第三章光合作用
第三章--光合作用习题及答案

第三章光合作用一、名词解释1. 光合作用2. 光合强速率3. 原初反应4. 光合电子传递链5. PQ穿梭6. 同化力7. 光呼吸8. 荧光现象9. 磷光现象10. 光饱和点11. 光饱和现象12. 光补偿点13. 光能利用率14. 二氧化碳饱和点15. 二氧化碳补偿点16. 光合作用单位17. 作用中心色素18. 聚光色素19. 希尔反应20. 光合磷酸化21. 光系统22. 红降现象23. 双增益效应24. C3植物25. C4植物26. 量子产额27. 量子需要量28. 光合作用‘午睡’现象三、填空题1. 光合色素按照功能不同分类为和。
2. 光合作用的最终电子供体是,最终电子受体是。
3. 光合作用C3途径CO2的受体是,C4途径的CO2的受体是。
4. 光合作用单位由和两大部分构成。
5. PSI的原初电子供体是,原处电子受体是。
6. PSII的原初电子受体是,最终电子供体是。
7. 光合放氧蛋白质复合体又称为,有种存在状态。
8. C3植物的卡尔文循环在叶片的细胞中进行,C4植物的C3途径是在叶片的细胞中进行。
9. 在卡尔文循环中,每形成1摩尔六碳糖需要摩尔ATP,摩尔NADPH+H+。
10. 影响光合作用的外部因素有、、、和。
11. 光合作用的三大步聚包括、和。
12. 光合作用的色素有、和。
13. 光合作用的光反应在叶绿体的中进行,而暗反应是在进行。
14. 叶绿素溶液在透射光下呈色,在反射光下呈色。
15. 光合作用属于氧化还原反应,其中中被氧化的物质是,被还原的物质时是。
16. 类胡萝卜素吸收光谱最强吸收区在,它不仅可以吸收传递光能,还具有的作用。
17. 叶绿素吸收光谱有光区和光区两个最强吸收区。
18. 光合作用CO2同化过程包括、、三个大的步骤。
19.根据光合途径不同,可将植物分为、、三种类别。
20. 尔文循环按反应性质不同,可分为、、三个阶段。
21. 在光合作用中,合成淀粉的场所是,合成蔗糖的场所是。
浙教版必修一第三章第五节光合作用

水分子光解产生氧气过程
水的光解
在光反应中,水分子被光解为氧 气、电子和质子,其中氧气被释
放到大气中。
光合磷酸化
光解水产生的电子和质子通过电子 传递链进行传递,同时驱动ADP磷 酸化生成ATP,为暗反应提供能量。
氧化还原反应
在电子传递过程中,发生了一系列 的氧化还原反应,涉及多种辅酶和 因子的参与。
THANKS FOR WATCHING
感谢您的观看
04 光合作用与农业生产实践 联系
提高农作物产量途径探讨
01
02
03
04
选用高光效品种
选择对光能利用率高的农作物 品种,提高单位面积产量。
延长光合作用时间
通过合理密植、间作套种等措 施,增加叶面积指数,延长光
合作用时间。
提高光能利用率
采取合理的耕作制度、施肥措 施等,改善农田小气候,提高
光能利用率。
02 光合作用基本原理
Байду номын сангаас
光能捕获与传递机制
光合色素吸收光能
光系统的作用
光合色素(如叶绿素)能够吸收光能, 并将其转化为化学能,用于推动光合 作用的光反应过程。
光系统(包括光系统Ⅰ和光系统Ⅱ)是 光能捕获和传递的重要场所,其中包含 了多种光合色素和蛋白质复合物。
光能的传递
吸收的光能通过光合色素之间的传递, 最终到达反应中心,激发电子跃迁并 产生高能电子。
。
温度变化对光合作用影响实验分析
实验目的
研究温度对植物光合作用的影响。
实验材料
选择适当的植物叶片,并控制实验环 境温度。
实验步骤
设定不同的温度梯度,如低温、适温、 高温等,分别测量植物在不同温度下 的光合作用速率。
植物生理学第三章植物的光合作用

光合作用的过程
光能
H2O
光解 吸收
色素分子
O2 [H] 酶
供能
2C3
还
固
CO2
多种酶 定 C5
酶
ATP
酶
原
(CH2O)
ADP+Pi
光反应阶段
暗反应阶段
水的光解:H2O 光解 2[H]+1/2 O2
酶
CO2的固定: CO2+C5 2C3
光合磷酸化:ADP+Pi+能量 酶
ATP
C3化合物还原:2 C3
光系统(PSII)
PSII的颗粒大,直径约17.5 nm,主要分布在类囊体膜的叠合部分。
