第三章光合作用
植物生理学第三章植物的光合作用

光合作用的过程
光能
H2O
光解 吸收
色素分子
O2 [H] 酶
供能
2C3
还
固
CO2
多种酶 定 C5
酶
ATP
酶
原
(CH2O)
ADP+Pi
光反应阶段
暗反应阶段
水的光解:H2O 光解 2[H]+1/2 O2
酶
CO2的固定: CO2+C5 2C3
光合磷酸化:ADP+Pi+能量 酶
ATP
C3化合物还原:2 C3
光系统(PSII)
PSII的颗粒大,直径约17.5 nm,主要分布在类囊体膜的叠合部分。
➢ 晶体结构中的PSII为一个二聚体,二聚体的两个 单体呈准二次旋转对称。PSII单体具有36个跨膜α螺旋,其中D1和D2各5个,CP43和CP47各6个, Cytb559的α亚基和β亚基各自形成一个跨膜α-螺旋。 D1和D2蛋白与Cytb559的α和β亚基一起组成PSII 反应中心,是进行原初电荷分离和电子传递反应 的机构,CP47和CP43的主要功能是接受LHCII的 激发能量并传递到反应中心。
是否需光 需光 不一定,但受光促进 不一定,但受光促进
不同层次和时间上的光合作用
第二节 原初反应
➢ 原初反应 是指从光合色素分子被光激发,到引起 第一个光化学反应为止的过程。 ➢ 它包括: 光物理-光能的吸收、传递
光化学-有电子得失
原初反应特点 1) 速度非常快,10-12s∽10-9s内完成; 2) 与温度无关,(77K,液氮温度)(2K,液氦温度); 3) 量子效率接近1
表1 光合作用中各种能量转变情况
•
能量转变 光能 电能 活跃的化学能 稳定的化学能
第三章 光合作用 Photosynthesis1

图3-7 荧光现象
图3-9 色素分子吸收光后能量转变 色素分子吸收蓝光(430 nm)或红光(670 nm)后,分别激发为第二单线态(E2) 或第一单线态(E1),E1转变为第一三线态,它们进一步回到基态(E0)时则分别 产生荧光或磷光
• 四、植物的叶色 • 正常叶子的叶绿素和类胡萝卜素的分子比 例约为3:1,叶绿素a和叶绿素b也约为3: 1,叶黄素和胡萝卜素约为2:1。所以正常 的叶子总是呈现绿色。
• (1)非循环光合磷酸化 • 在放氧复合体( OEC)处水裂解后,把H+释放 到类囊体腔内,把电子传递到PSⅡ。电子在光 合电子传递链中传递时,伴随着类囊体外侧的H+ 转移到腔内,由此形成了跨膜的H+浓度差,引起 了ATP的形成;与此同时把电子传递到PSI去, 进一步提高了能位,而使H+还原NADP+为 NADPH,此外,还放出O2。在这个过程中,电 子传递是一个开放的通路,故称为非循环光合磷 酸化。吸收8个光量子,将2H2O氧化(将4个H+ 释放到囊中),放出一个O2。传递4个电子,还 原2个NADP+。光量子产额为1/8。
类囊体分为二类: 基质类囊体 又称基质片层,伸展在基质中彼此不重叠; 基粒类囊体 或称基粒片层,可自身或与基质类囊体重叠,组成基粒。 堆叠区 片层与片层互相接触的部分, 非堆叠区 片层与片层非互相接触的部分。
类囊体片层堆叠的生理意义 • ①膜的堆叠意味着捕获光能机构高度 密集,更有效地收集光能。 • ②膜系统常是酶排列的支架,膜的堆 叠易构成代谢的连接带,使代谢高效 地进行。 • ③类囊体片层堆叠成基粒是高等植物 细胞所特有的膜结构,它有利于光合作 用的进行。
光系统Ⅰ(PSI)
• (2)PSⅡ • PSⅡ多存在于基粒片层的垛叠区。PSⅡ主要 由核心复合体(P680)、PSⅡ捕光复合体 ( LHCⅡ)和放氧复合体(OEC)等亚单位 组成。PSⅡ的功能是利用光能氧化水(水的 光解和放氧)和还原质体醌。水裂解放氧是水 在光照下经过PSⅡ的作用,释放氧气,产生 电子,释放质子到类囊体腔内,整个反应如下: • 光子 • 2H2O→O2+4H++4e-
