3第三章:光合作用

合集下载

第三章--光合作用习题及答案

第三章--光合作用习题及答案

第三章光合作用一、名词解释1. 光合作用2. 光合强速率3. 原初反应4. 光合电子传递链5. PQ穿梭6. 同化力7. 光呼吸8. 荧光现象9. 磷光现象10. 光饱和点11. 光饱和现象12. 光补偿点13. 光能利用率14. 二氧化碳饱和点15. 二氧化碳补偿点16. 光合作用单位17. 作用中心色素18. 聚光色素19. 希尔反应20. 光合磷酸化21. 光系统22. 红降现象23. 双增益效应24. C3植物25. C4植物26. 量子产额27. 量子需要量28. 光合作用‘午睡’现象三、填空题1. 光合色素按照功能不同分类为和。

2. 光合作用的最终电子供体是,最终电子受体是。

3. 光合作用C3途径CO2的受体是,C4途径的CO2的受体是。

4. 光合作用单位由和两大部分构成。

5. PSI的原初电子供体是,原处电子受体是。

6. PSII的原初电子受体是,最终电子供体是。

7. 光合放氧蛋白质复合体又称为,有种存在状态。

8. C3植物的卡尔文循环在叶片的细胞中进行,C4植物的C3途径是在叶片的细胞中进行。

9. 在卡尔文循环中,每形成1摩尔六碳糖需要摩尔ATP,摩尔NADPH+H+。

10. 影响光合作用的外部因素有、、、和。

11. 光合作用的三大步聚包括、和。

12. 光合作用的色素有、和。

13. 光合作用的光反应在叶绿体的中进行,而暗反应是在进行。

14. 叶绿素溶液在透射光下呈色,在反射光下呈色。

15. 光合作用属于氧化还原反应,其中中被氧化的物质是,被还原的物质时是。

16. 类胡萝卜素吸收光谱最强吸收区在,它不仅可以吸收传递光能,还具有的作用。

17. 叶绿素吸收光谱有光区和光区两个最强吸收区。

18. 光合作用CO2同化过程包括、、三个大的步骤。

19.根据光合途径不同,可将植物分为、、三种类别。

20. 尔文循环按反应性质不同,可分为、、三个阶段。

21. 在光合作用中,合成淀粉的场所是,合成蔗糖的场所是。

第三章 光合作用

第三章 光合作用

第三章光合作用习题一、名词解释光合作用:绿色植物利用太阳光能,将二氧化碳和水合成有机物质,并释放氧气的过程.原初反应:指的是光能的吸收、传递与转换过程,完成了光能向电能的转变,实质是由光所引起的氧化还原过程.天线色素:又称聚光色素,没有光化学活性,将所吸收的光有效地集中到作用中心色素分子,包括99% 的叶绿素 a ,全部叶绿素 b ,全部胡萝卜素和叶黄素。

反应中心色素分子: 既能吸收光能又具有化学活性,能引起光化学反应的特殊状态的叶绿素 a 分子,包括 P 700 和 P 680 。

光合作用单位:是指完成 1 分子CO2的同化或 1分子 O2 的释放,所需的光合色素分子的数目,大约是 2400 个光合色素分子。

但就传递 1 个电子而言,光合作用单位是 600 ,就吸收 1 个光量子而言,光合作用单位是 300 .红降现象:当光波大于 680 nm ,虽然仍被叶绿素大量吸收,但光合效率急剧下降,这种在长波红光下光合效率下降的现象,称为红降现象。

光合效率:(量子产额)又称量子产额或量子效率,是光合作用中光的利用效率,即吸收 1 个光量子所同化二氧化碳或放出氧分子的数量。

量子需要量:同化 1分子CO2 或释放 1 分子 O2 需要的光量子数.爱默生效应:(双光增益效应) 如果在长波红光照射时,再加上波长较短的红光( 650~670nm )照射,光合效率增高,比分别单独用两种波长的光照射时的总和还要高,这种现象称为双光增益效应或爱默生效应。

希尔反应及希尔氧化剂:在有适当的电子受体存在的条件下,离体的叶绿体在光下使水分解,有氧的释放和电子受体的还原,这一过程是 Hill 在 1937 年发现的,故称 Hill 反应,在希尔反应中接受氢的受体称希尔氧化剂。

P 700 是 PSI 的反应中心色素分子,即原初电子供体,是由两个叶绿素 a 分子组成的二聚体.这里 P 代表色素, 700 则代表 P 氧化时其吸收光谱中变化最大的波长位置是近 700nm 处,也即用氧化态吸收光谱与还原态吸收光谱间的最大处的波长位置来作为反应中心色素的标志.PQ 穿梭:伴随着 PQ 的氧化还原,可使 2H + 从间质移至类囊体膜内的空间,即H+横渡类囊体膜,搬运 2H+ 的同时也传递 2e , PQ 的这种氧化还原往复变化称为 PQ 穿梭。

