最新二次函数复习课ppt课件

合集下载

二次函数图像与性质复习课件PPT课件一等奖新名师优质课获奖比赛公开课

二次函数图像与性质复习课件PPT课件一等奖新名师优质课获奖比赛公开课

方程的 方程 ax2+bx+c=0(a≠0)有两个相等的实数根;
关系 3.当 b2-4ac<0 时 抛物线与 x 轴___没__有_____交点,
方程 ax2+bx+c=0(a≠0)没有实数根.
中考解读
考点聚焦
中考探究
当堂检测
第12课时┃ 二次函数旳图象与性质
考点 5 二次函数 y=ax2+bx+c(a≠0)的图象特征与 a、b、 c 之间的关系
皖考解读
考点聚焦
皖考探究
当堂检测
第12课时┃ 二次函数旳图象与性质
解 可设所求二次函数的解析式为 y=a(x-1)2-1(a≠0), ∵抛物线过原点(0,0), ∴a(0-1)2-1=0,解得 a=1, ∴该函数解析式为 y=(x-1)2-1,即 y=x2-2x.
皖考解读
考点聚焦
皖考探究
当堂检测
第12课时┃ 二次函数旳图象与性质
二次函 待定系数法确定二次函数的解析式分三种情况:
数解析 1.已知抛物线上任意三个点的坐标时,选用一般形式;
式的 2.已知抛物线顶点坐标时,选用顶点式;
确定 3.已知抛物线与 x 轴两个交点的坐标时,选用交点式.
中考解读
考点聚焦
中考探究
当堂检测
第12课时┃ 二次函数旳图象与性质
考点4 二次函数与一元二次方程
数)的图象与 x 轴的一个交点为(1,0),则关于 x 的一元二次
方程 x2-3x+m=0 的两实数根是
(B )
A.x1=1,x2=-1 B.x1=1,x2=2
C.x1=1,x2=0 D.x1=1,x2=3
解 析 由于二次函数 y=x2-3x+m(m 为常数)的图 象与 x 轴的一个交点为(1,0),即 x=1 是一元二次方程 x2 -3x+m=0 的根,代入得 12-3+m=0,m=2,原方程 为 x2-3x+2=0,解得 x1=1,x2=2,故选 B.

二次函数复习课第一课时PPT

二次函数复习课第一课时PPT
二次函数复习课第一课时 PPT
本节课为二次函数复习课的第一课时,将重点回顾二次函数的定义及基本形 式,并介绍二次函数的图像特征和性质。
二次函数的图像特征
对称性
二次函数的图像以顶点为对称轴对称。
顶点坐标
顶点坐标为(x,y),其中y为二次函数的最 小值(当开口向上时)或最大值(当开口 向下时)。
开口方向
焦点
焦点是图像上的特殊点,与 抛物线的形状有关。
对称轴
对称轴是二次函数图像的对 称线,通过顶点且垂直于准 线。
二次函数的变形与图像
1
垂直方向缩放
通过改变二次系数a的绝对值,可以
水平方向平移
2
改变二次函数图像的形状与开口大 小。
通过改变二次函数中x的常数项或线
性项,可以使图像左右移动。
3
对称轴变化
通过改变二次函数中x的线性项,可 以改变图像关于y轴的对称轴位置。
3
注意事项
注意事项包括仔细阅读题目、画出 准确的图像以及验证计算结果等。
二次函数的应用举例
抛物线轨迹
抛物线轨迹的运动可以用二次函数来描述, 如投射运动、弹道等。
面积与最大值
通过优化二次函数来求解相关问题,如求最 大面积。
二次函数拟合及其应用
拟合
通过将实际数据点与二次函数图像相拟合, 可以预测用于经济学、物理 学、工程学等领域中的数据模型和问题求 解。
二次函数的常见错误及纠错方法
1
常见错误
常见错误包括图像方向、顶点坐标
纠错方法
2
计算错误等。
纠错方法包括通过复习基本概念、
练习题目以及请教老师等。
当二次系数a为正数时,图像开口向上; 当a为负数时,图像开口向下。

