T8钢热处理工艺
钢的热处理(原理及四把火)

钢的热处理钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。
热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用于改善钢材的工艺性能。
其共同点是:只改变内部组织结构,不改变表面形状与尺寸。
第一节钢的热处理原理热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。
热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。
热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下)1、整体热处理:包括退火、正火、淬火、回火和调质;2、表面热处理:包括表面淬火、物理和化学气相沉积等;3、化学热处理:渗碳、渗氮、碳氮共渗等。
热处理的三阶段:加热、保温、冷却一、钢在加热时的转变加热的目的:使钢奥氏体化(一)奥氏体( A)的形成奥氏体晶核的形成以共析钢为例A1点则W c =0.0218%(体心立方晶格F)W c =6.69%(复杂斜方渗碳体)当T 上升到A c1 后W c =0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A的形成过程。
在铁素体和渗碳体的相界面上形成。
有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。
1、奥氏体长大由于铁素体的晶格改组和渗碳体的不断溶解,A晶核一方面不断向铁素体和渗碳体方向长大,同时自身也不断形成长大。
2、残余 Fe 3 C的溶解 A长大同时由于有部分渗碳体没有完全溶解,还需一段时间才能全溶。
(F比Fe 3 C先消失)3、奥氏体成分的均匀化残余Fe 3 C全溶后,经一段时间保温,通过碳原子的扩散,使A成分逐步均匀化。
(二)奥氏体晶粒的长大奥氏体大小用奥氏体晶粒度来表示。
分为 00,0,1,2…10等十二个等级,其中常用的1~10级,4级以下为粗晶粒,5-8级为细晶粒,8级以上为超细晶粒。
钢的热处理及表面处理技术

• M体转变特点:
• ①无扩散型转变 • ②降温形成:连续冷却完成 • ③瞬时性 • ④转变的不完全性
Fe-1.8CF,e-1冷.8至C,-10冷0℃至-60℃
M形成时体积↑,造成很大 内应力。
• 冷处理:P42
1)无扩散 Fe 和 C 原子都不进展扩散,M是C过饱 和的体心立方的F体,固溶强化显著。
↓ • 总结:A体晶粒越粗大,那么晶界越少,
形核几率越小,那么A体越稳定,C曲线 右移。淬透性越好
• 三、钢的淬透性
• 〔三〕淬透性的测 定
四、钢的回火〔P127〕
1.概念(Conception)
将淬火后的钢加热到Ac1以下某一温度, 保温后冷却下来的一种热处理工艺。
2.目的(purpose) 〔1〕稳定工件组织、性能和尺寸 〔2〕减小或消除剩余应力,防止工件的 变形和开裂 〔3〕降低工件的强度、硬度,提高其塑 性和韧性,以满足不同工件的性能要求
C %↑→ M 硬度↑, 片状M 硬度高,塑韧性差。板条M 强度高,塑韧性较好
二、共析钢过冷奥氏体的连续冷却转变
共
析
碳
钢
连
续
冷
却
水淬
无
M+AR
B
体
转变终止线
P 退火
T
S 正火
T+ 油淬 M
亚共析钢连续冷却转变 过共析钢连续冷却转变
炉冷→ F + P 空冷→ F(少量) + S 油冷→ T + M+AR 水冷→ M +AR