➢ 晶体结构中的PSII为一个二聚体,二聚体的两个 单体呈准二次旋转对称。PSII单体具有36个跨膜α螺旋,其中D1和D2各5个,CP43和CP47各6个, Cytb559的α亚基和β亚基各自形成一个跨膜α-螺旋。 D1和D2蛋白与Cytb559的α和β亚基一起组成PSII 反应中心,是进行原初电荷分离和电子传递反应 的机构,CP47和CP43的主要功能是接受LHCII的 激发能量并传递到反应中心。
是否需光 需光 不一定,但受光促进 不一定,但受光促进
不同层次和时间上的光合作用
第二节 原初反应
➢ 原初反应 是指从光合色素分子被光激发,到引起 第一个光化学反应为止的过程。 ➢ 它包括: 光物理-光能的吸收、传递
光化学-有电子得失
原初反应特点 1) 速度非常快,10-12s∽10-9s内完成; 2) 与温度无关,(77K,液氮温度)(2K,液氦温度); 3) 量子效率接近1
表1 光合作用中各种能量转变情况
•
能量转变 光能 电能 活跃的化学能 稳定的化学能
第三章 植物的光合作用u

比例:叶绿素a与b的比例是3∶1但不是恒定的。 化学式:
化学组成 :叶绿素是复杂的有机化合物,是二羧酸
酯类物质(叶绿素酯)一个羧基为甲醇酯化,一个羧 基为叶绿醇酯化。
化学式: 叶a结构特征
(1)理化性质: a、溶解性:叶绿素a、b都不溶于水,但能 溶于酒精、丙酮和石油醚等有机溶剂;
B、皂化反应:与碱能发生皂化反应生成叶 绿素盐溶于水。 C、发生取代反应:能被H+、Cu+2取代反 应生成去镁叶绿素和铜代叶绿素。
参P60图3-2
3)基粒:光合色素集中之地,光能转变为化学能的 场,由闭合囊状体组成,称类囊体。 4)类囊体:构成叶绿体的片层系统中闭合囊状物, 内为水溶液。 基粒类囊体: 间质类囊体: 不同植物或同一植物的不同部位的叶绿体内的基 粒类囊体数目不同。 凡光合细胞都有类囊体。 5)嗜锇滴:叶绿体间质中的容易与锇酸结合的颗粒。 其主要成分为亲酯性醌类物质。生理功能是贮藏脂 类物质。
(3)矿质元素缺乏:主要是氮、镁、铁、锰、铜、
锌;
5.几种现象:
黄化现象(etiolation):早春寒潮过后水道秧苗 变白现象
6.叶绿素的开发利用:牙膏、美容、药用等
本节课结束
复习上节课内容:
1、叶绿素分子的结构有什么特征? 2、叶绿素分子的有哪些理化性质? 3、叶绿素对光谱的吸收有什么特征? 4、什么是荧光现象与磷光现象? 5、为什么树叶一般都为绿色?为什么叶片衰老 时会呈黄色?
(2)反应中心(reaction centre pigment):
将光能转化为化学能的膜复合蛋白,其中包含
少数特殊状态的具有光化学活性的叶绿素a分
子、脱镁叶绿素和醌等电子受体分子。
第三章 光合作用--光反应-电子传递

PSⅡ复合体
PSⅠ复合体
Cytb6/f复合体
质蓝素
铁氧化蛋白和 铁氧化蛋白— NADP+还原酶
质醌(PQ)
②质醌(PQ) (Plastoquinone)
质体醌为脂溶性分子,能在类囊体膜中自由移动,转运电子与质子。 质体醌在膜中含量很高,约为叶绿素分子数的5%~10%,故有“PQ库” 之称。 PQ库作为电子、质子的缓冲库,能均衡两个光系统间的电子传递
光系统Ⅱ(PhotosystemⅡ,PSⅡ)
吸收短波红光(680nm)
光系统Ⅰ(PhotosystemⅠ,PSⅠ)
吸收长波红光(700nm)
光系统 II(PSⅡ)
D P A
PSⅡ的原初电子供体 反应中心色素 PSⅡ的原初电子受体 次级电子受体
H2 O P680
去镁叶绿素分子(Pheo)
Q(质体醌)
若干个β-胡萝卜素
三种电子载体分别为A0、A1
3个不同的Fe4-S4蛋白:Fx、FA、FB
⑤PSⅠ复合体功能:
吸收光能,进行光化学反应,传递电子从PC到NADP+
PSⅠ复合体 Cytb6/f复合体
DPA
反应中心色素分子(reaction center piment,P) 原初电子受体(primary electron acceptor,A)
原初电子受体(D)
指直接接收反应中心色素分子传来电子的电子传递体
反应中心色素分子(P680和P700)
是光化学反应中最先向原初电子受体供给电子的,因此 反应中心色素分子又称原初电子供体
蕴含的意义
第三节 原初反应 (Primary reaction)
指从光合色素分子被光激发到引起第一个光化学反应为止的 过程。包括光能的吸收、传递与光化学反应.