植物生理学第三章植物的光合作用

植物生理学第三章植物的光合作用
返回
光合作用的过程
光能
H2O
光解 吸收
色素分子
O2 [H] 酶
供能
2C3


CO2
多种酶 定 C5

ATP


(CH2O)
ADP+Pi
光反应阶段
暗反应阶段
水的光解:H2O 光解 2[H]+1/2 O2

CO2的固定: CO2+C5 2C3
光合磷酸化:ADP+Pi+能量 酶
ATP
C3化合物还原:2 C3
光系统(PSII)
PSII的颗粒大,直径约17.5 nm,主要分布在类囊体膜的叠合部分。
➢ 晶体结构中的PSII为一个二聚体,二聚体的两个 单体呈准二次旋转对称。PSII单体具有36个跨膜α螺旋,其中D1和D2各5个,CP43和CP47各6个, Cytb559的α亚基和β亚基各自形成一个跨膜α-螺旋。 D1和D2蛋白与Cytb559的α和β亚基一起组成PSII 反应中心,是进行原初电荷分离和电子传递反应 的机构,CP47和CP43的主要功能是接受LHCII的 激发能量并传递到反应中心。
是否需光 需光 不一定,但受光促进 不一定,但受光促进
不同层次和时间上的光合作用
第二节 原初反应
➢ 原初反应 是指从光合色素分子被光激发,到引起 第一个光化学反应为止的过程。 ➢ 它包括: 光物理-光能的吸收、传递
光化学-有电子得失
原初反应特点 1) 速度非常快,10-12s∽10-9s内完成; 2) 与温度无关,(77K,液氮温度)(2K,液氦温度); 3) 量子效率接近1
表1 光合作用中各种能量转变情况

能量转变 光能 电能 活跃的化学能 稳定的化学能

第三章 光合作用(3-5)

第三章 光合作用(3-5)

B.过渡阶段
C.饱和阶段
表观量子产额比理论值低,主要原因是:
①光没有全部被叶片吸收,存在反射和透射损失; ②非光合色素吸收了部分光能; ③光呼吸和暗呼吸对光合的负效应; ④形成的同化力(ATP、NADPH)没有全部用于CO2的还原; ⑤没有在饱和CO2浓度和最适温度下测定, 存在CO2扩散和 固定速率的限制等。
(4)消除乙醇酸
乙醇酸对细胞有毒害作用,它的产生在代谢 中是不可避免的。• 呼吸消除乙醇酸的代谢, 光 使细胞免受伤害。另外,光呼吸代谢中涉及 多种氨基酸的转化过程,它可能对绿色细胞 的氮代谢有利。
五、C3植物和C4植物的光合特征
C4植物比C3植物具有较强的光合作用,这与其结构特征 和生理特性有关。 (一)解剖结构特点
1.光强(light)
(1)光强-光合曲线 光补偿点(Light Compensation Point,LCP): 随着光强的增高,光合速率相应提高,当达到某一光强时,叶片 的光合速率与呼吸速率相等 ,净光合速率为零时的光强称为光补偿 点。 光饱和点(Light Saturation Point,LSP):
利用植物的需光特性确定合理的叶面积系数 (leaf area index, LAI)
单位土地面积上的叶面积
LAI= 单位土地面积
LAI是表示作物群体大小状况的一个指标。合理的LAI应 以作物的需光特性为标准,以最大限度的利用光能、地力为 原则,以高产、优质、低消耗为目的。从作物的需光特性上 讲,应使上部叶片处于光饱和点,中下部叶片处于光补偿点 的两倍以上,以保证下部叶片及根系的正常生长。
在叶绿体与过氧化体中吸收氧气,在线粒体中放出CO2
二、光呼吸的生化历程
叶绿体 3-PGA + 磷酸乙醇酸 乙醇酸 C3—cycle C2—cycle [O2] Rubisco RUBP 2 3—PGA [CO2] 过氧化体

第三单元植物生长中的光合作用知识点汇总(人教版)

第三单元植物生长中的光合作用知识点汇总(人教版)