(三〕淬透性的测定
〔一〕钢的淬透性与淬硬性的概念
• 淬透性:钢在淬火时能够获得M体的能力,它是 钢材本身固有的属性,主要取决于M体的临界冷 却速度
钢的热处理工艺

钢的热处理第一章钢的热处理热处理工艺包括:将钢材或钢制件加热到预定温度,在此温度下保温一定时间。
然后一定的冷却速度冷却下来,达到热处理所预定的对钢材及钢制件的组织与性能的要求。
1□□钢的加热1.1□制定钢的加热制度加热温度、加热速度、保温时间。
1.1.1加热温度的选择加热温度取决于热处理的目的。
热处理分为:淬火、退火、正火、和回火等。
淬火的目的是为了得到细小的马氏体组织,使钢具有高的硬度;退火及正火的目的是获得均匀的珠光体组织,因此其加热温度不同。
在具体制定加热温度时应按以下原则:热处理工艺种类及目的要求;被加热钢材及钢制件的化学成分和原始状态;钢材及钢制件的尺寸和形状以及加热条件来制定。
对于碳钢及低合金钢的加热温度:亚共析钢淬火温度:A C3以上30~50℃;过共析钢淬火温度:A C3以上30~50℃;亚共析钢完全退火:A C3以上20~30℃;过共析钢不完全退火:A C3以上20~30℃;正火A C3或A CM以上30~50℃;1.1.2加热速度的选择必须根据钢的化学成分及导热性能;钢的原始状态及应力状态;钢的尺寸及形状来确定加热速度。
如钢的原始状态存在着铸造应力或轧煅热变形残余应力时,在加热是应特别注意。
对这类钢要特别控制低温阶段的加热速度。
钢的变形与热裂倾向是以钢的化学成分及原始状态不同而不同,主要有以下几点:a) 低碳钢比高碳钢热烈倾向小;b) 碳钢比合金钢变形开裂倾向小;c) 钢坯和成品件比钢锭变形和开裂倾向小;d) 小截面比大截面的钢变形和开裂倾向小。
1.1.3钢在加热时的缺陷a) 过热:过热就是由于加热温度过高,加热时间过长使奥氏体晶粒过分长大。
粗大的奥氏体晶粒在冷却时产生粗大的组织,并往往出现魏氏组织,结果是钢的冲击韧性、塑性明显下降。
已过火的钢可以在次正火或退火加以纠正。
b) 强烈过热:加热温度过高或加热保温时间过长,使氧或硫沿晶界渗入钢中或者钢中的硫与氧在高温下溶解于奥氏体中,在冷却过程中硫或氧以化合物形态沿粗大的奥氏体晶界析出。
碳钢的热处理实验报告-(恢复)

碳钢的热处理实验报告-(恢复)碳钢的热处理实验报告-(恢复)⾦属热处理实验报告张⾦垚41030165材控102班热处理实验报告(T8钢300℃回⽕)⼀、实验⽬的1、了解碳钢的基本热处理(退⽕、正⽕、淬⽕及回⽕)⼯艺⽅法。
2、研究含碳量、加热温度、冷却速度、回⽕温度对钢热处理后性能的影响。
3、掌握洛⽒硬度机的使⽤⽅法。
观察热处理后钢的组织特征。
⼆、实验原理1、钢的淬⽕所谓淬⽕就是将钢加热到Ac3(亚共析钢)或Ac1(过共析钢)以上30~50℃,保温后放⼊各种不同的冷却介质中( V冷应⼤于V 临),以获得马⽒体组织。
碳钢经淬⽕后的组织由马⽒体及⼀定数量的残余奥⽒体所组成。
为了正确地进⾏钢的淬⽕,必须考虑下列三个重要因素:淬⽕加热的温度、保温时间和冷却速度。
(1)淬⽕温度的选择选定正确的加热温度是保证淬⽕质量的重要环节。
淬⽕时的具体加热温度主要取决于钢的含碳量,可根据相图确定(如图4所⽰)。
对亚共析钢,其加热温度为+30~50℃,若加热温度不⾜(低于),则淬⽕组织中将出现铁素体⽽造成强度及硬度的降低。
对过共析钢,加热温度为+30~50℃,淬⽕后可得到细⼩的马⽒体与粒状渗碳体。
后者的存在可提⾼钢的硬度和耐磨性。
(2)保温时间的确定淬⽕加热时间是将试样加热到淬⽕温度所需的时间及在淬⽕温度停留保温所需时间的总和。