第三章植物的光合作用

第三章植物的光合作用一、名词解释1. 光合作用2. 荧光现象3. 原初反应4. 同化力5. Hill 反应6. 红降现象7. 爱默生效应8. PQ 穿梭9. 聚光(天线)色素10. 光合磷酸化11. C3植物12. C4植物13. 光呼吸14. 温室效应15. 光饱和点16. 光补偿点17. 代谢源18. 代谢库二、填空题1. 根据功能的不同叶绿体色素可以分为 ______________ 和 _____________ 两大类。
2. 叶绿素从第一单线态回到基态所放出的光称为 _________ ,从第一三线态回到基态所放出的光称为 ________ 。
3.C3植物、C4植物和CAM 植物所共有的CO2受体是 ___________ 。
4.PSI 为 ______ 波光反应,其主要特征是 ______ 。
5. 维持植物正常的生长所需的最低日照强度应 ______ 于光补偿点。
6. 叶绿体色素吸收光能后,其光能主要以_____ 方式在色素分子之间传递。
在传递过程中,其波长逐渐_____ ,能量逐渐 _____。
7. 植物体内的有机物是通过 ______ 进行长距离运输的,其中含量最高的有机物是______ 。
8.______ 现象和 ______ 证明了光合作用可能包括两个光系统。
9.PSII ______ 波光反应,其主要特征是 ______ 。
10. 影响韧皮部运输的主要环境因素是_____ 和_____ (举主要 2 种)。
11.CAM 植物,夜间其液泡的 pH_____ ,这是由于积累了大量 _____引起的。
12.PSI 中,电子的原初供体是_____ ,电子原初受体是_____ 。
13. 在光合链中,电子的最终供体是_____ ,电子最终受体是_____ 。
14. 光合链上的 PC ,中文叫_____ ,它是通过元素_____ 的变价来传递电子的。
15. 筛管汁液中,阳离子以_____ 最多,阴离子以_____ 为主。
七年级(初一)生物 生物 第3章植物的光合作用

一、光反应和碳反应
光合作用的过程可分为3大步骤:1)原初反应(光能的吸收、传递和转换过程);2)电子传递和光合磷酸化(电能转化为活跃的化学能过程);3)碳同化(活跃的化学能转变为稳定的化学能过程)。第一、二个大步骤基本属于光反应,第三个大步骤属于暗反应(表3-2)。
2.C4途径的类型
根据运入维管束鞘细胞的C4化合物和脱羧反应的不同,C4途径有3种类型(表3-3,图3-18)。
3.C4植物的光合特征
C4植物比C3植物具有较强的光合作用,其原因可从结构和生理两方面来探讨。
①结构与功能是有密切关系的,是统一的。C4植物叶片有“花环型”结构。
②在生理上,
C4植物的叶肉细胞中的PEPC对底物HCO3-的亲和力极高(是Rubisco60倍);极低的CO2供应就可满足它的需要。
②已从叶绿体分离出两个光系统,每一个光系统具有特殊的色素复合体及一些物质。光系统I(简称PSI)的颗粒较小,直径约11nm,主要分布在类囊体膜的非叠合部分;光系统Ⅱ(简称PSⅡ)的颗粒较大,直径约17.5nm,主要分布在类囊体膜的叠合部。光合作用的光化学反应就在.这两个光系统中进行。
二、电子传递体及其功能
C4植物由于有“CO2泵”浓缩CO2的机制,降低了光呼吸;提高了BSC的CO2浓度,抑制了RuBisco氧化反应,降低了光呼吸;光呼吸酶主要分布在BSC细胞,即便是有CO2放出,也易被PEPC再固定。
第二节叶绿体及光合作用色素(chloroplastandchloroplastpigments) )
叶片是进行光合作用的主要器官,而叶绿体是进行光合作用的主要细胞器。
一、叶绿体的结构和成分
(一)叶绿体的结构(Struture ofchloroplast)
第三章 植物的光合作用

2.意义 (1)将无机物转变成有机物 CO2 + 4H+ —— (CH2O) (2)随着物质的转变,将光能转变为化学能。
光能电能活跃的化学能稳定的化学能 hv eATP、NADPH CH2O
(3)释放氧,净化空气;并产生臭氧,滤去太 阳光中对生物有强烈破坏作用的紫外光。
第三章 植物的光合作用
430 nm波长的蓝光量子的能量为4.5710-19J
(二)吸收光谱(absorption spectrum) 太阳光到达地表面的波长大约是 300 nm —— 2600 nm 可见光的波长是 390 nm —— 770 nm 连续光谱: 光束通过三棱镜后可把白光分为七色 连续光谱。
吸收光谱:
第三、四、五节 光合作用过程
光合作用机制的研究
• 在研究外界条件影响时发现:弱光下增加光强能提高 光合速率,但当光强增加到一定值时,光合速率便不 再随光强的增加而提高;此时提高温度或CO2浓度才 能增强光合速率。由此推理,光合作用至少有两个步 骤:其一需要光,另一个则与温度相关。 希尔反应的发现和水氧化钟模型的提出。 藻类闪光实验:在光能相同时,一种用连续光照;另一 用闪光照射,中间间隔一暗期。发现后者的光合速率 比前者的要高。表明,光合作用不是任何步骤都需要 光。根据需光与否,将光合作用分为两个反应—光反 应和暗反应。
(1)叶绿素a在红光区的吸收带偏向长光波方 向,而在兰紫光区则偏向短光波方向.
