022年2月4日,北京冬季奥林匹克运动会开幕式于当晩20点整在国家体育场隆重举行.在开幕式入场环节,91个国家(地区)按顺序入场.入场顺序除奥林匹克发祥地希腊(首先入场)、东道主中国(最后入场)、下届2026年冬季奥运会主办国意大利(倒数第二位入场)外,其余代表团根据简体中文的笔划顺序入场,诠释了中文之美.现若以抽签的方式决定入场顺序(希腊、中国、意大利按照传统出场顺序,不参与抽签),已知前83位出场的国家(地区)均已确定,仅剩乌兹别克斯坦、北马其顿、圣马力诺、安道尔、阿根廷、泰国末抽签,求乌兹别克斯坦、安道尔能紧挨出场的概率()A.25B.13C.16D.14【答案】B【解析】【分析】先求出这六个国家的所有可能出场的顺序的排列数,再求出乌兹别克斯坦、安道尔能紧挨出场的排列数,将即乌兹别克斯坦、安道尔看作一个国家,利用捆绑法,根据古典概型的概率公式求得答案.【详解】由题意得,乌兹别克斯坦、北马其顿、圣马力诺、安道尔、阿根廷、泰国所有可能的出场顺序有66A种,其中乌兹别克斯坦、安道尔能紧挨出场的顺序有2525A A种,故乌兹别克斯坦、安道尔能紧挨出场的概率为252566A A1A3=,故选:B6.(2022·北京·北大附中三模)有一副去掉了大小王的扑克牌(每副扑克牌有4种花色,每种花色13张牌),充分洗牌后,从中随机抽取一张,则抽到的牌为“红桃”或“A”的概率为()A.152B.827C.413D.1752【答案】C【解析】【分析】直接根据古典概型概率计算公式即可得结果.【详解】依题意,样本空间包含样本点为52,抽到的牌为“红桃”或“A”包含的样本点为16,所以抽到的牌为“红桃”或“A”的概率为1645213=,故选:C.7.(2022·湖北省仙桃中学模拟预测)定义:10000100010010,(,,,,)abcde a b c d e a b c d e Z=++++∈,当a b c d e><><时,称这个数为波动数,由1,2,3,4,5组成的没有重复数字的五位数中,波动数的概率为()A .115B .215C .760D .112【答案】B 【解析】 【分析】先判断出由1,2,3,4,5组成的没有重复数字的五位数有120种,列举出波动数有 个,即可求出波动数的概率. 【详解】由1,2,3,4,5组成的没有重复数字的五位数一共有55A 120=种.而构成波动数,需满足a b c d e ><><,有:31425,31524,41325,41523,51324,51423,32415,32514,42315,42513,52314,52413,21435,21534,53412,43512一共16个. 所以波动数的概率为16212015=. 故选:B.8.(2022·河南省杞县高中模拟预测(理))在区间[]0,1上随机取两个数,则这两个数差的绝对值大于12的概率为( ) A .34B .12C .14D .18【答案】C 【解析】 【分析】设在[]0,1上取的两数为x ,y ,满足12x y ->,画出不等式表示的平面区域,结合面积比的几何概型,即可求解.设在[]0,1上取的两数为x ,y ,则12x y ->,即12x y ->,或12x y -<-.画出可行域,如图所示,则12x y ->,或12x y -<-所表示的区域为图中阴影部分,易求阴影部分的面积为14,故所求概率11414P ==; 故选:C.9.(2022·全国·哈师大附中模拟预测)若在区间[]1,1-内随机取一个实数t ,则直线y tx =与双曲线2214xy -=的左、右两支各有一个交点的概率为( )A .14B .12C .18D .34【答案】B 【解析】 【分析】求出双曲线渐近线的斜率,根据已知条件可得出t 的取值范围,结合几何概型的概率公式可求得所求事件的概率. 【详解】双曲线的渐近线斜率为12±,则12t <,即1122t -<<,故所求概率为12P =,10.(2022·陕西·西北工业大学附属中学模拟预测(理))甲、乙两人约定某日上午在M 地见面,若甲是7点到8点开始随机到达,乙是7点30分到8点30分随机到达,约定,先到者没有见到对方时等候10分钟,则甲、乙两人能见面的概率为( ). A .13B .16C .59D .38【答案】B 【解析】 【分析】从早上7点开始计时,设甲经过x 十分钟到达,乙经过y 十分钟到达,可得x 、y 满足的不等式线组对应的平面区域为如图的正方形ABCD ,而甲乙能够见面,x 、y 满足的平面区域是图中的四边形EFGH .