二次函数(复习课)课件

二次函数(复习课)课件
详细描述
伸缩变换包括横向伸缩和纵向伸缩。横向伸缩是指将图像在x轴方向上进行放大或缩小,纵向伸缩是指将图像在y轴方向上进行放大或缩小。具体来说,对于函数y=ax^2+bx+c,若图像在x轴方向上放大k倍,则新的函数为y=a(kx)^2+b(kx)+c;若图像在y轴方向上放大k倍,则新的函数为y=a(x)+b(x)/k+ck。通过这两种伸缩变换,我们可以得到原函数的放缩版函数。
02
二次函数的解析式
总结词
二次函数的一般形式是 $y = ax^2 + bx + c$,其中 $a neq 0$。
详细描述
一般式是二次函数的基本形式,它包含了二次函数的最高次项、一次项和常数项。通过一般式可以明确地看出函数的开口方向和开口大小,由系数 $a$ 决定。
VS
二次函数的顶点形式是 $y = a(x - h)^2 + k$,其中 $(h, k)$ 是函数的顶点坐标。
总结词
实际应用问题
总结词
与其他函数的综合
总结词
与几何图形的结合
01
02
03
04
05
06
总结词
详细描述
总结词与图像关系
这类问题需要探讨二次函数的系数与图像之间的关系,如开口大小、对称轴位置等。
一题多解法
这类问题通常有多种解法,需要灵活运用二次函数的性质和图像,寻找最简便的解法。
详细描述
二次函数具有对称性,其对称轴为直线$x = -frac{b}{2a}$。此外,二次函数的开口方向由系数$a$决定,当$a > 0$时,开口向上;当$a < 0$时,开口向下。顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$。

二次函数ppt课件

二次函数ppt课件
22.1.1 二次函数
年 级:九年级 学 科:数学(人教版)
1.函数的定义:
3.一元二次方程的一般形式是什么?
2.一次函数的定义是什么?
知识回顾

观察图片,这些曲线能否用函数关系式来表示?它们的形状是怎样画出来的?
实际问题
归纳、抽象
数学模型
(1) 写出 <m></m> 与 <m></m> 的函数关系式;
(2) 当 <m></m> 时,求 <m></m> 的值.
解:(1)其中一直角边长为 <m></m> ,则另一直角边长为 <m></m> ,依题意得 <m>
(2)当 <m></m> 时, <m></m> .
引入新课
观察这三个函数关系式有什么共同特点?
1.都有两个变量2.整式3.自变量最高次数是2次
讲授新课
二次函数的概念
二次
一元二次方程?
一次?
总结
二次函数的概念
陋室铭
例1:判断下列函数中,哪些是二次函数?若是二次函数,请指出二次项系数、一次项系数、常数项。
×
×
×
×

×


例题讲解
函数
二次项系数
布置作业
3、如图,在 <m></m> 中, <m></m> , <m></m> , <m></m> .动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动;动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动.如果 <m></m> , <m></m> 两点同时出发,那么 <m></m> 的面积 <m></m> 随出发时间 <m></m> 如何变化?写出函数关系式.

初中数学九年级PPT课件二次函数可编辑全文

初中数学九年级PPT课件二次函数可编辑全文
2
解:根据题意,得
k
1 2
0

2k 2 k 1 2

由①,得 k 1
2
由②,得
k1
1 2
,
k
2
1

k 1
二.抛物线y=ax2+bx+c的特征与a、 b、c的符号:
(1)a决定开口方向:aa
0, 0,
开口向上, 开口向下;
((32))a与c决b定决抛定物对线称轴与位y轴置交:点aa,,位bb异 同置号 号, ,在 在yy轴 轴右 左侧 侧; ,
4a+2b+c=0
c=3
36a-6b+c=0
解得:
a=Leabharlann 1 4b= -1c=3
所以二次函数的解析式为: y 1 x2 x 3 4
顶点式:
解:因为二次函数的对称轴为x=-2,所以可设函 数的解析式为:y=a(x+2)2+k,把点(2,0) (0,3)代入可得:
16a+k=0
4a+k=3
解得
a=
例2、函数
y 1 x2 x 2
2
3
的开口方向
向上