(2)叶绿素a在红光区的吸收带宽些,兰紫光 区窄些,叶绿素b与其相反.
2.类胡罗卜素的吸收光谱 1)吸收光谱 —— 兰紫光区 2)重要功能 —— 吸收光能并向叶绿素传递 ——可进行光保护 吸收兰紫光形成激发态的类胡罗卜素 热耗散返回基态淬灭激发态的叶绿素 避免吸收的多余能量对光合系统的伤害
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CH2
N
Ⅲ CH3
CH Ⅴ
CH
C=O
C-O-CH3
O
C=O
O
C 20H 39
叶绿素a 的结构式
第三章光合作用
C.叶绿素a与b的不同: 叶绿素a比b多两个氢少 一个氧。两者结构上的 差别仅在于叶绿素a的第 Ⅱ吡咯环上一个甲基 (- CH3)被醛基(-CHO)所 取代。
第三章光合作用
2 类胡萝卜素:聚光作用,消耗多余光能
他把两盆植物分别放 到两个 密闭的玻璃罩里。他发现植物能 够长 时间地活着,蜡烛没有熄灭, 小鼠活动正常。
植物可以在光下净化“坏了”的空气
第三章光合作用
光合作用
假设光合作用是一个物 质生产过程,那么:
1)原料、产品是什么? 2)工厂、车间是什么? 3)工人有哪些? 4)生产流程是怎样? 5)制约因素有哪些?
绿色颗粒,将光能转化为化 学能。
第三章光合作用
• 类囊体:高等植物的叶绿体都有由许多片层组成的片层 系统,每个片层是由自身闭合的双层薄片组成,呈压扁 了的包囊状,称为类囊体,亦称光合膜,光合作用的能 量转化功能就是在其上进行。
• 基粒类囊体:每个基粒是由两个以上的类囊体垛叠在一 起,这些类囊体称基粒类囊体。
第三章光合作用
重点掌握
1. 掌握叶绿体结构及光合色素种类和性质; 2.初步弄清光合作用机理(重点和难点); 3.了解光呼吸的基本过程和主要生理功能; 4.弄清光合作用的影响因素。
第三章光合作用
光合作用 的部位
光合作用 的原料
光合作用 的产物
植物的绿色部分(叶茎 果等),主要是 叶片.