分别算出图中正方形和四边形的面积,根据面积型几何概型的概率公式计算可得. 【详解】解:从早上7点开始计时,设甲经过x 十分钟到达,乙经过y 十分钟到达, 则x 、y 满足0639x y ≤≤⎧⎨≤≤⎩,作出不等式组对应的平面区域,得到图中的正方形ABCD ,若甲乙能够见面,则x 、y 满足||1x y -≤, 该不等式对应的平面区域是图中的四边形EFGH ,6636ABCD S =⨯=,114422622EFGH BEHBFGS SS=-=⨯⨯-⨯⨯= 因此,甲乙能见面的概率61366EFGH ABCD S P S ===故选:B .二、填空题11.(2022·上海青浦·二模)受疫情防控需求,现有四位志愿者可自主选择到三个不同的核酸检测点进行服务,则三个核酸检测点都有志愿者到位的概率是_________.(结果用最简分数表示) 【答案】49【解析】【分析】先计算总共的选择数,再计算三个核酸检测点都有志愿者到位的数量,即可得答案.【详解】解:四个志愿者总的选择共333381N =⨯⨯⨯=种,要满足三个核酸检测点都有志愿者到位,则必有2个人到同一核酸检测点,故从4人中选择2人出来,共有24C 6=种,再将这2人看成整体1人和其他2人共3人,选择三个核酸检测点,共33A 6=种,所以6636n =⨯=,所以364819n P N ===.故答案为:49.12.(2022·黑龙江·哈尔滨三中一模(理))关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学,每人随机写下一个x 、y都小于1的正实数对(),x y ,再统计x 、y 两数能与1构成钝角三角形时的数对(),x y 的个数m ,最后再根据m 来估计π的值.假如统计结果是36m =,那么π的估计值为______.【答案】3.2【解析】【分析】(,)x y 表示的点构成一个正方形区域,x 、y 两数能与1构成钝角三角形时的数对(),x y 表示的点构成图中阴影部分,分别求出其面积,由几何概型概率公式求得其概率后可得.【详解】(,)x y 表示的点构成一个正方形区域,如图正方形OABC (不含边界),x 、y 两数能与1构成钝角三角形满足条件2211x y x y +>⎧⎨+<⎩,(,)x y 表示的点构成的区域是图中阴影部分(不含边界), 因此所求概率为1136********P ππ-==-=,估计 3.2π≈.故答案为:3.213.(2022·河南·模拟预测)现有四张正面分别标有数字-1,0,-2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张记作m 不放回,再从余下的卡片中取一张记作n .则点(),P m n 在第二象限的概率为______. 【答案】16【解析】【分析】列出所有可能的情况,根据古典概型的方法求解即可【详解】由题,点(),P m n 所有可能的情况为()1,0-,()1,2--,()1,3-,()0,1-,()0,2-,()0,3,()2,1--,()2,0-,()2,3-,()3,1-,()3,0,()3,2-共12种情况,其中在第二象限的为()2,3-,()1,3-,故点(),P m n 在第二象限的概率为21126= 故答案为:1614.(2021·江西·新余市第一中学模拟预测(理))寒假即将来临,小明和小强计划去图书馆看书,约定上午8:00~8:30之间的任何一个时间在图书馆门口会合.两人商量好提前到达图书馆的人最多等待对方10分钟,如果对方10分钟内没到,那么等待的人先进去.则两人能够在图书馆门口会合的概率是_________________. 【答案】59【解析】先把两人能够会合转化为几何概型,利用几何概型的概率公式直接求解.【详解】设小明到达的时刻为8时x 分,小强到达的时刻为8时y 分,其中030,030x y ≤≤≤≤, 则当|x-y |≤10时,两人能够在图书馆门口会合.如图示:两人到达时刻(x ,y )构成正方形区域,记面积为S ,而事件A :两人能够在图书馆门口会合构成阴影区域,记其面积为S 1 所以1900-22005()=9009S P A S ⨯==. 故答案为:59.【点睛】(1)几何概型的两个特征——无限性和等可能性,只有同时具备这两个特点的概型才是几何概型;(2)几何概型通常转化为长度比、面积比、体积比。

