渗流力学第一章 渗流的几个基本概念

合集下载

渗流力学第一章 渗流的几个基本概念

渗流力学第一章 渗流的几个基本概念

=9.435MPa
B
prB>prA,所以油从B流向A。
A h=10m
第三节 油藏能量及驱动方式
一.受力分析 地下流体在地层中渗流主要受到以下
几方面里的作用: ① 重力:有时为动力,有时为阻力.
•M
• M
② 惯性力:通常表现为阻力 ③ 粘滞力(阻力):
F A dv dr
速度梯度
④ 弹性力: C Cf Cl
Q
A
渗流速度和实际平均速度
由 Vp
V
Vp Ap L
V AL
Ap
A
得到:
Q Q u
A Ap
上式反映了流体渗流速度与实际平均速度间的关系。在 渗流力学中经常应用的是渗流速度,用它来研究油井产量 等问题,只有在研究流体质点运动规律时,才用实际平均 速度 。
三.油藏中压力的概念
① 原始地层压力pi:油藏在开发以前,整个油藏处于平衡状
表现为 动力
⑤ 毛细管压力:
PC
2 cos r
当Pc与流体流向相同时为动力,相异
时为阻力,但实际油藏中多表现为阻力.
⑥ 边水压力:动力
二.油藏能量
① 边水压头:将油驱入井底并举升到一定高度. ② 气顶压力:气体弹性驱动. ③ 液体及岩石的弹性能 ④ 溶解气的膨胀能 ⑤ 原油的重力势能
值得注意的是:在流体流向井底的过程中, 往往是各种能量同时起作用,但每种能量发挥 的大小作用不尽相同,有的处于主导地位,有的 处于从属地位.

