化学专业英语之有机金属化合物——金属配合物

合集下载

金属有机配合物ppt

金属有机配合物ppt

✓ -配体:烯烃, 炔烃, 苯, 环戊二烯基, 其 他芳香烃。
• -配合物与-酸配合物有着根本区别:
• -配合物:配体的给予和反馈都通过配体的()轨道 的利用来完成的。
• -酸配合物:配体是利用轨道向金属方面成键, 并且通过-轨道表现出它们的-酸度。
第二节 金属羰基配合物
5-2-1金属羰基配合物的特点
2、按配体分类
(1)、配体的电子表来对金属有机化合物进行分类,如-配合 物,-酸配合物, -配合物
(2)、根据配体的名称加以分类,如金属羰基化合物,烯烃配 合物,炔烃配合物,环戊二烯类配合物(金属茂—夹心化合物) 等。
严格的区分是无意义的,如下例:
4-1-4 金属有机配合物分类
➢-配合物 ➢-酸配合物 ➢-配合物
➢ 金属羰基配合物是由过渡金属与配位体CO所形成的一类配合 物。O之间的化学键很强。如在Ni(CO)4中,Ni-C键能为 147 kJ·mol-1,这个键能值差不多与I-I键能(150 kJ·mol- 1)和C-O单键键能(142 kJ·mol-1)值相差不多。 ②中心原子总是呈现较低的氧化态(通常为O,有时也呈较低的 正氧化态或负氧化态)。氧化态低使得有可能电子占满d-MO, 从而使M→L的电子转移成为可能。 ③大多数配合物都服从有效原子序数规则。
2. 重要转折
1951年T.J.Kealy, P.L. Panson合成了二茂铁Fe(C5H5) 2 1952年 E.D. Fischer, G. Wilkinson同时确定二茂铁-夹心 结构(1973年,Nobel 奖) 1954 年 K. Ziegler , G. Natta 研 究 确 立 了 Ziegler 催 化 剂 (Et3Al-TiCl4)对烯烃立体定向聚合的催化,导致烯烃聚合的工业 化生产,广泛应用烷基铝作烷基化试剂和金属配合物的还原剂。 (1963, Nobel奖) 2000 年 Alan J. Heeger, Alan G. MacDiarmid, Hideki Shirakawa因Ziegler-Natta催化合成导电高分子——聚乙炔而获 得诺贝尔奖。

史上最全——高分子材料与工程专业英语词汇大全

史上最全——高分子材料与工程专业英语词汇大全

高分子材料与工程专业词汇大全(包含:一高分子化学二高分子反应三高分子物理四高分子加工技术和应用四大部分的全部词汇~~)一高分子化学新序码汉文名英文名注释1高分子macromolecule, polymer又称“大分子”。

2超高分子supra polymer3天然高分子natural polymer4无机高分子inorganic polymer5有机高分子organic polymer6无机-有机高分子inorganic organic polymer7金属有机聚合物organometallic polymer8元素高分子element polymer9高聚物high polymer10聚合物Polymer11低聚物Oligomer曾用名“齐聚物”。

12二聚体Dimer13三聚体Trimer14调聚物telomer15预聚物prepolymer16均聚物homopolymer17无规聚合物random polymer18无规卷曲聚合物random coiling polymer19头-头聚合物head-to-head polymer20头-尾聚合物head-to-tail polymer21尾-尾聚合物tail-to-tail polymer22反式有规聚合物transtactic polymer23顺式有规聚合物cistactic polymer24规整聚合物regular polymer25非规整聚合物irregular polymer26无规立构聚合物atactic polymer27全同立构聚合物isotactic polymer又称“等规聚合物”。