2021年高考数学考点59几何概型必刷题理含解析

2021年高考数学考点59几何概型必刷题理含解析

考点59 几何概型1.已知P是所在平面内一点,,现将一粒黄豆随机撒在内,则黄豆落在内的概率是()A. B. C. D.【答案】B2.欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止,若铜钱是直径为的圆面,中间有边长为的正方形孔,现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为()A. B. C. D.【答案】A3.有一底面半径为1,高为2的圆柱,点O为圆柱下底面圆的圆心,在这个圆柱内随机取一点P,则点P 到点O的距离大于l的概率为A. B. C. D.【答案】B【解析】设点P到点O的距离小于1的概率为P1,由几何概型,则P1==,故点P到点O的距离大于1的概率P=1-=.故选B.4.如图所示,平面直角坐标系中,阴影部分是由抛物线及线段围成的封闭图形,现在在内随机的取一点,则点恰好落在阴影内的概率为A. B. C. D.【答案】D5.在区间[0,2]上随机取一个数x,使的概率为()A. B. C. D.【答案】A【解析】在区间上随机取一个数,使则解得所求概率故选6.如图所示,在边长为1的正方形中任取一点,则点恰好取自阴影部分的概率为A. B. C. D.【答案】C7.如图所示,在椭圆内任取一个点,则恰好取自椭圆的两个端点连线与椭圆围成阴影部分的概率为()A. B.C. D.【答案】A8.欧阳修《卖油翁》中写到:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3 cm的圆,中间有边长为1 cm 的正方形孔,若你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率是( ) A. B. C. D.【答案】D【解析】如图所示:∵,∴.故选:D.9.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是( )A. B. C. D.【答案】C10.若,满足不等式组,则成立的概率为A. B. C. D.【答案】A11.为了节省材料,某市下水道井盖的形状如图1所示,其外围是由以正三角形的顶点为圆心,正三角形的边长为半径的三段圆弧组成的曲边三角形,这个曲边三角形称作“菜洛三角形”.现有一颗质量均匀的弹珠落在如图2所示的莱洛三角形内,则弹珠恰好落在三角形内的概率为()A. B. C. D.【答案】A12.如图,若在矩形中随机撒一粒豆子,则豆子落在图中阴影部分的概率为()A. B. C. D.【答案】A【解析】,又,,豆子落在图中阴影部分的概率为.故选:A.13.把不超过实数的最大整数记为,则函数称作取整函数,又叫高斯函数,在上任取,则的概率为()A. B. C. D.【答案】D14.下列命题正确的个数是:()①对于两个分类变量与的随机变量的观测值来说,越小,判断“与有关系”的把握程度越大;②在相关关系中,若用拟合时的相关指数为,用拟合时的相关指数为,且,则的拟合效果好;③利用计算机产生之间的均匀随机数,则事件“”发生的概率为;④“”是“”的充分不必要条件A. B. C. D.【答案】C15.折纸已经成为开发少年儿童智力的一种重要工具和手段,已知在折叠“爱心”活动中,会产生如右上图所示的几何图形,其中四边形为正方形,为线段的中点,四边形与四边形也为正方形,连接、,则向多边形中投掷一点,则该点落在阴影部分的概率为( )A. B. C. D.【答案】C【解析】16.已知实数满足,则函数存在极值的概率为()A. B. C. D.【答案】A【解析】函数的导数,若函数无极值,则恒成立,即,即,作出不等式对应的平面区域如图所示:则阴影部分的面积为,则由几何概型的概率公式,可得函数无极值的概率为,所以函数有极值的概率为,故选A.17.一个圆形电子石英钟由于缺电,指针刚好停留在整,三个指针(时针、分针、秒针)所在射线将时钟所在圆分成了三个扇形,一只小蚊子(可看成是一个质点)随机地飞落在圆面上,则恰好落在时针与分针所夹扇形内的概率为()A. B. C. D.【答案】C18.大正方形的面积为13,四个全等的直角三角形围成中间的小正方形,较短的直角边长为2,向大正方形内投掷飞镖,则飞镖落在中间小正方形内的概率是_______.【答案】19.设集合,,从集合中任取一个元素,则这个元素也是集合中元素的概率是__________.【答案】【解析】∵集合A={x|<2x<16}=(﹣2,4),B={x|y=ln(x2﹣3x)}=,∴A∩B={x|3<x<4或-2<x<0},∴事件“x∈A∩B”的概率是.故答案为:.20.如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为的大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷一支飞镖,飞镖落在小正方形内的概率是________________【答案】【解析】根据几何概率的求法:一次飞镖扎在中间小正方形区域(含边线)的概率就是阴影区域的面积与总面积的比值.解:观察这个图可知:大正方形的边长为2,总面积为4,而阴影区域的边长为,面积为故飞镖落在阴影区域的概率故答案为:1-21.已知0分别在区间(0,a)和(0,4-a)内任取一个数,且取的两数之和小于1的概率为,则a=________【答案】22.随机地向区域内投点,点落在区域的每个位置是等可能的,则坐标原点与该点连线的倾斜角小于的概率为_________【答案】23.已知,点的坐标为,则当时,满足的概率为__________.【答案】【解析】因为,所以M表示区域为正方形,面积为,因为实心圆在M中区域为四分之一圆,所以面积为因此概率为.24.已知平面向量,则事件“”的概率为__________.【答案】25.水池的容积是20m3,向水池注水的水龙头A和水龙头B的流速都是1m3/h,它们在一昼夜内随机开放(0~24小时),求水池不溢出水的概率.(精确到0.01)【答案】0.35.【解析】设水龙头A开x小时,水龙头B开y小时,若水池不溢出水,则x+y≤20,记“水池不溢出水”为事件M,则M所占区域面积为×20×20=200,整个区域的面积为24×24=576,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何概型的常见题型及典例分析一.几何概型的定义1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.特点:(1)无限性,即一次试验中,所有可能出现的结果(基本事件)有无限多个;(2)等可能性,即每个基本事件发生的可能性均相等.3.计算公式:.)(积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P = 说明:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行度量.4.古典概型和几何概型的区别和联系:(1)联系:每个基本事件发生的都是等可能的.(2)区别:①古典概型的基本事件是有限的,几何概型的基本事件是无限的;②两种概型的概率计算公式的含义不同.二.常见题型(一)、与长度有关的几何概型例1、在区间]1,1[-上随机取一个数x ,2cosx π的值介于0到21之间的概率为( ). A.31 B.π2 C.21 D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的区间长度有关,符合几何概型的条件.解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos2x π的值介于0到21之间,需使223x πππ-≤≤-或322x πππ≤≤ ∴213x -≤≤-或213x ≤≤,区间长度为32, 由几何概型知使cos 2x π的值介于0到21之间的概率为 31232===度所有结果构成的区间长符合条件的区间长度P . 故选A. 例2、 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少?思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型.解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30³31=10米, ∴313010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解.例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,求任意画的弦的长度不小于R 的概率。