加热时间与钢的成分、⼯件的形状尺⼨、所需的加热介质及加热⽅法等因素有关,⼀般可按照经验公式来估算,碳钢在电炉中加热时间的计算如表1所⽰。
表1 碳钢在箱式电炉中加热时间的确定加热温度(℃)⼯件形状圆柱形⽅形板形保温时间分钟/每毫⽶直径分钟/每毫⽶厚度分钟/每毫⽶厚度700 1.5 2.2 3800 1.0 1.5 2900 0.8 1.2 1.6 1000 0.4 0.6 0.8(3)冷却速度的影响冷却是淬⽕的关键⼯序,它直接影响到钢淬⽕后的组织和性能。
冷却时应使冷却速度⼤于临界冷却速度,以保证获得马⽒体组织;在这个前提下⼜应尽量缓慢冷却,以减少钢中的内应⼒,防⽌变形和开裂。
t8钢过冷奥氏体等温转变曲线

t8钢过冷奥氏体等温转变曲线过冷奥氏体是指在冷却过程中,高温奥氏体转变为马氏体,但由于过冷造成转变降温的速率缓慢,无法完全转变。
钢材中的过冷奥氏体是具有良好强度和韧性的重要组织,因此研究其等温转变曲线具有重要意义。
过冷奥氏体等温转变曲线是通过对过冷奥氏体进行等温保持,随后进行X射线衍射或金相分析等方法确定其相变比例的实验曲线。
以下是过冷奥氏体等温转变曲线的相关参考内容:1. 实验方法及条件:- 实验样品:选取一定尺寸的T8钢试样。
- 等温装置:使用电阻炉,保持速率为1℃/min。
- 实验温度范围:根据T8钢的相图,选择适宜的温度范围,例如600℃-900℃。
- 实验时间:根据转变的速率和样品大小确定,通常为几分钟到几小时。
2. 实验过程:- 将试样放入预热好的电阻炉中,并通过温度控制系统使温度稳定在目标温度。
- 等温保持一段时间,以达到平衡状态。
- 取出试样,通过X射线衍射或金相分析等方法,观察过冷奥氏体和马氏体的相变比例。
- 重复上述步骤,选取不同温度进行实验,记录观察结果。
3. 结果与分析:根据实验观察到的过冷奥氏体和马氏体相变比例,绘制出等温转变曲线。
曲线的横轴为温度,纵轴为相变比例。
等温转变曲线通常呈现出两段式的特点。
在高温范围内,随着温度的升高,过冷奥氏体逐渐转变为马氏体,相变比例增大;在低温范围内,转变速率逐渐减慢,相变比例趋于饱和。
对于T8钢来说,等温转变曲线中的马氏体开始转变的温度通常为M_f温度,相变比例开始增加的温度为M_s温度。
相变比例的增加速率可以反映奥氏体中的过冷度。
此外,还可以通过曲线的形状来判断转变的性质,如曲线的陡度可以表征转变的速率。
4. 应用:过冷奥氏体等温转变曲线的研究对于了解奥氏体的相变规律及相关性质具有重要意义。
在钢材热处理过程中,合理地控制等温转变曲线可以提高钢材的力学性能,并使其具有良好的韧性和强度。
此外,对钢材的热处理过程进行优化,也可以提高钢材的耐磨性、耐腐蚀性等方面的性能。
安徽工业大学金属学与热处理(A)复习题(安工大)

金属学与热处理(A)金属学与热处理(A)复习题行政班级:姓名:学号:第一章习题1、标出图中给定的晶面和晶向的米勒指数:晶面: OO′A′A、OO′B′B、OO′C′C、OABC、AA′C′C、ED′D、EDC晶向: OB、EC、O′C、OD、AC′、D′A2 在立方晶胞中画出以下晶面或晶向, 写出立方晶系空间点阵特征。
1/22/3E3、已知铜原子直径为0.256nm,试计算Cu的晶格常数。
4、对于体心立方的Fe,已知其点阵常数为0.2866nm。
请计算Fe的密度。
5.什么是晶面族,立方晶系的{111}、{105}晶面族各包含哪些晶面? 立方晶系的<123>晶向族各包含哪些晶向?6.6 什么是点阵参数? 简述晶体结构和空间点阵之间的关系。