第三章 光合作用(3-5)

B.过渡阶段
C.饱和阶段
表观量子产额比理论值低,主要原因是:
①光没有全部被叶片吸收,存在反射和透射损失; ②非光合色素吸收了部分光能; ③光呼吸和暗呼吸对光合的负效应; ④形成的同化力(ATP、NADPH)没有全部用于CO2的还原; ⑤没有在饱和CO2浓度和最适温度下测定, 存在CO2扩散和 固定速率的限制等。
(4)消除乙醇酸
乙醇酸对细胞有毒害作用,它的产生在代谢 中是不可避免的。• 呼吸消除乙醇酸的代谢, 光 使细胞免受伤害。另外,光呼吸代谢中涉及 多种氨基酸的转化过程,它可能对绿色细胞 的氮代谢有利。
五、C3植物和C4植物的光合特征
C4植物比C3植物具有较强的光合作用,这与其结构特征 和生理特性有关。 (一)解剖结构特点
1.光强(light)
(1)光强-光合曲线 光补偿点(Light Compensation Point,LCP): 随着光强的增高,光合速率相应提高,当达到某一光强时,叶片 的光合速率与呼吸速率相等 ,净光合速率为零时的光强称为光补偿 点。 光饱和点(Light Saturation Point,LSP):
利用植物的需光特性确定合理的叶面积系数 (leaf area index, LAI)
单位土地面积上的叶面积
LAI= 单位土地面积
LAI是表示作物群体大小状况的一个指标。合理的LAI应 以作物的需光特性为标准,以最大限度的利用光能、地力为 原则,以高产、优质、低消耗为目的。从作物的需光特性上 讲,应使上部叶片处于光饱和点,中下部叶片处于光补偿点 的两倍以上,以保证下部叶片及根系的正常生长。
在叶绿体与过氧化体中吸收氧气,在线粒体中放出CO2
二、光呼吸的生化历程
叶绿体 3-PGA + 磷酸乙醇酸 乙醇酸 C3—cycle C2—cycle [O2] Rubisco RUBP 2 3—PGA [CO2] 过氧化体
第三章 光合作用--光反应-电子传递

PSⅡ复合体
PSⅠ复合体
Cytb6/f复合体
质蓝素
铁氧化蛋白和 铁氧化蛋白— NADP+还原酶
质醌(PQ)
②质醌(PQ) (Plastoquinone)
质体醌为脂溶性分子,能在类囊体膜中自由移动,转运电子与质子。 质体醌在膜中含量很高,约为叶绿素分子数的5%~10%,故有“PQ库” 之称。 PQ库作为电子、质子的缓冲库,能均衡两个光系统间的电子传递
光系统Ⅱ(PhotosystemⅡ,PSⅡ)
吸收短波红光(680nm)
光系统Ⅰ(PhotosystemⅠ,PSⅠ)
吸收长波红光(700nm)
光系统 II(PSⅡ)
D P A
PSⅡ的原初电子供体 反应中心色素 PSⅡ的原初电子受体 次级电子受体
H2 O P680
去镁叶绿素分子(Pheo)
Q(质体醌)
若干个β-胡萝卜素
三种电子载体分别为A0、A1
3个不同的Fe4-S4蛋白:Fx、FA、FB
⑤PSⅠ复合体功能:
吸收光能,进行光化学反应,传递电子从PC到NADP+
PSⅠ复合体 Cytb6/f复合体
DPA
反应中心色素分子(reaction center piment,P) 原初电子受体(primary electron acceptor,A)
原初电子受体(D)
指直接接收反应中心色素分子传来电子的电子传递体
反应中心色素分子(P680和P700)
是光化学反应中最先向原初电子受体供给电子的,因此 反应中心色素分子又称原初电子供体
蕴含的意义
第三节 原初反应 (Primary reaction)
指从光合色素分子被光激发到引起第一个光化学反应为止的 过程。包括光能的吸收、传递与光化学反应.