第三单元植物生长中的光合作用知识点汇
总(人教版)
光合作用的定义
光合作用是植物利用光能将二氧化碳和水转化为有机物质和氧气的过程。

光合作用的反应方程式
光合作用的反应方程式为:光能+ 6CO2 + 6H2O → C6H12O6 + 6O2。

光合作用的过程
光合作用包括光能的吸收、光合色素的光能转换、光合电子传递和化学反应等过程。

叶绿素的作用
叶绿素是光合作用中的主要色素,它能够吸收光能,并将其转化为化学能。

光合作用的影响因素
光合作用的速率受到光强度、温度和二氧化碳浓度的影响。

光合作用的产物
光合作用产生的主要产物是葡萄糖和氧气,葡萄糖被植物用于生长和代谢,而氧气则释放到大气中。

光合作用在生态系统中的作用
光合作用是生态系统中能量流的起点,为其他生物提供能量和有机物质。

光合作用与人类的关系
光合作用产生的氧气为人类提供呼吸所需的氧气,同时植物的有机物也是人类的食物来源。

以上是第三单元植物生长中的光合作用知识点的简要汇总。

七年级(初一)生物 生物 第3章植物的光合作用

七年级(初一)生物 生物 第3章植物的光合作用
第三节光合作用过程(Ⅰ):光的吸收
一、光反应和碳反应
光合作用的过程可分为3大步骤:1)原初反应(光能的吸收、传递和转换过程);2)电子传递和光合磷酸化(电能转化为活跃的化学能过程);3)碳同化(活跃的化学能转变为稳定的化学能过程)。第一、二个大步骤基本属于光反应,第三个大步骤属于暗反应(表3-2)。
2.C4途径的类型
根据运入维管束鞘细胞的C4化合物和脱羧反应的不同,C4途径有3种类型(表3-3,图3-18)。
3.C4植物的光合特征
C4植物比C3植物具有较强的光合作用,其原因可从结构和生理两方面来探讨。
①结构与功能是有密切关系的,是统一的。C4植物叶片有“花环型”结构。
②在生理上,
C4植物的叶肉细胞中的PEPC对底物HCO3-的亲和力极高(是Rubisco60倍);极低的CO2供应就可满足它的需要。
②已从叶绿体分离出两个光系统,每一个光系统具有特殊的色素复合体及一些物质。光系统I(简称PSI)的颗粒较小,直径约11nm,主要分布在类囊体膜的非叠合部分;光系统Ⅱ(简称PSⅡ)的颗粒较大,直径约17.5nm,主要分布在类囊体膜的叠合部。光合作用的光化学反应就在.这两个光系统中进行。
二、电子传递体及其功能
C4植物由于有“CO2泵”浓缩CO2的机制,降低了光呼吸;提高了BSC的CO2浓度,抑制了RuBisco氧化反应,降低了光呼吸;光呼吸酶主要分布在BSC细胞,即便是有CO2放出,也易被PEPC再固定。
第二节叶绿体及光合作用色素(chloroplastandchloroplastpigments) )
叶片是进行光合作用的主要器官,而叶绿体是进行光合作用的主要细胞器。
一、叶绿体的结构和成分
(一)叶绿体的结构(Struture ofchloroplast)

第三章 植物的光合作用

第三章 植物的光合作用

2.意义 (1)将无机物转变成有机物 CO2 + 4H+ —— (CH2O) (2)随着物质的转变,将光能转变为化学能。
光能电能活跃的化学能稳定的化学能 hv eATP、NADPH CH2O
(3)释放氧,净化空气;并产生臭氧,滤去太 阳光中对生物有强烈破坏作用的紫外光。
第三章 植物的光合作用
430 nm波长的蓝光量子的能量为4.5710-19J
(二)吸收光谱(absorption spectrum) 太阳光到达地表面的波长大约是 300 nm —— 2600 nm 可见光的波长是 390 nm —— 770 nm 连续光谱: 光束通过三棱镜后可把白光分为七色 连续光谱。
吸收光谱:
第三、四、五节 光合作用过程
光合作用机制的研究
• 在研究外界条件影响时发现:弱光下增加光强能提高 光合速率,但当光强增加到一定值时,光合速率便不 再随光强的增加而提高;此时提高温度或CO2浓度才 能增强光合速率。由此推理,光合作用至少有两个步 骤:其一需要光,另一个则与温度相关。 希尔反应的发现和水氧化钟模型的提出。 藻类闪光实验:在光能相同时,一种用连续光照;另一 用闪光照射,中间间隔一暗期。发现后者的光合速率 比前者的要高。表明,光合作用不是任何步骤都需要 光。根据需光与否,将光合作用分为两个反应—光反 应和暗反应。
(1)叶绿素a在红光区的吸收带偏向长光波方 向,而在兰紫光区则偏向短光波方向.
(2)叶绿素a在红光区的吸收带宽些,兰紫光 区窄些,叶绿素b与其相反.
2.类胡罗卜素的吸收光谱 1)吸收光谱 —— 兰紫光区 2)重要功能 —— 吸收光能并向叶绿素传递 ——可进行光保护 吸收兰紫光形成激发态的类胡罗卜素 热耗散返回基态淬灭激发态的叶绿素 避免吸收的多余能量对光合系统的伤害