七大晶系的空间点阵特征各是什么?7、fcc(bcc)结构的密排方向是___,密排面是___,密排面的堆垛顺序是___,致密度为____,配位数是___,晶胞中原子数为___,把原子视为半径为r的刚性球时,原子的半径是点阵常数a的关系为______。
8根据缺陷相对于晶体尺寸和其影响范围的大小,缺陷可以分为哪几类?简述这几类缺陷的特征以及这些缺陷对金属性能的影响。
这些缺陷是否一定是性能上的缺陷,为什么?9常见的金属晶体的界面有哪些?通常晶界分为哪两大类?划分的依据是什么? 简述小角度晶界的结构模型,大角晶界重合点阵模型的含义是什么?第二章习题1 叙述金属结晶过程所需要的三个必要条件,并说明这三个条件在凝固过程中所起的作用。
2 说明凝固临界核心的形成是否是热力学自发过程,并对此加以解释。
3 试推导球形均匀形核时的临界半径以及形核功的表达式。
4 晶粒大小对材料的机械性能有何影响,影响铸态晶粒大小的主要因素是什么?铸造实际中如何控制金属晶粒大小?何谓变质处理?5简述纯金属结晶过程的宏观特征,叙述凝固过程中晶体成长的几种主要机理。
6 结晶过程中液固界面的类型有哪几种,简述晶体成长方式及其外貌与液固界面前沿的温度分布的关系。
毕业论文(设计)t8钢热处理工艺及组织性能研究

诚信声明本人郑重声明:本论文及其研究工作是本人在指导教师的指导下独立完成的,在完成论文时所利用的一切资料均已在参考文献中列出。
本人签名:年月日毕业设计任务书设计题目:T8钢热处理工艺及组织性能研究系部:机械工程系专业:材料成型及控制工程学号:1120182 37 学生:指导教师(含职称):(副教授)1.课题意义及目标学生应通过本次毕业设计,运用所学过的金属学及热处理等专业知识,了解T8钢的概况;熟悉T8钢的热处理工艺方法;认识T8热处理前后金相组织;找出热处理对T8钢组织和力学性能的影响规律,为优化热处理工艺提高零件质量提供一定的理论依据。
2.主要任务(1)制定T8钢热处理工艺,进行热处理实验。
(2)制备金相试样,观察分析T8钢热处理前后的显微组织。
(3)测定T8钢热处理前后力学性能,包括拉伸性能、硬度、冲击韧性等。
(4)分析热处理工艺、组织结构与力学性能之间的关系。
(5)撰写毕业论文。
结构完整,层次分明,语言顺畅;避免错别字和错误标点符号;格式符合太原工业学院学位论文格式的统一要求。
3.主要参考资料[1] 刘旭麟,高路斯,刘顺华,等.T8钢淬火热处理组织的计算机模拟研究[J].热加工工艺,2006,35(6):44-46.[2] 王英杰,孙国宏. T8钢最佳预处理工艺的选择[J]. 热加工工艺,1995,(4):55-55.[3] 张玉琴,王谦,王玉琴. 改善碳素工具钢组织性能方法探析[J]. 河南冶金,2001,(05):10-10[4]王能为,孙艳. T8钢形变球化退火工艺[J]. 南方金属,2009,(166):23-25[5] 崔忠圻,覃耀春.金属学与热处理[M]. 北京,机械工业出版社,2007:230-308[6] 王佳杰,莫淑华,等,工程材料力学性能[M].北京:北京大学出版社,2013,3[7] 束德林,等,工程材料力学性能[M],机械工业出版社,2003.7[8] 那顺桑,李杰,艾立群,等金属材料力学性能[M],冶金工业出版社2011.74.进度安排审核人: 2015 年 1 月 16 日T8钢热处理工艺及组织性能研究摘要:本次实验主要研究热处理工艺对T8钢力学性能的影响。
热处理工艺汇总