原喉 生道 孔

孔 道
连 通 孔
死 孔 隙

<0.0002 0.5~0.0002
>0.5
2.孔隙度的定义

渗流力学知识点总结

渗流力学知识点总结

渗流力学知识点总结一、渗流基本理论1.渗流的基本概念渗流是指流体在多孔介质中的流动现象。

多孔介质是由孔隙和固体颗粒组成的介质,流体可以通过孔隙和固体颗粒之间的空隙进行流动。

渗流现象在自然界和工程领域都有着广泛的应用,如地下水的运移、石油的开采、地下储层的注水等。

2.渗透性与渗透率渗透性是指单位压力下单位面积介质对流体的渗透能力,通常用渗透率来描述。

渗透率是介质内渗流速度与流体粘滞力之比。

一般来说,渗透性越大,渗透率越高,介质对流体的渗透能力越强。

3.渗透压力与渗透率渗透压力是指多孔介质内部由于孔隙中流体分布不均匀而产生的压力。

渗透压力的大小与介质的孔隙结构、流体的性质、地下水位等因素有关,它是影响渗流速度和方向的重要因素。

4.达西定律达西定律是描述渗透性与渗流速度之间关系的定律,它指出在流体粘滞力不考虑的条件下,渗透速度与渗透压力成正比,与渗透率成反比。

达西定律为渗流理论研究提供了重要的基础。

二、多孔介质渗流规律1.多孔介质的渗流特性多孔介质是由孔隙和固体颗粒组成的介质,它具有复杂的微观结构和介质性质。

渗流在多孔介质中受到许多因素的影响,如介质的孔隙度、渗透率、渗透性等,这些因素决定了渗流规律的复杂性和多样性。

2.渗流方程渗流方程是描述多孔介质中流体运移规律的方程,它通常由渗流方程和质量守恒方程两部分组成。

渗流方程描述了流体在多孔介质中的流动规律,它是渗流力学研究的核心内容。

3.多孔介质的稳定性多孔介质中的渗流现象可能受到介质本身的稳定性限制。

孔隙结构、流体的性质以及渗透压力等因素都会影响介质的稳定性,这对渗流速度和方向产生重要影响。

4.非均质多孔介质中的渗流非均质多孔介质中的渗流现象通常较为复杂,其渗透率、孔隙度、渗透性等参数都可能在空间上呈现非均匀性。

对非均质多孔介质中渗流规律的研究对于实际工程应用具有重要意义。

三、非线性渗流1.非线性渗流模型非线性渗流模型是描述介质非线性渗流现象的数学模型。

渗流基本知识

渗流基本知识

第十二章渗流流体在孔隙介质中的运动称为渗流。

流体包括水、石油、天然气等。

孔隙介质是指由颗粒或碎块材料组成的内部包含许多互相连通的孔隙和裂隙的物质。

常见的孔隙介质包括土壤、岩层等多孔介质和裂隙介质。

有些水工建筑物本身就是由孔隙介质构成的,如土坝、河堤等。

研究渗流的运动规律及其工程应用的一门科学便是渗流力学。

在水利工程中,渗流主要是指水在地表以下土壤或岩层孔隙中的运动,这种渗流也称为地下水运动。

研究地下水流动规律的学科常称为地下水动力学,是渗流力学的一个分支。

在社会的许多部门都会遇到渗流问题。

例如,石油开采中油井的布设,水文地质方面地下水资源的探测,采矿、化工等。

在水利部门常见的渗流问题有以下几方面:(1)经过挡水建筑物的渗流,如土坝、围堰等。

(2)水工建筑物地基中的渗流。

(3)集水建筑物的渗流,井、排水沟、廊道等。

(4)水库及河渠的渗流。

上述几方面的渗流问题,就其水力学内容来说,归纳起来不外乎是要求解决以下几方面的问题:(1)确定渗流量;(2)确定浸润线位置;(3)确定渗流压力;(4)估计渗流对土壤的破坏作用。

第一节渗流的基本概念渗流既是水在土壤孔隙中的流动,其运动规律当然与土壤和水的特性有关。

一、土壤的分类一切土壤及岩层均能透水,但不同的土壤或岩层的透水能力是不同的,有时甚至相差很大。

这主要是由于各种土壤的的颗粒组成不同而引起的。

此外,在低水头下不透水的材料,在高水头作用下仍可能透水。

本章重点研究的土壤中的渗流,故可以根据土壤的透水能力在整个流动区内有无变化对土壤进行分类。

任一点处各个方向的透水能力相同的土壤称为各向同性土壤,否则称为各向异性土壤。

所有各点在同一方向上透水能力都相同的土壤称为均质土壤,否则称为非均质土壤。

显然,均质土壤可以是各向同性土壤,也可以是各向异性土壤。

均质且各向同性的土壤就透水能力而言是一种最为简单的土壤。

严格说来,只有当土壤由等直径的圆球颗粒组成时,其透水能力才不随空间位置及方向变化,才符合均质及各向同性条件。

渗流力学 第一章 渗流基本概念和定律

渗流力学 第一章 渗流基本概念和定律
2)有效渗透率Ko、Kw、Kg:岩石中同时有两种或以上的流 体流动,则岩石对其中一相的通过能力。是饱和度的函数。
3)相对渗透率Krw、Kro:多相同时流动时,相渗透率与绝对 渗透率的比值。
3、大的比面
多孔介质比面很大,使得流体流动时粘滞阻力很大。
多孔介质的分类:
1)单纯介质:由孔隙或纯裂缝组成,渗流形式简单。
1、孔隙性
储层岩石具有孔隙性,并被流体所充满,孔隙性大小用孔隙
度表示:
a
Vt V
Φa—绝对孔隙度;Φ—有效孔隙度;
V0 V
V—岩石视体积;Vt—岩石总孔隙体积; V0—岩石有效孔隙体积。
2、渗透性
多孔介质让流体通过的性质,叫渗透性。渗透性的大小用渗透 率表示。
1)绝对渗透率K:岩石孔隙中液体为一相时,岩石允许流体 通过的能力。绝对渗透率只与岩石本身性质有关。
二、渗流的分类
1)地下渗流:存在于地层中,如油气水在地层中的流动; 2)工程渗流:化工、冶金、环保中的渗流问题; 3)生物渗流:动物和植物中的渗流问题。
三、渗流力学的发展(地下渗流)
1、古典渗流力学: 1920年以前 动因:开发利用地下水; 代表:法国水利工程师达西(Darcy); 定律:达西定律(Darcy’s Law,1856)。
F—内摩擦力(粘滞力),N; μ—粘滞系数(又称绝对粘度),Pa·s。
• 粘度单位通常用mPa·s表示: 1Pa·s=103mPa·s
• 粘度单位以g/(cm·S)表示时称为“泊”: 1泊=100厘泊(cP)
• cP与mPa·s的换算关系为: 1mPa·s=lcP
• 在渗流中,粘滞力为阻力,且动力消耗主要用于渗流 时克服流体粘滞阻力。
1.2 渗流中的力学分析及驱动类型