植物生理学第三章植物的光合作用

植物生理学第三章植物的光合作用

植物生理学第三章植物的光合作用植物的光合作用是指植物利用光能将二氧化碳和水转化成有机物质(如葡萄糖)和氧气的过程。

其反应方程式为:6CO2+6H2O+光能→C6H12O6+6O2光合作用是植物最重要的生理过程之一,它不仅是植物能够生存和生长的基础,还能为其他生物提供氧气和有机物质。

光合作用通过光合色素和叶绿体等生理结构,具有高效和专一性的特点。

植物的光合作用可以分为两个阶段:光能捕获和光化学反应、以及碳固定和假单胞菌循环。

在光能捕获和光化学反应阶段,植物的光合色素(如叶绿素)能够捕获太阳光,并将其转化为化学能。

光合作用发生在叶绿体内,主要以叶绿体膜的光合作用单位,光系统(PSI和PSII)为中心。

光系统中的光合色素吸收太阳光,并将其能量传递给反应中心,激发电子。

通过光合色素的电子传递链,电子在PSII和PSI之间进行转移,最终转移到还原辅酶NADP+上,形成还原辅酶NADPH。

在碳固定和假单胞菌循环阶段,植物利用还原辅酶NADPH和ATP的能量,将二氧化碳转化为有机化合物。

这个过程称为Calvin循环,也叫柠檬酸循环。

Calvin循环包括三个主要步骤:碳固定、还原和再生。

首先,二氧化碳与从光合作用过程中产生的核酮糖五磷酸(RuBP)结合,形成不稳定的六碳中间体。

然后,该中间体通过一系列酶的作用,将其分解为两个三碳化合物,3-磷酸甘油醇醛(3-PGA)。

最后,3-PGA经过一系列的加氢还原反应和磷酸化反应,合成出葡萄糖和其他有机物质。

光合作用的速率受到光照、温度、二氧化碳浓度和水分等环境条件的影响。

光合速率随着光照强度的增大而增加,但达到一定的饱和点后,光合速率趋于稳定。

温度对光合作用的影响是复杂的。

在适宜温度下,光合速率随着温度的升高而增加,因为反应速率加快。

然而,当温度超过一定范围时,光合作用会受到抑制,因为高温会破坏光系统和酶的结构。

二氧化碳浓度越高,光合速率越快。

水分对光合作用的影响主要是通过调节植物的气孔进行的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17
简答:
Rubisco的特点和功能
13、作物为什么会出现光合“午休”现象?
答:植物种类不同、生长条件不同,造成光合“午休”的原因也不同。

有以下几
供应不足。

(3)光合产物淀粉种原因:(1)中午水分供给不足、气孔关闭。

(2)C0
2
的运输。

(4)中午时的等来不及分解运走,累积在叶肉细胞中,阻碍细胞内C0
2
高温低湿降低了碳同化酶的活性。

(5)生理钟调控。

\
可分为三个阶段:(1)羧化阶段。

C02被固定,生成3-磷酸甘油酸,为最初产物。

(2)还原阶段。

利用同化力(NADPH 、ATP)将3-磷酸甘油酸还原成3-磷酸甘油醛一光合作用中的第一个三碳糖。

(3)更新阶段。

光合碳循环中形成的3-磷酸甘油醛,经过一系列的转变,再重新形成RuBP 的过程。

10、试绘制一般植物的光强-光合曲线,并对曲线的特点加以说明。

答:如图所示,在暗中叶片无光合作用,只有呼吸作用释放CO 2(图中的OD 为呼吸速率)。

随着光强的增高,光合速率相应提高,•当达到某一光强时,叶片的光合速率与呼吸速率相等,净光合速率为零,这时的光强称为光补偿点。

在一定范围内,光合速率随着光强的增加而呈直线增加;但超过一定光强后,光合速率增加转慢;当达到某一光强时,光合速率就不再随光强增加而增加,这种现象称为光饱和现象。

光合速率开始达到最大值时的光强称为光饱和点。

植物出现光饱和点的实质是强光下暗反应跟不上光反应从而限制了光合速率随着光强的增加而提高。

因此,限制饱和阶段光合作用的主要因素有CO 2扩散速率(受CO 2浓度影响)和CO 2固定速率(受羧化酶活性和RuBP 再生速率影响)等。

在光强-光合曲线的不同阶段,影响光合速率的主要因素不同。

弱光下,光强是控制光合的主要因素,曲线的斜率即为表观量子效率。

曲线的斜率大,表明植物吸收与转换光能的色素蛋白复合体可能较多,利用弱光的能力强。

随着光强增高,叶片吸收光能增多,光化学反应速率加快,产生的同化力多,于是CO 2固定速率加快。

此外,气孔开度、Rubisco•活性及光呼吸速率也影响直线阶段(A )的光合速率,因为这些因素都会随光强的提高而增大,其中前二者的提高对光合速率有正效应,后者有负效应。

相关文档
最新文档