七年级(初一)生物 生物 第3章植物的光合作用

一、光反应和碳反应
光合作用的过程可分为3大步骤:1)原初反应(光能的吸收、传递和转换过程);2)电子传递和光合磷酸化(电能转化为活跃的化学能过程);3)碳同化(活跃的化学能转变为稳定的化学能过程)。第一、二个大步骤基本属于光反应,第三个大步骤属于暗反应(表3-2)。
2.C4途径的类型
根据运入维管束鞘细胞的C4化合物和脱羧反应的不同,C4途径有3种类型(表3-3,图3-18)。
3.C4植物的光合特征
C4植物比C3植物具有较强的光合作用,其原因可从结构和生理两方面来探讨。
①结构与功能是有密切关系的,是统一的。C4植物叶片有“花环型”结构。
②在生理上,
C4植物的叶肉细胞中的PEPC对底物HCO3-的亲和力极高(是Rubisco60倍);极低的CO2供应就可满足它的需要。
②已从叶绿体分离出两个光系统,每一个光系统具有特殊的色素复合体及一些物质。光系统I(简称PSI)的颗粒较小,直径约11nm,主要分布在类囊体膜的非叠合部分;光系统Ⅱ(简称PSⅡ)的颗粒较大,直径约17.5nm,主要分布在类囊体膜的叠合部。光合作用的光化学反应就在.这两个光系统中进行。
二、电子传递体及其功能
C4植物由于有“CO2泵”浓缩CO2的机制,降低了光呼吸;提高了BSC的CO2浓度,抑制了RuBisco氧化反应,降低了光呼吸;光呼吸酶主要分布在BSC细胞,即便是有CO2放出,也易被PEPC再固定。
第二节叶绿体及光合作用色素(chloroplastandchloroplastpigments) )
叶片是进行光合作用的主要器官,而叶绿体是进行光合作用的主要细胞器。
一、叶绿体的结构和成分
(一)叶绿体的结构(Struture ofchloroplast)
第三章 光合作用--光反应-电子传递

1. 光合电子传递链
指定位在光合膜上的,由 多个电子传递体组成的电 子传递的总轨道.
光合电子传递Z链
希尔(1960)-“Z”方案(“Z” scheme) ,即电子传 递是在两个光系统串联配合下完成的,电子传递体按氧 化还原电位高低排列,使电子传递链呈侧写的“Z”形。
“Z”链特点:
(1)电子传递链主要由光合膜上 的PSⅡ、Cyt b6/f、PSⅠ三个 复合体串联组成。
ps和ps的光化学反应光系统photosystemps光系统photosystemps吸收短波红光680nm吸收长波红光吸收长波红光700nm光系统iipsps的原初电子受体反应中心色素次级电子受体反应中心色素次级电子受体去镁叶绿素分子pheodpaq质体醌p680ps的原初电子供体h2o光系统ipsips的原初电子受体反应中心色素最终电子受体的原初电子受体反应中心色素最终电子受体fddpap700psi的原初电子供体pcnadp功能与特点吸收光能光化学反应电子供体功能与特点吸收光能光化学反应电子供体反应中心色素分子原初电子供体反应中心色素分子原初电子供体次级电子受体末端电子受体次级电子受体末端电子受体ps还原nadp实现pc到nadp实现pc到nadp的电子传递pcp700铁硫中心fd铁硫中心fdnadp电子最终受体电子最终受体ps使水裂解释放氧气并把水中的电子传至质体醌
原初电子受体(D)
指直接接收反应中心色素分子传来电子的电子传递体
反应中心色素分子(P680和P700)
是光化学反应中最先向原初电子受体供给电子的,因此 反应中心色素分子又称原初电子供体
两个光系统的发现
“红降”现象
波长大于680 nm(用685 nm)的光照射时,小球藻的光合 量子产额明显下降,被称为“红降”现象.