第一章 渗流的基本概念和基本规律

第一章 渗流的基本概念和基本规律

第一章渗流的基本概念和基本规律内容概要:油气渗流是在地下油层中进行的,因此学习渗流力学首先需了解油气储集层和多孔介质的概念;流体在地下渗流需要里的作用,故还要了解流体受到哪些力的作用、地层中有哪些能量;然后学习渗流的基本规律-达西定律;流体渗流不总是遵循达西定律,就有了非达西渗流或称非线性渗流;对于地层中有多相流体同时参与流动的情况就是两相或多相渗流了,在本章也做一简单介绍。

非线性渗流及两相渗流规律内容概要:在大多数情况下,渗流是服从达西线性渗流定律的,但当流动压差继续增大,Q与p 就会偏离直线关系,而出现曲线段,这就是非线性渗流,它是达西定律的上限,而在低速渗流的条件下,由于吸附等物理化学现象的作用,也会出现非线性渗流的情况,这是达西定律的下限。

本节将介绍这两种偏离线性渗流的线性分析其原因及其描述形式;在多孔介质中存在2相多相流体同时流动的情况就是两相渗流或多相渗流,本节还将简要介绍两相渗流规律。

课程讲解:讲解ppt教材自学:第四节非线性渗流规律本节导学流体渗流不总是遵循达西定律,就有了非达西渗流或称非线性渗流;本节简要介绍非线性渗流的基本规律。

本节重点1、非线性渗流的概念★★★★★2、判断标准★★★3、非达西渗流的表达形式★★★Q 一、非线性渗流的概念当压差不断增大时,Q 与△P 就会偏离线性关系,此时的渗流称为非线性渗流或非达西渗流。

渗流分为三个区域:层流区:低速,粘滞力占优势,达西定律适用。

过渡区:流速增加,粘滞力变小, 惯性力增加,非线性层流, 达西定律不适用。

湍流(紊流)区:高速,惯性力占优势, 达西定律不适用。

Q 与△P 的关系曲线二、判断标准常用渗流雷诺数来判断渗流是线性还是非线性渗流。

如前苏联的卡佳霍夫公式:NRe—雷诺数,其临界值为0.2~0.3;V —渗流速度,cm/s ; K —渗透率,μm 2;μ—粘度,mPa·s;ρ—流体密度,g/cm 3; ø——孔隙度,分数当N Re≤(0.2 ~0.3)时,渗流服从达西定律;当NRe>(0.2~0.3)时,渗流不服从达西定律,出现非线性渗流。

【免费下载】渗流力学基本理论

【免费下载】渗流力学基本理论

目录第一章渗流理论基础 (1)1.1渗流的基本概念 (1)1.2渗流基本定律 (7)1.3岩层透水特征及水流折射定律 (11)1.4流网及其应用 (14)1.5渗流连续方程 (19)1.6渗流基本微分方程 (24)1.7数学模型的建立及求解 (32)第一章渗流理论基础1.1 渗流的基本概念1.1.1 多孔介质及其特性1.1.1.1多孔介质的概念多孔介质(Porous medium):地下水动力学中具有空隙的岩石。