28间同立构聚合物syndiotactic polymer又称“间规聚合物”。

29杂同立构聚合物heterotactic polymer又称“异规聚合物”。

30有规立构聚合物stereoregular polymer, tactic polymer 又称“有规聚合物”。

金属有机配合物

金属有机配合物

7-1 金属茂及其催化不对称合成
环戊二烯的负离子, 即 环戊二烯基叫茂, 记作 Cp-。 20 世纪初 ,Wilkinson 等人发现 Cp- 和 Fe2+ 反应生成 Cp2Fe, 叫铁 茂。
这类金属环戊二烯基化合物, 统称为金属茂。
金属茂化学蓬勃发展起来,开创了近代金属有机 化学的新时代。因此 ,Wilkinson 获得了 1973 年的诺贝尔化学奖。
第七章 金属有机配合物
定义:至少含有一个金属-碳键的化合 物称为金属有机配合物
范畴:无机化学和有机化学的交叉学科
金属有机化学研究的主要内容: 过渡金属和稀土元素配合物
金属有机化合物合成和结构多种多样;促进 了基础化学的发展
在工业、精细有机合成、催化剂、新型功 能材料的开发、生命科学等方面具有重要 意义。
➢ 通过围绕键的旋转而产生的分子中原子或基团在 空间的不同排列方式,称为构象。
➢ 其中较稳定的结构,称为该化合物的构象异构体。 ➢ 上下两个茂旋转,形成一系列构象,相对夹角为构象
角α ➢ α=0°为覆盖型 ➢ α =36°为交错型
绝大多数金属茂是交错型构象。
也发现有覆盖型的 , 如 (Me4Cp)2 Ru。
• Al(Me)3+H2O (MeAlO) n (11)
可作为聚合催化剂的金属茂的类型
(M=Ti,Zr,Hf;X=Cl,Br; R=Me)
大多数是柄型夹心化合物 , 是手性分子。这些分子比较刚 性 ,活性空位 ,手性源位置固定且比较接近。
最大的优点是:
结构一致性 , 从而导致催化活性位置的单一 , 这就保证了 催化聚合物的窄分子量分布,这是金属茂聚合物性能上优 于传统催化剂聚合物的原因。
开环夹心化合物又叫开环金属茂,与金属茂比 较 , 其配位体是戊二烯(7)的负离子-戊二烯

金属有机化学

金属有机化学
1963年他们分享了诺贝尔化学奖。
1954年维蒂希(G.Wittig)发现磷叶立德 与羰基化合物反应生成结构确定的烯烃。
1956年布朗(H.C.Brown)发现了烯烃的 硼氢化反应。 1979年布朗与维蒂希分享诺贝尔化学奖。
1958年齐格勒的学生维尔克(Wilke)发 现镍配合物催化丁二烯的环齐聚反应并第 一次通过分离鉴定反应活性物种来确定反 应机理。他还发现了[CpMo(CO)3]2金属之 间存在共价键,为过渡金属原子簇合物奠 定了基础。
➢Ni-CO是π配位 ➢金属羰基配合物及其衍生物在过渡金属有机化合物
的合成和很多催化反应中都有重要的意义
C Ni O
=
5)金属有机化学是研究金属有机化合物和 类金属有机化合物的化学。 无机化学(欧美)
金属有机化学 有机化学(中国)
实际上处于有机化学与无机化学之间的 一门边缘学科。
二、金属有机化学的发展历史
宝库。现在人们称镁nt)。镁有机化合物同有机 化合物的反应称为格林雅反应(Grignard Reaction)。为此,1912年他获得诺贝尔化学 奖。这是第一个获诺贝尔奖的金属有机化学 家。
1922年:T.Midgley T.A. Boyd Pd(C2H5)4作为汽 油中的抗震剂。
RCH 2CH2CHO+RCH 3CCHO
• 这一反应应称之为氢甲酰化反应,但在工业 界常称作Oxo反应,这是起初误以为是氧化 反应,故称为“Oxonation”或Oxo反应。由这 一过程产生的醇,已习惯地称作Oxo醇。这 个反应是第一个均相催化工业应用的例子。
1951年鲍森(Pauson)和米勒(Miller)分别发现了二茂 铁Fe(C5H5)2。 次年威金森(Wilkinson)等确定了它具有夹 心面包式分子结构及新的化学键理论,激起了化 学家对过渡金属有机化合物研究的热情,大大推动 了过渡金属有机化合物的发展。