顶点坐标是 ( 1 , 1 ) 6
,对称轴方程是 x 1.
解:a 1 ,b 1, c 2
2
3
a 0,
开口向上
又 b 2a
1 2
1
1
2
4ac b2
4 1 2 12 23
1
4a
4 1
6
2
∴ 顶点坐标为: (1, 1 ) 6
对称轴方程是: x 1
1 4
k=4 所以二次函数的解析式为:y 1 x2 x 3

精品课件-《二次函数》中考总复习PPT课件

精品课件-《二次函数》中考总复习PPT课件

(D ) B.x > a
b
C.x < a
b
D.x < a
b
a <0,b <0
7、若抛物线y=ax2+3x+1与x轴有两
个交点,则a的取值范围是 ( D )
A.a>0
B.a>
4 9
C.a> 9
4
D.a< 9 且a≠0
4
练习:
1、已知抛物线 y=x²-mx+m-1.
(1)若抛物线经过坐标系原点,则m__=__1__;
2,函数 y(m2m2)xm22 当m取何值时,
(1)它是二次函数? (2)它是反比例函数?
(1)若是二次函数,则 m2 22 且m2m20
∴当 m 2时,是二次函数。
(2)若是反比例函数,则 m2 21且m2m20
∴当 m 1 时,是反比例函数。
驶向胜利的彼 岸
小结:
1. 二次函数y=ax²+bx+c(a,b,c是常数,a≠0)的几 种不同表示形式:
特别注意:在实际问题中画函数的图像时要注意自变量的取值范围,若图像是直线, 则 画图像时只取两个界点坐标来画(包括该点用实心点,不包括该点用空心圈);若是二次 函数的图像,则除了要体现两个界点坐标外,还要取上能体现图像特征的其它一些点
3、二次函数y=x2-x-6的图象顶点坐标是_(_—_12_,_-_—2_45)___ 对称轴是__x_=_—12_____。
x
A
B
C
√D
小结:双图象的问题,寻找自相矛盾的地方。即由一个图象得 出字母的取值范围,再去检验这个字母的符号是否适合另一个
图象
3、画二次函数y=x2-x-6的图象,顶点坐标是(__—12_,__-—2_45_)___

2二次函数的图象与性质复习PPT课件(华师大版)

2二次函数的图象与性质复习PPT课件(华师大版)

1 2
0①
2k 2 k 1 2②
由①,得:k 1
由②,得:k1
1 2
2
, k2
1
∴ k 1
相信自己,你就能成功!
检测二:
1:y ax2
2:y bx2
3:y cx2
比较a、b、c的 大小
1
3
2
1
2、抛物线y = 2 x 2+3的开口 方向向 上 ,对称轴是直线X=0 ,
顶点坐标是(0,3) ,是由抛物
对称轴
a>0 最
y轴
y轴 直线x=h
x 0时,x 0时, x=h时
ymin 0 Hale Waihona Puke min c y=0(h,k)
直线x=h
x=h时 y=k
(
b
4ac b2
,
)
2a
4a
直线 x b
2a
x
b 2a
时,ym
in
4ac 4a
b2

x 0时 x 0时 x=h时 x=h时
a<0 ymax 0 ymax c ymax=0 y=k
• A.开口向下 B.对称轴是直线x=1
• C.与x轴有两个交点
• D.顶点坐标是(-1,0)
检测三:
1、若抛物线y = a (x+m) 2+n开 口向下,顶点在第四象限,则
a〈 0, m〈 0, n〈 0。
某二次函数满足下列表格中的x,y的值:
x … -4 -2 0 1 2 3 …
y … 25 9
二次函数的图象和性质(复习)
一、二次函数的定义
1.定义:一般地,形如
y=ax²+bx+c(a,b,c是常数,a≠0)

二次函数复习(共36张PPT)