广义上包括孔隙介质、裂隙介质和岩溶不十分发育的由石灰岩和白云岩组成的介质,统称为多孔介质。

孔隙介质:含有孔隙的岩层,砂层、疏松砂岩等;裂隙介质:含有裂隙的岩层,裂隙发育的花岗岩、石灰岩等。

1.1.1.2 多孔介质的性质(1) 孔隙性:有效孔隙和死端孔隙。

孔隙度(Porosity)是多孔介质中孔隙体积与多孔介质总体积之比(符号为n),可表示为小数或百分数,n=Vv/V。

有效孔隙(Effective pores)是多孔介质中相互连通的、不为结合水所占据的那一部分孔隙。

有效孔隙度(Effective Porosity)是多孔介质中有效孔隙体积与多孔介质总体积之比(符号为n e),可表示为小数或百分数,n e=V e/V。

死端孔隙(Dead-end pores )是多孔介质中一端与其它孔隙连通、另一端是封闭的孔隙。

(2) 连通性:封闭和畅通,有效和无效。

(3) 压缩性:固体颗粒和孔隙的压缩系数推导。

(4) 多相性:固、液、气三相可共存。

其中固相的成为骨架,气相主要分布在非饱和带中,液相的地下水可以吸着水、薄膜水、毛管水和重力水等形式存在。

固相—骨架matrix气相—空气,非饱和带中液相—水:吸着水Hygroscopic water薄膜水pellicular water毛管水capillary water重力水gravitational water1.1.1.3多孔介质中的地下水运动比较复杂,包括两大类,运动特点各不相同,分别满足于孔隙水和裂隙岩溶水的特点。

第1章 渗流的基本概念和基本规律

第1章 渗流的基本概念和基本规律

二、与油藏有关的压力概念
1、原始地层压力 Pi
藏在开发以前,整个油藏处于平衡状态,此时油层中流体 所承受的压力称为“原始地层压力”。
说明:当油层倾角较大时,各井油层中部深度各 不相同。矿场实践表明,在油藏开发前的原始状况下, 各井原始地层压力也是不相等的。
获取方法: 在开发初期,可以根据第一批探井获得。 思考:开发中后期,如何获得?
4、孔隙结构复杂性
储集层的五种特性
决定了渗流的特点:渗流阻力大;渗流速度慢
第二节 多孔介质及连续介质场
一、多孔介质的特点及分类
5、多孔介质分类
单纯介质
粒间孔隙 纯裂缝
三 种 介 质 七 种 结 构
纯溶洞 裂缝-孔隙
双重介质
溶洞-孔隙
裂缝-溶洞
三重介质
孔隙-裂缝-溶洞
第二节 多孔介质及连续介质场
一、多孔介质的特点及分类
且油藏具有明显的倾角时这种能量才起作用。
油藏具有明显的 倾角时这种驱动 方式 才起作用
第三节 渗流过程中的力学分析及驱动类型
6、驱动方式小结及三次采油介绍
在流体流向井底的过程中,往往是各种能量同时起作用, 区别在于每种能量发挥作用的大小不同,在某个时期,某 种能量会处于主导地位,其它能量处于从属地位,那么, 在某个时期内,什么能量处于主导地位,就叫做什么驱。
=9.435MPa prB>prA,所以油从B流向A。
A
z 10 m
B
第三节 渗流过程中的力学分析及驱动类型
三、油藏驱动类型及驱动能量
1、水压驱动
来源于与外界连通的边水或人工注入水。
注水井 边水压能
生产井
第三节 渗流过程中的力学分析及驱动类型

流体力学—渗流讲解

流体力学—渗流讲解
r
积分
Q
R dr 2 k
H
zdz

r r0
h
Q
k
H 2 h2 ln R

2
kHS ln R
1
S 2H

r0
r0
令S H h
上式即为完全潜水井的产水量计算公式。
§9-3 集水廊道和井
式中R为井的影响半径,近似计算时,可按
R 3000 S k
估算,这里S=H-h为水位最大降深。
根据上述浸润曲线变化的规律分析,壅水曲线和降水 曲线如图所示
将顺坡渗流浸润曲线的微分方程改写为
i ds d d
h0
1
§9-2 地下水的均匀流 和非均匀流
对上式从断面1-1到断面2-2(见下图)进行积分, 可得顺坡渗流的浸润曲线方程
il h0
2