史上最全——高分子材料与工程专业英语词汇大全 (1)

史上最全——高分子材料与工程专业英语词汇大全 (1)
53
多嵌段共聚物
segmented copolymer
54
杂聚物
heteropolymer
55
恒[组]分共聚物
azeotropic copolymer
56
多组分共聚物
multicomponent copolymer
57
单分散聚合物
monodisperse polymer, uniform polymer
20
头-尾聚合物
head-to-tail polymer
21
尾-尾聚合物
tail-to-tail polymer
22
反式有规聚合物
transtactic polymer
23
顺式有规聚合物
cistactic polymer
24
规整聚合物
regular polymer
25
非规整聚合物
irregular polymer
单股聚合物
single-strand polymer
63
双股聚合物
double-strand polymer
64
多股聚合物
multi-strand polymer
65
链型聚合物
chain polymer
66
碳链聚合物
carbon chain polymer
67
杂链聚合物
heterochain polymer
79
柔性链聚合物
flexible chain polymer
80
刚棒高分子
rigid rod polymer
81
棒状高分子
rodlike polymer
82
刚-柔嵌段共聚物

有机过渡金属化合物

有机过渡金属化合物

• 有效原子序数规则(effective atomic number rule) ——18电子规则 – 过渡有机金属化合物
5
4.2 金属烷基化合物
1. 缺电子有机金属化合物 (聚合)
IA、IIA族: Li, Be, Mg IIIA族: B, Al, Ga 例如: Be(CH3)2 的多聚体
Me Be Me Be Me Me Me Be Me Be Me Me Be
18
⑤ 若形成M-M,则每个金属分别提供一个电子。
Mn2(CO)10 Mn 7 5CO 5×2=10 1Mn-Mn 1×1= 1 7+10+1=18
Co2(CO)8 Co 9 4CO 4×2=8 1Co-Co 1×1=1 9+8+1=18
Co2(CO)8 Co 9 3端CO 3×2=6 2桥CO 2×1=2 1Co-Co 1×1=1 9+6+2+1=18
Si (CH3)4
Me
Si Me Si Me
Me
CH3 (CH3 )3Si Si CH3 Si(CH3)3
Sin(CH3)2n+2
Si4(CH3)8
n
9
3.富电子有机金属化合物
: MR3 (Lewis 碱)
As
CH3 CH3 CH3
MR5
Ph Ph As Ph Ph Ph
As(CH 3)2 As(CH 3)2
23
单核羰基化合物
V(CO)6 ( Oh ) Cr(CO)6 Mo(CO)6 W(CO)6 ( Oh ) Fe(CO) 5 Ru(CO)5 ( D3h ) Ni(CO)4 ( Td ) 17e (不符合EAN规则) 18e 18e 18e
CH3Mn(CO)5 ( C4v )

有机金属配合物

有机金属配合物

8-4-2、插入反应(insertion) 或 迁移反应(migration)
CO R O M C R
M
8-4-3、发生在配体上的亲核进攻
8-4-4、氧化和还原
8-4-5、氧化加成和还原消除
8-4-5-1 氧化加成 (配位不饱和) 一般说来,氧化加成反应形式如下:
LnM
+
X Y
LnM
18e
7-7-1-2 金属羰基化合物成键的表征:
分子振动光谱( 红外, 拉曼)
反馈键强, CO的 轨道的电子云密度增大
则C O间的键级减弱
力常数减小
振动频率减低
结论: 中心M 的电子云密度越大, 或者给电子能力越强, 反馈键越强, CO越小
7-7-1-3 金属羰基化合物中 三种典型的CO配位方式:
Ln M
+
LnM + LnM
+ LnM + E