第三章 植物的光合作用

2.意义 (1)将无机物转变成有机物 CO2 + 4H+ —— (CH2O) (2)随着物质的转变,将光能转变为化学能。
光能电能活跃的化学能稳定的化学能 hv eATP、NADPH CH2O
(3)释放氧,净化空气;并产生臭氧,滤去太 阳光中对生物有强烈破坏作用的紫外光。
第三章 植物的光合作用
430 nm波长的蓝光量子的能量为4.5710-19J
(二)吸收光谱(absorption spectrum) 太阳光到达地表面的波长大约是 300 nm —— 2600 nm 可见光的波长是 390 nm —— 770 nm 连续光谱: 光束通过三棱镜后可把白光分为七色 连续光谱。
吸收光谱:
第三、四、五节 光合作用过程
光合作用机制的研究
• 在研究外界条件影响时发现:弱光下增加光强能提高 光合速率,但当光强增加到一定值时,光合速率便不 再随光强的增加而提高;此时提高温度或CO2浓度才 能增强光合速率。由此推理,光合作用至少有两个步 骤:其一需要光,另一个则与温度相关。 希尔反应的发现和水氧化钟模型的提出。 藻类闪光实验:在光能相同时,一种用连续光照;另一 用闪光照射,中间间隔一暗期。发现后者的光合速率 比前者的要高。表明,光合作用不是任何步骤都需要 光。根据需光与否,将光合作用分为两个反应—光反 应和暗反应。
(1)叶绿素a在红光区的吸收带偏向长光波方 向,而在兰紫光区则偏向短光波方向.
(2)叶绿素a在红光区的吸收带宽些,兰紫光 区窄些,叶绿素b与其相反.
2.类胡罗卜素的吸收光谱 1)吸收光谱 —— 兰紫光区 2)重要功能 —— 吸收光能并向叶绿素传递 ——可进行光保护 吸收兰紫光形成激发态的类胡罗卜素 热耗散返回基态淬灭激发态的叶绿素 避免吸收的多余能量对光合系统的伤害
植物生理学第三章植物的光合作用

植物生理学第三章植物的光合作用第三章植物的光合作用一、名词解释1. C3途径2. C4途径3. 光系统4. 反应中心5. 原初反应6. 荧光现象7. 红降现象8. 量子产额9. 爱默生效应10. PQ循环11. 光合色素12. 光合作用13. 光合单位14. 反应中心色素15. 聚光色素16. 解偶联剂17. 光合磷酸化18. 光呼吸19. 光补偿点20. CO2补偿点21. 光饱和点22. 光能利用率23. 光合速率二、缩写符号翻译1. Fe-S2. PSI3. PSII4. OAA5. CAM6. NADP+7. Fd 8. PEPCase 9. RuBPO10. P680、P700 11. PQ 12. PEP13. PGA 14. Pheo 15. RuBP16. RubisC(RuBPC) 17. Rubisco(RuBPCO) 18.TP三、填空题1. 光合作用的碳反应是在中进行的,光反应是在中进行的。
2. 在光合电子传送中最终电子供体是,最终电子受体是。
3. 在光合作用过程中,当形成后,光能便转化成了活跃的化学能;当形成后,光能便转化成了稳定的化学能。
4. 叶绿体色素提取掖液在反射光下观察呈色,在透射光下观察呈色。
5. P700的原初电子供体是,原初电子受体是。
6. 光合作用的能量转换功能是在类囊体膜上进行的,所以类囊体亦称为。
7. 光合作用中释放的氧气来自于。
8. 与水光解有关的矿质元素为。
9. 和两种物质被称为同化能力。
10. 光的波长越长,光子所持有的能量越。
11. 叶绿素吸收光谱的最强吸收区有两个:一个在,另一个在。
12. 光合磷酸化有三种类型:、、。
13. 根据C4化合物和催化脱羧反应的酶不同,可将C4途径分为三种类型:、、。
14. 一般来说,正常叶子的叶绿素和类胡萝卜素的分子比例为;叶黄素和胡萝卜素的分子比例为。
15. 光合作用中,淀粉的形成是在中,蔗糖的形成是在中。
16. C4植物的C3途径是在中进行的;C3植物的卡尔文循环是在中进行的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光合有两个反应阶段:光反应和暗反应
第三章光合作用 光能吸收 CO2同化
实验五:
• 1937年,希尔用体外的叶绿体和水反应得到 了O2,为光反应的研究打开了大门。
光
4Fe3++2H2O
4Fe2++4H++O2
叶绿体 ??