1

ln
2 1
1 1
1区的浸润线为水深沿程增加的壅水曲线,即dh/ds>0; 2区的浸润线为水深沿程减小的降水曲线,即dh/ds<0。
3. 界限情况分析 浸润线在上游与正常水深线N-N渐近相切; 1区的浸润线在向下游无限加深时,渐趋于水平直 线; 2区的浸润线在向下游无限减小时,其浸润线的切线 与底坡线正交。
§9-2 地下水的均匀流 和非均匀流
通过渗流模型的流量必须和实际渗流的流量相等,即
Q模型 Q实际
§9-1 渗流基本定律
对某一确定的作用面,从渗流模型所得出的动水压力, 应当与真实渗流的动水压力相等,即
FP模型 FP实际
渗流模型的阻力和实际渗流应当相等,也就是说水头 损失应当相等,即
hw模型 hw实际
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
井底 压力
折算 压力
目前 地层 压力
简写
P0、 Pi
Pe Pw Pr P
例:已知一油藏中的两点,如图,h=10m,pA=9.35MPa, pB=9.5MPa,原油重率γ=0.85,问油的运移方向如何?
解:以B点所处的水平面为参考面
则: prB=pB=9.5MPa
prA=pA+γh=9.35+(0.85×103×9.8×10)/106
超毛微
粒杂 晶 纹 裂 溶 毛 细 毛 次
间基 体 理 缝 蚀 细 管 细 生
孔内 次 及 孔 孔 管 孔 管 孔
隙微 生 层 隙 隙 孔 隙 孔 隙
孔晶理