反应物和产物的氧化态都是稳定的

反应物中有形成新键的空位置
• 下列化合物能否进行氧化加成反应? TiR4 WR6
(3). 已经是18电子构型的,氧化加成时排除一个配体
例:
Ru(CO)4(PMe3) + CH3I Ru(CH3)(I)(CO)3 (PMe3) + CO 18e ( 0 ) 18e(+2)
+
(+2)
Cl
-
N N
Pt
R Cl
+
R Cl
H消除 ( 氧化数不变, 配位数不变)
agostic H
LnM C C H R C C LnM H
R
LnM H
+

金属有机知识点

金属有机知识点

金属有机化合物(Metal-Organic Compounds)1.什么是金属有机化合物?金属有机化合物是指含有金属原子与有机基团结合的化合物。

它们具有独特的结构和性质,广泛应用于材料科学、金属催化、药物、电子器件等领域。

2.金属有机化合物的合成方法金属有机化合物的合成方法多种多样,主要包括以下几种:a.直接合成法:将金属与有机配体在适当的条件下反应,生成金属有机化合物。

b.双相法:利用有机溶剂与水或气体形成两相体系,使金属与有机配体在界面上反应生成金属有机化合物。

c.气相法:通过将金属蒸气和有机物蒸气混合,使其在适当的条件下反应生成金属有机化合物。

3.金属有机化合物的性质与应用金属有机化合物具有多样的性质和应用,以下是其中几个重要的知识点:a.具有催化活性:金属有机化合物常用于金属催化反应,如烯烃的氢化、氢气的加氢等。