说明叶绿体在光下可分解H2O,产生电子,产 生还原能力,使物质还原,即光反应可产生电子将 物质还原。
淀粉形成 3 基粒:由类囊体垛
叠而成的绿色颗粒。
第三章光合作用
一、叶绿体的结构
3 基粒
• 类囊体:压扁了的囊状体
• 基质类囊体:(基质片层)连接两个基粒的类囊体。
• 类囊体膜:(光合膜)四大颗粒
•
PSⅡ、Cytb6-f复合体、 PSⅠ和ATP合成酶
第三章光合作用
二、光合色素(叶绿素和类胡萝 卜素)
第三章光合作用
实验六:
• 1951年,发现体内物质NADP+可被光合 作用还原为NADPH。
光
NADP++H2O
NADPH+H++1/2O2
叶绿体
这是一个振奋人心的消息,因为科学家们早已知 道,NADPH是生物体内的重要的还原剂。
第三章光合作用
实验七:
• 1954年,发现ADP在光合作用下可形成 ATP。
第三章 光合作用
第三章光合作用
第四章 植物的光合作用
生物
自养生物:利用外 界的无机物作为原 料合成有机物质。 自己制造食物。包 括植物和光合细菌。
异养生物:从已经 存在的有机物中获 得营养,从食物中 获得能量。
第三章光合作用
第一节 光合作用概述
一、定义及公式
1 定义:绿色植物吸收阳光的能量,同化 二氧化碳和水,制造有机物并释放氧气 的过程。
二、光合作用的意义
1 环境保护:空气净化器,保持CO2和O2的 平衡。植物减少,CO2增加,产生温室效 应。
干旱沙漠化
冰川融解
第三章光合作用
二、光合作用的意义
2 把无机物变成有机物:是合成有机物 的绿色工厂。
3 蓄积太阳能:能量转换站 • 利用率极低,如石油、煤碳。 • 秸秆等则付之一炬,应还田或发酵成沼
2
公式:
光
CO2 + H2O*叶绿体 (CH2O)+ O2*
第三章光合作用
二、光合作用的意义
宇宙大爆炸
H2和He
太轻,逃逸到太空
火山爆发
火山气体:CO2,N2,CH4,NH3,H2O,H2S
米勒实验:
电击
CH4+H2+NH3+H2O
氨基酸
放出O2
植物
大气层:CO2,H2O,N2
第三章光合作用
原始汤
第三章光合作用
实验四:
光 合 效 率
• 1 低光时,温度再高光 合效率也不增加。说明光 是必须的。
• 2 强光下,温度升高,
光合加快,说明在高光强
下,温度是光合的限制因
强光
素,也说明光合作用涉及
酶促反应(暗反应);
低光 温度
• 3 温度相同时,随光照 增强,光合加快,特别是 在低温时,光照增强,光 合加快,说明光合作用中 存在与温度无关的反应, 也就是非酶促反应。(光 反应)
不稳定化学能
暗反应
稳定化学能
第三章光合作用
一、原初反应
1 定义:指从光合色素分子被激发到引发 第一个电子传递为止的过程。
光能
电能
2 过程:吸收、传递、转换 a.吸收:聚光色素(天线色素)
没有光化学活性,只有收集光能的作 用。包括大部分Chla、全部Chlb和全 部类胡萝卜第三素章光合作用
光能
电能
化学能(贮藏)
第三章光合作用
三、光合色素的光学特性
3 荧光现象和磷光现象