思考方法:由平面几何知识可知,垂直于弦的直径平分这条弦,所以,题中的等可能参数是平行弦的中点,它等可能地分布在于平行弦垂直的直径上(如图1-1)。

也就是说,样本空间所对应的区域G 是一维空间(即直线)上的线段MN ,而有利场合所对应的区域G A 是长度不小于R 的平行弦的中点K 所在的区间。

[解法1].设EF 与E 1F 1是长度等于R 的两条弦,图1-2图1-1直径MN 垂直于EF 和E 1F 1,与他们分别相交于K 和K 1(图1-2)。

依题设条件,样本空间所对应的区域是直径MN ,有L(G)=MN=2R ,注意到弦的长度与弦心距之间的关系比,则有利场合所对对应的区域是KK 1,有1()2K L G KK OK ====以几何概率公式得()()22A L G P L G R ===。

[解法2].如图1-1所示,设园O 的半径为R, EF 为诸平行弦中的任意一条,直径MN ⊥弦EF ,它们的交点为K ,则点K 就是弦EF 的中点。

设OK=x ,则 x ∈[-R,R], 所以 L(G)=2R设事件A 为“任意画的弦的长度不小于R ”,则A 的有利场合是R ≥,解不等式,得 x 2R ≤ 所以 ()22A L G R ==于是 ()22P A R == [评注] 本题结构比较简单,题中直接给出了等可能值参数;样本空间和有利场合所对应的区域,从图上都可以直接看出。

两种解法各有特色,解法1充分利用平面几何知识,在本题似较简便,解法2引进变量x 把代数知识和几何知识有机的结合起来,从表面上看解题过程不甚简便,但确具有推广价值,这种方法可以求解复杂的几何概率问题。