通过调节金属有机化合物的配体结构和金属中心的性质,可以调控催化反应的活性和选择性。

b.具有光电性能:金属有机化合物在光电器件中具有广泛的应用,如有机光电转换器件、有机发光二极管等。

通过调整有机配体结构和金属中心的性质,可以调节金属有机化合物的光谱性质和电荷转移能力。

c.具有药物活性:金属有机化合物在药物领域中具有重要的应用潜力。

例如,铂类化合物是一类重要的抗癌药物,可与DNA结合形成DNA加成物,从而抑制癌细胞的分裂和生长。

4.金属有机化合物的前景和挑战金属有机化合物的研究在过去几十年取得了很大的进展,但仍面临着一些挑战。

其中一些包括:a.金属有机化合物的合成方法仍然复杂和低效,需要更高效的合成策略。

b.部分金属有机化合物对空气和水敏感,需要找到更稳定的结构和材料。

c.对金属有机化合物的性质和反应机理理解仍不完全,需要进一步的研究和探索。

总结:金属有机化合物是一类具有独特结构和性质的化合物,具有广泛的应用前景。

通过不同合成方法得到的金属有机化合物具有催化、光电和药物活性等重要性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化学专业英语之有机金属化合物——金属配合物ORGANOMETALLICS—METAL π COMPLEXESMetal π complexes are characterized by a type of direct carbon-to-metal bonding that is not a classical ionic, σ, or πbond . Numerous molecules and ions, e.g., mono- and diolefins, polyenes, arenes, cyclopentadienyl ions, tropylium ions, andπ-allylic ions, can form metal πcomplexes with transition-metal atoms or ions. These are classified as organ metallic complexes, because of their direct carbon-metal bond, and as coordination complexes, because the nature and characteristics of the TT ligands are similar to those in coordination complexes. In 1827, Zeise reported thatethylene reacts with platinum (II ) chloride to form a salt K (C2H4)PtCl3(l),but it was not until after the elucidation of the structure of ferrocene (2) in 1953 that attention was redirected to Ziese's salt, which was the first reported metal π complex.Generally, metal TT complexes can be classified into three main groups; olefin-, cyclopentadienyl-, and arene-metal π complexes; mixed complexes are categorized according to structural or chemical analogies within these groups. Allyl π complexes are designated as olefin πcomplexes in this review. Study of metal πcomplexes has contributed to the elucidation of the mechanisms of Ziegler-Natta polymerization, the oxo reaction, and catalytic hydrogenation, and to the development of the Wacker process which is used for the oxidation of olefins1.The following nomenclature for metal it complexes is used:(1) Organic πligands precede the metal atom. (2)Organic πligands precede inorganic 7t ligands. (3)Inorganic π ligands, e.g., carbonyl or nitrosyls, generally follow the metal atom; halides also follow the metal but precede carbonyls or nitrosyls. (4)A prefix, e.g., di, is preferred rather than bis in describing sandwich-typeπ complexes, e.g., dibenzenechromium.(5) The symbol π can be used preceding a ligand in order to distinguish π-complex bonding from a, ionic, or other bonding. The symbol η(eta or hapto)precedes a ligand and indicates the number of C—M bonds in the ligand.Monoolefins , dienes, polyolefins, and acetylenes serve as ligands to transition metals and form olefin πcomplexes. Typical examples of olefin πcomplexes are monoolefin ligands, e.g., potassium η2-ethyleneplatinum trichloride (1); and cyclopentadienylium. –η3-cycloheptatrienylium molybdenum dicarbonyl (3); diene ligands, eg, η4-butadieneiron tricarbonyl(4 ).Certain of the delocalized π-electron ring systems of aromaticmolecules overlap with dxy and dy3metal orbitals as do the π electronsof alkenes with metal d orbitals2. The following aromatic rings can form π complexes;The C5H5- ,C6H6,and C8HSarenes are the most common in arene K complexesthat are characterized by π-bonded rings alone or π-bonded rings that are associated with one ring and other ligands, eg, halogens, CO, RNC, and R3P. Typical examples are the di-η5-cyclopentadienyl complexes , ie, metallocenes , eg , di-η5-cyclopentadienyliron (2 ). Indi-η4-5-cyclopentadienyliron ,ie, ferrocene, the 6-π-electron system ofthe C5H5- ion is bonded to the metal. Other aromatic ring systems aremono-η5-cyclopentadienylmetal nitrosyl and carbonyl complexes.PropertiesThe π-Complex Bond.Metal πcomplexes are among those that are least satisfactorily described by crystal-field theory (CFT) or valence-bond theory (VBT). The nature of the bonding can be treated more completely and quantitatively by molecular-orbital theory (MOT) or ligand-field theory (LFT). The ligand-field theory originally was advanced as a corrected CFT. The LFT relies on the use of molecular orbitals and often is used interchangeably with the MOT. The usual approach is to use the linear combination of atomic orbitals (LCAO) method. It is assumed that when an electron in a molecule is near a particular nucleus, the molecular wave function is approximately an atomic orbital that is centered at the nucleus. The molecular orbitals are formed by adding or subtracting the appropriate atomic orbitals. For transition metals .the "3d, 4s, and 4p orbitals are the atomic orbitals of interest. The ligands may have σ-and π-valence orbitals. Once the appropriate atomic orbitals have been selected for the metal and ligands, the proper linear combination of valence atomic orbitals is determined for the molecular orbitals. The determination of orbital overlaps that are possible, ie, meet inherent symmetry requirements, is done by application of the principles of group theory. At this point, the procedure becomes arbitrary in that approximate wave functions must be selected for use in the calculations of the overlap integrals and coulomb integrals3. Finally, an arbitrary charge distribution is chosen and the orbital energies and interaction energies are calculated, and a solution of the secular equation for the energies and coefficients of the