细胞中的 叶绿体
第三章光合作用
3 荧光现象和磷光现象
荧光现象:叶绿素溶液在透射光下呈绿色,而在反 射光下呈红色这种现象称荧光现象。 胡萝卜素、 叶黄色和藻胆素都有荧光现象。 磷光现象:当叶绿素出现荧光后,立即中断光源, 溶液还能继续辐射出极微弱的红光(用精密仪器测 知), 这种现象叫做磷光现象。
第三章光合作用
从第一单线态以红光的形式 回到基态所发出的光
第一
第三章光合作用
从第一三单线 态回到基态所
发出的光
四、叶绿素的形成
(一)生物合成
谷氨酸或α-酮戊二酸 →二氧戊酸 →δ-氨基酮戊酸(ALA) → 胆色素原 → 尿卟啉原Ⅲ → 粪卟啉原Ⅲ →
原卟啉Ⅸ 叶绿素a
与Fe结合形成亚铁血红素
导入Mg原子→Mg-原卟啉
原脱植基
脱植基叶绿素a → 叶绿素a →叶绿素b。
第三章光合作用
b.结构:四个吡咯环围绕 镁形成卟啉环的头部,亲 水,位于光合膜的外表面, 收集光能;还有一个叶绿 醇形成的尾部,亲脂,插 入光合膜内部,与叶绿素 分子在类囊体膜上
的定位有关。
第三章光合作用
叶绿醇
CH2
CH
CH
H3C
Ⅰ
N
CH3(-CHO)
Ⅱ CH2CH3
N
胡萝卜素:是不饱和的碳氢化合物,分子式是
a.分类
C40H56,呈橙黄色, α-、β-、γ- 胡萝卜素。
叶黄素:是由胡萝卜素衍生的醇类,分子式
C40H56O2,呈黄色。
b.结构:(见书61页)
第三章光合作用
三、光合色素的光学特性
1 光自身的特性: • 从太阳辐射到地球的光波长范围为:300-2600nm • 植物光合能吸收的光波长范围为:400-700nm • 波长越小,能量越大 • 蓝光能量大,红光能量小 2 吸收光谱:叶绿素吸收能力极强,如果把叶绿素溶液放
• 基质类囊体:(基质片层)连接两个基粒的类囊体。 • 类囊体膜:光合作用的 能量转换是在类囊体膜上进
行,所以类囊体膜又叫光合膜。
第三章光合作用
基粒类囊体堆垛叠的生理意义: (1)膜的堆叠意味着捕获光能的机构高度密集,更有效
地吸收(收集)光能,加速光反应; (2)由于膜系统往往是酶的排列支架,膜垛叠就犹如形
CO2 H2O
来自于空气 来自于土壤
C6H12O6 O2
第三章光合作用
第一节 光合作用的重要性
一、光合作用(photosynthesis):
是指绿色植物吸收光能,同化CO2和H2O, 制造有机物并释放O2的过程。
光 6CO2+6H2O*光合细胞 (C6H12O6)n+O*2
基本公式
第三章光合作用
二、光合作用的重要性
第三章光合作用
五 植物叶色
1、叶色: 是叶子中各种色素的综合表现,主要是叶绿素
和类胡萝卜素的比例,正常为3﹕1,所以叶片呈现绿色, 秋天、逆境或衰老是时,叶绿素易被破坏减少,呈现黄色; 至于红叶,秋天降温,体内多糖积累,形成花色素苷呈红色。
成一个长的代谢传送带,使代谢顺利进行。
第三章光合作用
二、光合色素的化学特性
高等植物光合色素有2类:
(1)叶绿素:a、b (2)类胡萝卜素:胡萝卜素 和 叶黄素
第三章光合作用
1 叶绿素:
a.分类
Chla:分子式(C55H72O5N4Mg)蓝绿色,大部 分用于捕光,少部分用于转化光能
Chlb:分子式( C55H70O6N4Mg)黄绿色,全 部用于捕光
1 把无机物转变为有机物:是制造有机物质的主要途径; 2 贮存太阳能量:大规模地将太阳能转变为贮藏的化学能,
是巨大的能量转换系统; 3 保护环境:吸收CO2,放出O2,净化空气,是大气中氧
的源泉。
干旱沙漠化
冰川融解
第三章光合作用
第二节 叶绿体及叶绿体色素 一、叶绿体的结构和成分
第三章光合作用
1、叶绿体的结构:多呈椭圆形。 a 双层膜:内膜为选择性屏障。 b 基质:CO2同化;淀粉形成 c 基粒:由类囊体垛叠而成的
第三章 光合作用
第三章光合作用
生物
自养生物:利用无机
碳化合物作为营养,并 且将它合称为有机物, 这类植物称为自养植物。
包括植物和光合细菌。
异养生物:只能利用
现成的有机物作为营养, 这类植物成异养植物。
第三章光合作用
1771年,英国科学家普利斯 特利把一支点燃的蜡烛和一只小 白鼠分 别放到密闭的玻璃罩里, 蜡烛不久就熄灭 了,小白鼠很快 也死去了。
在光源和分光镜中间,就可以看到光谱中有些波长的光 被吸收了,在光谱上出现黑线或暗带,这种光谱
称吸收光谱。
第三章光合作用
2光合色素的吸收光谱
两个吸收峰430-450nm蓝紫光区 640-660nm红光区
叶绿素是绿 色??
类胡萝卜素 是黄色??
连续双峰 400-500nm
第三章光合作用
叶绿素吸光后光能的去向: 热能 光能散失:荧光、磷光 光能 化学能 (贮藏)