例4、 在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,求这个正方形的面积介于36cm 2 与81cm 2之间的概率.分析:正方形的面积只与边长有关,因此,此题可以转化为在12cm 长的线段AB 上任取一点M ,求使得AM 的长度介于6cm 与9cm 之间的概率.解:记“面积介于36cm 2 与81cm 2之间”为事件A ,事件A 的概率等价于“长度介于6cm 与9cm 之间”的概率,所以,P(A)= 9612-=14 小结:解答本例的关键是,将正方形的面积问题先转化为与边长的关系。

练习:2、已知地铁列车每10 min 一班,在车站停1 min ,则乘客到达站台立即乘上车的概率是( )A.110B.19C.111D.18解析:设乘客到达站台立即乘上车为事件A ,试验的所有结果构成的区域长度为10 min ,而构成事件A 的区域长度为1 min ,故P (A )=110.答案:A 3、已知集合A {x |-1<x <5},B ={x |x -23-x>0},在集合A 中任取一个元素x ,则事件“x ∈A ∩B ”的概率是________.解析:由题意得A ={x |-1<x <5},B ={x |2<x <3},由几何概型知:在集合A 中任取一个元素x ,则x ∈A ∩B 的概率为P =16.答案:164、 小赵欲在国庆六十周年之后从某车站乘车外出考察,已知该站发往各站的客车均每小时一班,求小赵等车时间不多于10分钟的概率.分析:因为客车每小时一班,而小赵在0~60分钟之间任何一个时刻到车站等车是等可能的, 所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,且属于几何概型中的长度类型.解析:设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,而事件的总体是整个一小时,即60分钟,因此,由几何概型的概率公式,得P(A)= 605060-=61,即此人等车时间不多于10分钟的概率为61. (二)、与面积有关的几何概型例1、ABCD 为长方形,1,2==BC AB ,O 为AB 的中点,在长方形ABCD内随机取一点,取到的点到O 的距离大于1的概率为( )A .4π B.14π- C.8π D.18π- 分析:由于是随机的取点,点落在长方形内每一个点的机会是等可能的,基本事件是无限多个,所以符合几何概型.解:长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半DC圆)面积为2π,因此取到的点到O 的距离大于1的面积为22π-,则取到的点到O 的距离大于1的概率为412221)(ππ-=-==的面积长方形的面积的距离大于取到的点到ABCD O A P . 故选B.例2、 如图,射箭比赛的箭靶涂有五个彩色的分环.从外向内依次为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2cm.运动员在70 m 外射箭.假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?思路点拨 此为几何概型,只与面积有关.解 记“射中黄心”为事件B,由于中靶点随机地落在面积为2212241cm ⨯⨯π的大圆内,而当中靶点落在面积为222.1241cm ⨯⨯π的黄心时,事件B 发生,于是事件B 发生的概率为01.0122412.1241)(2222=⨯⨯⨯⨯=cm cm B P ππ. 即:“射中黄心”的概率是0.01.方法技巧 事件的发生是“击中靶心”即“黄心”的面积;总面积为最大环的圆面积.例3、在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D中随意投一点,则落入E 中的概率为 。

解析:如图:区域D 表示边长为4的正方形ABCD 的内部(含边界),而区域E 表示单位圆及其内部,因此214416P ππ⨯==⨯。

答案 16π 点评:本小题中的试验结果是区域中的部分点集,其结果是不可数的,属于几何概型中典型的面积之比。

例4、在三角形ABC 中任取一点P ,证明:△ABP 与△ABC 的面积之比大于1n n -的概率为21n 。

思考方法 本题的随机点是ABP ∆的顶点P ,它等可能的分布在ABC ∆中,因此,与样本空间对应的平面区域是ABC ∆,注意到ABP ∆于ABC ∆有公共边AB ,所以的面积决定于顶点P 离底边AB 的距离。

这样不难确定与有利场合相对应的平面区域。

解 设ABP ∆与ABC ∆的面积之比为1n n-,ABC ∆的高CD 为h ,ABP ∆的高PG 为h1,公共底边AB 的长为c ,(图2)则111122ABPABCch S h n S h n ch ∆∆-=== 11n h h n -=过点P 作EF//AB,交CD 于H,则有立场合所对应的平面区域为CEF ∆.于是所求概率为EFC ABCS P S ∆∆= 注意到EF//AB ,~EFC ABC ∆∆,且 CH=h -h 1 = h-1n n -h=1h n ,2221EFCABC h s n p S h n ∆∆⎛⎫ ⎪⎝⎭∴=== 由此,原题得证。