二次函数复习(共36张PPT)

y=ax2+bx+c的图 方程ax2+bx+c=0
象和x轴交点
的根
b2-4ac
有两个交点
方程有两个不相等的 b2-4ac>0
实数根
只有一个交点
方程有两个相等的 b2-4ac=0
实数根
没有交点
方程没有实数根 b2-4ac<0
函数的图象
y
.
. ox
y
o
x
y
o
x
根据下列表格中二次函数y=ax2+bx+c的自变量与函数 值的对应值,判断方程ax2+bx+c =0
(4)函数的自变量x的取值范围:任意实数
当二次函数表示某个实际问题时,还必须根据题意确定自变量的取值范
围.
二次函数的一般形式:
• 函数y=ax2+bx+c
– 其中a、b、c是常数 – 切记:a≠0 – 右边一个x的二次多项式(不能是分式或根式)
二次函数的特殊形式:
当b=0时, y=ax2+c 当c=0时, y=ax2+bx 当b=0,c=0时, y=ax2
向上
直线X=-h
(-h,k)
a < 0 向下
图象的平移规律:
对于抛物线y=a(x+h)2+k的平移有以下规律: (1)、平移不改变 a 的值; (2)、h决定图象沿x轴方向左右平移,左+右— (3)、k决定图象沿y轴方向上下平移,上+下—
知识运用
(坐1标)是抛物线,图(y0象=,0过)x32 第2的开口向一象、,限对上二称;轴是
二次函数 开 口 方 向 对 称 轴 顶 点 坐 标
y = ax 2
a > 0 向上 直线X=0 a < 0 向下 (或y轴)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图所示,则a、b、c的符号C为( ) y
A、a>0,b=0,c>0 B、a<0,b>0,c<0
C、a>0,b=0,c<0 D、a<0,b=0,c<0
x
o
4、二次函数y=ax2+bx+c(a≠0)与一次函数
y=ax+c在同一坐标系内的大致图象是( C )
y
y
y
y
o
x
o
x
o
x
o
x
(A)
(B)
(C)
(D)

.
5.函数y=-2x2+8x-8的顶点坐标为
.
6.函数y=2x2+8x-8的对称轴为
.
7.若b<0,则函数y=2x2+bx-5的图象的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.设抛物线y=x2-4x+c的顶点在x轴上,则c为 .
9.二次函数y=ax2+bx+c经过点(3,6)和(-1,6) ,
12.某旅社有客房120间,每间客房的月租金为 50元,每天都客满,旅社装修后要提高租金, 经市场调查,如果一间客房的日租金增加5元, 则客房每天出租会减少6间,不考虑其它因素, 旅社将每间客房的日租金提高到多少元时,客房 日租金的总收入最高?比装修前的日租金总收入 增加多少元?
5.1 相交线
一、点与直线有哪几种位置关系:
(h,k)
二次函数y=ax2+bx+c(a≠0)
a(xb)24acb2 2a 4a
对称轴为:直x线 b , 2a
顶点坐标是:2ba
,
4acb2 4a
各种形式的二次函数的关系
左 y = a( x – h )2 + k 上