atomic wave functions can be determined. A new initial charge distribution is repeated until consistent values are obtained.ReactionsMetal πcomplexes react with a wide range of chemical reagents. However, the reactions of the π-olefin-, π-cyclopentadienyl-, andit-arene-metal complexes are distinctly characteristic of each group, πCyclopentadienyl complexes, ie, metallocenes ,exhibit a high degree of aromaticity and undergo many typical aromatic substitution reactions. However, the π arene complexes do not exhibit a discernible degree of aromaticity.Although most physical properties, particularly the structure of metal TT complexes, are interpreted by use of the basic principles of coordination chemistry, these established principles do not explain suitably some reaction anomalies of the different groups of metal π complexes.Olefin πComplexes. Reactions involving olefin x. complexes similarly are characteristic of uncomplexed and complexed olefinic functions. Generally, reactions involving the former are not very different from those observed for free olefins. However, reactions of the latter are altered significantly by π-complex formation. Among the reactions of interest are addition, elimination, and substitution.Cyclopentadienyl πComplexes. The most significant feature of the reactions of π-cyclopentadienyl complexes in general and ferrocene in particular involves their aromatic nature. The resonance stabilization energy for ferrocene is 210 kj/mol(50 kcal/mol). Ferrocene undergoes a large number of typical ionic aromatic substitution reactions, eg, Friedel-Crafts acylation, alkylation, metalation, sulfonation, and aminomethylation.Friedel-Crafts Acylation. The acylation of metallocenes proceeds easily. The equimolar reaction of ferrocene and acetyl chloride in the presence of aluminum chloride yields monoacetylferrocene almostexclusively. When an excess of acetyl chloride and aluminum chloride is used, a mixture of two isomeric diacetylferrocenes is produced. The heteroannular disubstituted derivative 1,1'-diacetylferrocene and the homoannular isomer 1,2-diacetylferrocene are obtained in a ratio of 60:1. The first acetyl group deactivates the π-cyclopentadienyl ligand toward further electrophilic substitution. Thus, the second acetyl group enters the other ring.Sulfonation. Ferrocene can be sulfonated readily by sulfuric acid or cholrosulfonic acid in acetic anhydride to form ferrocenesulfonic acid and heteroannular disulfonic acid, π-Cyclopentadienylrhenium tricarbonyl can be sulfonated with concentrated sulfuric acid in acetic anhydride; the product is isolated as the p-toluidine salt. Formylation. Ferrocene is formylated with N-methylformanilide in the presence of phosphorus oxychloride. This reaction also is characteristic of highly reactive aromatic rings.Arylation. The most significant radical substitution reaction of ferrocene is its reaction with aryl diazonium salts giving an arylation product.Arene-Metal πComplexes.Generally, arene πcomplexes do not undergo the reactions that are characteristic of benzene and its derivatives. However, arene π complexes do undergo a limited number of substitution .addition .expansion, and condensation reactions.UsesCatalysis Involving Metal 7t-Complex Intermediates. Manymetal-catalyzed reactions proceed by way of a substrate metal π-complex intermediate. Commercially, the most-significant of these include the polymerization of ethylene,the hydroformylation of olefins yieldingaldehydes , ie , the oxo process (qv ), and the air oxidation of ethylene-producing acetaldehyde(qv) ,ie ,the Wacker process. Polymerization of Olefins. Ziegler-Natta Process. During the 1950s, ethylene was polymerized using a Ziegler-Natta catalyst, ie, a mixture of transition metal halides, eg, titanium halides, and trialkylaluminum (triethylaluminum commonly is used). The use of trialkylaluminum stimulated research into the use of organ metallic compounds in general. It has been determined that the Ziegler-Natta process involves a metal π-complex intermediate. A plausible mechanism for the polymerization can be formulated by applying typical organometallic and coordination reactions.Oxidation of Olefins. Wacker Process. The oxidation of ethylene exclusively to ace-taldehyde and of other straight-chain olefins to ketones is achieved by the catalytic reaction of ethylene in an aqueous solution by palladium (II) or by oxygen in the presence of palladium( II ) chloride, copper (II)chloride,or iron(III)chloride. Generally, the oxidation of olefins by other metal ions ,eg ,Hg(II) ,Th(III) ,andPb( IV ) ,yields glycol derivatives as well as carbonyl products. The mechanism for the oxidation is postulated to include n-o rearrangements. Addition of Carbon Monoxide. Oxo Reaction. The oxo process has been developed extensively to produce primary alcohols by the reduction of the aldehydes which are formed in the process.Health and Safety FactorsSome metal π complexes are air-sensitive and, therefore, their preparation requires an air-free reaction system. Their toxicity usually is based on the metal; however, organometallic compounds generally exhibit greater toxicities than their corresponding inorganic salts. The alkyl derivatives tend to be more toxic than the aryl complexes, which exhibit toxicities similar to those of the corresponding inorganic compounds.。

相关文档
最新文档