评注 本题的样本空间虽然与平面区域相对应,但因三角形ABC 于三角形ABP 有公共底边AB ,所以,实际变化着的量只有一个(即点P 于AB 的距离),问题还比较简单,对于较复杂的平面区域,常常要根据题设选定两个变量,由各自的约束条件确定样本空间于有立场合的相应区域。

例5、将长为L 的木棒随机的折成3段,求3段构成三角形的概率.解:设M =“3段构成三角形”.x y ,分别表示其中两段的长度,则第三段的长度为L x y --.{}()000x y x L y L x y L Ω=<<<<<+<,,,|.图2H P G F E D C B A由题意,x y L x y --,,要构成三角形,须有x y L x y +>--,即12x y +>; ()x L x y y +-->,即2L y <;()y L x y x +-->,即2L x <. 故()|222L L L M x y x y y x ⎧⎫=+><<⎨⎬⎩⎭,,,. 如图1所示,可知所求概率为221122()42L M P M L ⎛⎫ ⎪⎝⎭===Ω·的面积的面积. 例6、已知函数f (x )=-x 2+ax -b .若a 、b 都是从区间[0,4]任取的一个数,则f (1)>0成立的概率是________.解析:f (1)=-1+a -b >0,即a -b >1,如图:A (1,0),B (4,0),C (4,3),S △ABC =92,P =S △ABC S 矩=924³4=932. 答案:932练习1、ABCD 为长方形,AB =2,BC =1,O 为AB 的中点.在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4 C.π8 D .1-π8解析:对应长方形的面积为2³1=2,而取到的点到O 的距离小于等于1时,其是以O 为圆心,半径为1所作的半圆,对应的面积为12³π³12=12π,那么满足条件的概率为:1-12π2=1-π4.答案:B2、设-1≤a ≤1,-1≤b ≤1,则关于x 的方程x 2+ax +b 2=0有实根的概率是 ( )A.12B.14C.18D.116解析:由题知该方程有实根满足条件⎩⎨⎧ -1≤a ≤1,-1≤b ≤1,a 2-4b 2≥0,作平面区域如右图:由图知阴影面积为1,总的事件对应面积为正方形的面积,故概率为14.答案:B 3、已知Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0},A ={(x ,y )|x ≤4,y ≥0,x -2y ≥0},若向区域Ω上随机投一点P ,则点P 落入区域A 的概率为 ( )A.13B.23C.19D.29解析:作出两集合表示的平面区域如图所示.容易得出Ω所表示的平面区域为三角形AOB 及其边界,A 表示的区域为三角形OCD 及其边界.容易求得D (4,2)恰为直线x =4,x -2y =0,x +y =6三线的交点.则可得S △AOB =12³6³6=18,S △OCD =12³4³2=4.所以点P 落在区域A 的概率为418=29.答案:D 4、在区域⎪⎪⎩⎪⎪⎨⎧≥≥+-≤-+00202y y x y x 内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( )A.π2B.π8C.π6D.π4 解析:区域为△ABC 内部(含边界),则概率为P =S 半圆S △ABC =π212³22³2=π4.答案:D 5、在边长为2的正三角形ABC 内任取一点P ,则使点P 到三个顶点的距离至少有一个小于1的概率是________.解析:以A 、B 、C 为圆心,以1为半径作圆,与△ABC相交出三个扇形(如图所示),当P 落在阴影部分时符合要求.∴P =3³(12³π3³12)34³22=3π6.答案:36π 6、在区间[0,1]上任意取两个实数a ,b ,则函数f (x )=12x 3+ax -b 在区间[-1,1]上有且仅有一个零点的概率为________.解析:f ′(x )=32x 2+a ,故f (x )在x ∈[-1,1]上单调递增,又因为函数f (x )=12x 3+ax -b 在[-1,1]上有且仅有一个零点,即有f (-1)²f (1)<0成立,即(-12-a -b )(12+a -b )<0,则(12+a +b )(12+a -b )>0,可化为⎩⎪⎨⎪⎧ 0≤a ≤10≤b ≤112+a -b >012+a +b >0或⎩⎪⎨⎪⎧ 0≤a ≤10≤b ≤112+a -b <0,12+a +b <0由线性规划知识在平面直角坐标系aOb中画出这两个不等式组所表示的可行域,再由几何概型可以知道,函数f(x)=12x3+ax-b在[-1,1]上有且仅有一个零点的概率为可行域的面积除以直线a=0,a=1,b=0,b=1围成的正方形的面积,计算可得面积之比为78。

相关文档
最新文档