y = ax2 + k
y = a(x – h )2
上下平移 y = ax2 左右平移
C、a<0,b<0,c>0 D、a<0,b<0,c<0
y
y
x
o
x
2、二次函数y=ax2+bx+c(a≠0)的图象
如图所示,则a、b、c的符号为( A )
A、a>0,b>0,c=0 B、a<0,b>0,c=0
C、a<0,b<0,c=0 D、a>0,b<0,c=0
3、二次函数y=ax2+bx+c(a≠0)的图象
5、二次函数y=ax2+bx+c(a≠0)的图象
如上图所示,那么下列判断正确的有(填序
号)
②③ .
① abc>0, ② 4a-2b+c<0, ③ 2a+b>0,
④ a+b+c<0,⑤ a-b+c>0, ⑥
4a+2b+c<0, y
x -2 -1 o 1 2
试一试 1.抛物线y=(x-3)2的开口方向 ,对称轴是 ,顶 点坐标为 ,在对称轴左侧,即x 时,y随x增大 而 ;在对称轴右侧,即x 时,y随x增大而 , 当x= 时,y有最 值为 .
般式,列出三元一次方程组求出待定系数。 • 当已知抛物线的顶点坐标和抛物线上另一点时,
通常设解析式为顶点式求出待定系数。 • 当已知抛物线与x轴的交点或交点的横坐标时,通
常设解析式为两根式,求出待定系数。
练习:
1、二次函数y=ax2+bx+c(a≠0)的图象如图所
示,则a、b、c的符号为B( )
A、a<0,b>0,c>0 B、a<0,b>0,c<0
1 、点A在直线m外(直线m不经过点A)
m P· ·A
2 、点 P在直线m上(直线m经过点P)
二、直线与直线在同一平面内有那几种
位置关系:
1. 两条直线相交。
p
j
O
q
E
k
特别地,两条
2.两条直线互相平行。 直线互相垂直.
相交线和平行线是我们日常生活和 生产中经常见到的,研究它们对今后的 学习、工作和生活都很有用。
我们先来研究相交线。
问题1:如图,两条直线AB、CD 相交于点O ,图中有几个角?
问题2: 这些角有怎样的位置关 系?
开口方 对称轴 顶点 最 增

坐标 值 减

y = ax2 y = ax2 + k y = a(x – h )2 y = a(x – h )2 + k
a>0向上 y轴 a<0向下
(0,0)
a>0向上 y轴 ( 0 , k ) a<0向下
a>0向上 直线x=h ( h , 0 ) a<0向下
a>0向上 a<0向下 直线x=h
则对称轴为
.
10.如图,在同一坐标系中,函数y=ax+b与 y=ax2+bx(ab≠0)的图象只可能是( )
y
y
y
y
o x
A
o
o
x
x
B
C
o
x
D
11.已知二次函数y=(m-2)x2+(m+3)x+m+2的 图象过点(0,5). (1)求m的值,并写出二次函数的表达式; (2)求出二次函数图象的顶点坐标、对称轴.
结论: 一般地,抛物线 y = a(x-h)2+k与 y = ax2形状相同,位置不同。
二次函数y=ax2+bx+c(a≠0)的系数a,b,c与图象的 关系
a a决定开口方向;
a、b同时决定对称轴位置:a、b同号时对称轴在y轴左侧
a,b
a、b异号时对称轴在y轴右侧
b=0时对称轴是y轴
c决定抛物线与y轴的交点:c>0时抛物线交于y轴的正半轴
c
c=0时抛物线过原点
c<0时抛物线交于y轴的负半轴
抛物线与x轴交点的个数由b2-4ac的 符号决定
• b2-4ac>0 抛物线与x轴有2个交点; • b2-4ac=0 抛物线与x轴有1个交点; • b2-4ac<0 抛物线与x轴没有交点。
二次函数解析式的确定
• 二次函数的解析式有三种形式: 1. 一般式: y=ax2+bx+c (a,b,c是常数,a≠0) 2. 顶点式: y=a(x-h)2+k (a,h,k是常数,a≠0) 3. 两根式:y= a(x-x1)(x-x2) (a, x1,, x2是常数,a≠0) • 当已知抛物线上任意三点时,通常解析式设为一
二次函数复习课
二次函数的概念
• 形如y=ax2+bx+c(a,b,c是常数,a≠0) 的函数,叫做二次函数,a、b、c分别是二 次项系数,一次项系数和常数项。
• 二次函数的特殊形式: • y=ax2 • y=ax2+k • y=y=a(x-h)2 • y=a(x-h)2+k
函数的图的图象可由函数y=5x2的图象沿 x轴向 平移 个单位,再沿y轴向 平移 个单 位得到.
3.二次函数y=a(x+k)2+k(a≠0),无论k取什么实数, 图象顶点必在( ). A.直线y=-x上 B.x轴上 C.直线y=x上 D.y 轴上
4.将函数y=-x2-2x化为y=a(x-h) 2+k的形式
相关文档
最新文档