热处理工艺汇总T0固熔热处理后,经自然时效再通过冷加工的状态适用于经冷加工提高强度的产品T1适用于由高温成型过程冷却后,不再进行冷加工(可进行矫直、矫平,但不影响力学性能极限)的产品T2由高温成型过程冷却,经冷加工后自然时效至基本稳定的状态适用于由高温成型过程冷却后,进行冷加工、或矫直、矫平以提高强度的产品T3固熔热处理后进行冷加工,再经自然时效至基本稳定的状态适用于在固熔热处理后,进行冷加工、或矫直、矫平以提高强度的产品T4固熔热处理后自然时效至基本稳定的状态适用于固熔热处理后,不再进行冷加工(可进行短直、矫平,但不影响力学性能极限)的产品T5由高温成型过程冷却,然后进行人工时效的状态适用于由高温成型过程冷却后,不经过冷加工(可进行矫直、矫平,但不影响力学性能极限),予以人工时效的产品T6固熔热处理后进行人工时效的状态适用于固熔热处理后,不再进行冷加工(可进行矫直、矫平、但不影响力学性能极限)的产品T7固熔热处理后进行过时效的状态适用于固熔热处理后,为获取某些重要特性,在人工时效时,强度在时效曲线上越过了最高峰点的产品T8固熔热处理后经冷加工,然后进行人工时效的状态适用于经冷加工,或矫直、矫平以提高强度的产品T9固熔热处理后人工时效,然后进行冷加工的状态适用于经冷加工提高强度的产品T10由高温成型过程冷却后,进行冷加工,然后人工时效的状态适用于经冷加工,或矫直、矫平以提高强度的产品某些6×××系的合金,无论是炉内固熔热处理,还是从高温成形过程急冷以保留可溶性组分在固熔体中,均能达到相同的固熔热处理效果,这些合金的T3、T4、T6、T7、T8和T9状态可采用上述两种处理方法的任一种.固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却(水冷),以得到过饱和固溶体的热处理工艺。
目的是:改善钢和合金的塑性和韧性,为沉淀硬化处理作好准备等。
使合金中各种相充分溶解,强化固溶体,并提高韧性及抗蚀性能,消除应力与软化,以便继续加工或成型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本文通过对T8钢进行正火、球化退火、淬火、低温回火的热处理工艺研究,探究正火、球化退火、淬火、低温回火的热处理工艺对T8钢组织结构、硬度、耐磨性、韧性和塑性的影响。
T8钢经正火、球化退火、淬火、低温回火的一系列普通热处理后,T8钢的组织结构发生了改变,硬度、耐磨性、韧性和塑性都得到提高,力学性能整体升高。
T8是淬硬型塑料模具,用钢淬火回火后有较高硬度和耐磨性,但热硬性低、淬透性差、易变形塑性及强度较低。
用作需要具有较高硬度和耐磨性的各种工具,如形状简单的模子和冲头、切削金属的刀具打眼工具、木工用的铣刀、埋头、钻、斧、凿、纵向手用锯以及钳工装配工具、铆钉冲模等
次要工具。
淬火工艺是将钢加热到AC3或AC1点以上某一温度,保持一定时间,然后以适当速度冷却获得马氏体或贝氏体组织的热处理工艺。
淬火的目的是提高硬度、强度、耐磨性以满足零件的使用性能。
淬火工艺应用最为广泛如工具、量具、模具、轴承、弹簧和汽车、拖拉机、柴油机、切削加工机床、气动工具、钻探机械、农机具、石油机械、化工机械、纺织机械、飞机等零件都在使用淬火工艺。
淬火工艺规范包括(1)淬火加热方式、(2)加热温度、(3)保温时间、(4)冷却介质及冷却方式等。
确定工件淬火规范的依据是工件图纸及技术要求,所用材料牌号,相变点及过冷奥氏体等温或连续冷却转变曲线,端淬曲线,加工工艺路线及淬火前的原始组织等。
只有充分掌握这些原始材料,
才能正确地确定淬火工艺规范。
关键词:
T8钢;正火;球化退火;淬火;低温回火;组织结构;性能。