从第一单线态以红光的形式回到基态 所发出的光
第一
从第一三单线态回到 基态所发出的光
第三章光合作用
第三节 光合作用的机制
分三步
原初反应
光能
电能
电子传递与光合磷酸 化(ATP和NADPH)
电能
不稳定化学能
光反应
CO2的同化
1 叶绿素:Chlorophyll,Chl
a.分类
Chla:蓝绿色,大部分用于捕光,少部 分用于转化光能
Chlb:黄绿色,全部用于捕光
b.结构:四个吡咯环围绕镁形成卟啉环的头部,亲水,位于光合膜的外表面
还有一个叶绿醇形成的尾部,亲脂,插入光合膜内部(见书61页)
第三章光合作用
二、光合色素
2 类胡萝卜素:
光
ADP+Pi
ATP
叶绿体
在光下叶绿体合成的NADPH和ATP, 是用来同化CO2的。
第三章光合作用
光合作用的总过程
NADPH ATP
NADP+ ADP+Pi
光 光反应
暗反应: CO2
糖类
第三章光合作用
第二节 叶绿体及光合色素
一、叶绿体的结构 1 双层膜:内膜为选
择性屏障。 2 基质:CO2同化;
700nm
第三章光合作用
三、光合色素的光学特性
2 光合色素的吸收光谱
两个吸收峰430-450nm蓝紫光区 640-660nm红光区
叶绿素是绿 色??
类胡萝卜素 是黄色??
连续双峰 400-500nm
第三章光合作用
三、光合色素的光学特性
3 荧光现象和磷光现象 • 叶绿素吸光后光能的去向:
热能 光能散失:荧光、磷光
的空气
光合作用
第三章光合作用
实验二:
• 1782年,瑞士人有化学分析的方法弄清了光合的反应
物是CO2和H2O,产物是糖和O2。但认为糖是CO2
的简单聚合: n(CO2)
C CCC
实验三:
• 1905年,Blackman研究光合效率与光强和温 度的关系时,对光合过程是否一直需要光产生 了疑问。也使人们对CO2的同化方式有了全新 的认识。
气。
第三章光合作用
三、光合作用的研究历史
实验一:
1771年,英国科学家普利斯 特利把一支点燃的蜡烛和一只小 白鼠分 别放到密闭的玻璃罩里, 蜡烛不久就熄灭 了,小白鼠很快 也死去了。
他把两盆植物分别放 到两个 密闭的玻璃罩里。他发现植物能 够长 时间地活着,蜡烛没有熄灭, 小鼠活动正常。
植物可以在光下净化“坏了”
• 因为衰老和受害时,Chl更为敏感,首先受损, 绿色消失,呈现出黄色的光学特性(对光 的反应)
1 光自身的特性:波粒二相性 • E =L/λ,即波长越小,能量越大 • 蓝光能量大,红光能量小 • 从太阳辐射到地球的光波长范围为:
300-2600nm • 植物光合能吸收的光波长范围为:400-
a.分类
胡萝卜素:橙黄色
叶黄素:黄色
聚光作用,消耗多余 光能
b.结构:(见书61页)
第三章光合作用
思考一:
• 植物体内有绿色和黄色两种色素,为什么叶子 是绿色的而不是黄色的?
• 因为植物中Chl:类胡萝卜素=3:1,Chl含量 更高,绿色强于黄色,所以叶子是绿色的。
思考二:
• 为什么秋天或植物受害时,叶子是黄色的而不 是绿色的?