隙间缝


原喉 生道 孔

孔 道
连 通 孔
死 孔 隙

<0.0002 0.5~0.0002
>0.5
2.孔隙度的定义
指岩石的孔隙体积与岩石外观体积的比值,
3 达西定律的讨论
v w ①渗流速度 与真实速度
v Q A
w Q
A •
v•w
渗流流量 渗流面积 孔隙度
②达西定律的适用条件
ⅰ:流体为牛顿流体. ⅱ:渗流速度必须在适当的范围内(即当流体为层流 时). ⅲ:流体不与岩石发生任何物理化学反应. ⅳ:岩石被某一相流体饱和.
③渗流阻力
达西定律
Q P L
1-1截面总水头高度:
H1
Z1
P1
g
2-2截面总水头:
H2
Z2
P2
g
两截面水头差: 其折算压差为:
HZ1Pg 1 Z2Pg 2
Pr gH
达西分析了大量实验资料,发现土中渗透的渗流量 q 与圆筒断面积 A 及水头损失 △h 成正比,与断面 间距 l 成反比,即:
Q A L
水头
Q KiA L
(4)残余油饱和度Sor
第二节 渗流的基本概念
一.渗流的三种基本几何形式 ① 平面单向流
② 平面径向流
③ 球形径向流
二、渗流速度和实际平均速度
实际平均速度:流体在砂层中只是在其中的孔隙通道内流
动,因此流体通过砂层截面上孔隙面积的速度平均值u反映
了该砂层截面上流体流动真实速度的平均值。
Q u
Ap 式中:Q—流量;Ap—孔隙截面面积。 渗流速度(假想速度):设想流体通过整个岩层横截面积 (实际上流体只通过孔隙横截面积),此时的流体流动速 度称为渗流速度υ。
态,此时油层中流体所承受的压力称为“原始地层压力”。 原始地层压力获取的方法:
一般在油藏开发初期,第一批探井完井诱喷后,立即 关井测压,所测得的各井油层中部深度压力就是各井的原 始地层压力。
在油藏投入开发以后,油藏就打破了原始状态,在此时所钻的 井就不可能直接再测得原始地层压力。这些井的原始地层压力就需要 根据该井油层中部深度,在压力梯度曲线上求得。
速 ,M点流体所具有的总能量称
为总水头H 。
H Z p u2
2g
由于流体在油层中渗流时,在孔隙通道中的流动速度是很小 的(一般以微米计算,即10米/秒),所以它的平方项将更小, 可忽略不计,这样总水头可写成:
prHpZ
式中pr称为折算压力,它表示油层中各点流体所具有 的总能量,而p仅表示该点处压能的大小。
三.油藏驱动方式 驱动方式:在油藏开采过程中主要依靠哪
种能量来驱动,就称为何种驱 动方式. ①刚性水压驱动:边水或注入水.开采过
程中油藏压力不变,弹 性能忽略. ②弹性水压驱动:边水供应不足,油藏压 力变小,水区和油区的 流体及岩石弹性膨胀.
③弹性驱动:岩石及流体的弹性能为主要 的驱油动力.(封闭边界,无 气顶,无注入水)
Q弹VfCt( PiPb)
VfC( Pi Pb)
④溶解气驱动:主要依靠分离出的溶解气 的弹性能驱动.
⑤气压驱动:以气顶压力为主要的驱动方 式.
⑥重力驱动:依靠原油自身的重力驱动.
值得注意的是:油藏的驱动方式并不是 固定不变的,随着油田 的开发,油藏可以出现 多种驱动方式.
第四节 渗流的基本规律
Cf
பைடு நூலகம்
1 Vf
Vp P
以孔隙体积为基数
Cp
1 Vp
Vp P
以岩石骨架体积为基数
Cr
1 Vr
Vp P
(5)三者之间的关系:
C fC p1C r
2、储层综合弹性压缩系数Ct
(1)定义:油层压力每改变一个单位时,单位体
积的岩石中所排出的液量,单位: 1/MPa
Ct
1 Vf
VL P
(2)表示方法:
综合反映了油藏弹性能量的大小.Ct越 大,表明油藏的弹性能量越充足.
四、岩石的比面 1、定义:单位体积的岩石内岩石骨架的总表 面积或单位体积岩石内孔隙总面积。 单位:1cm2/cm3 = 10dm2/dm3 = 100m2/m3
粗砂岩(1~0.5mm) <950cm2/cm3
细砂岩(0.25~0.125) 950~2300cm2/cm3 粉砂岩(0.0625~0.0039) >2300cm2/cm3
Q A
渗流速度和实际平均速度
由 Vp V
Vp ApL
V AL
Ap A
得到:
Q Q u
A Ap
上式反映了流体渗流速度与实际平均速度间的关系。在 渗流力学中经常应用的是渗流速度,用它来研究油井产量 等问题,只有在研究流体质点运动规律时,才用实际平均 速度 。
三.油藏中压力的概念
① 原始地层压力pi:油藏在开发以前,整个油藏处于平衡状
常用百分数表示,记为φ
Vp Vf VV (1VV)
Vf Vf
Vf
3.孔隙度的分类
A 绝对孔隙度
指岩石的总孔隙体积与岩石外观体积的比值
a
V ap Vf
B 有效孔隙度
• 指岩石的有效孔隙体积与岩石外观体积的比
值.
e
V ep Vf
C 流动孔隙度
• 指岩石中可以流动的孔隙体积与岩石外观体
积的比值.
Vmp
m Vf
• 很显然:
aem
二、 油藏岩石的渗透率
1.油藏岩石渗透率的定义
油藏岩石允许流体通过的能力称为油藏岩石的渗透率。
单位:µm2 2.达西公式
QL
K = AP
3.达西公式应用条件 1.岩石100%饱和并流动着单一流体; 2.流动状态为层流; 3.流体与岩石不发生物理、化学和物理化学反应。
三、储层岩石的压缩性
2、比面的三种表示:
A S
Vf
A S VP
SV
A VV
三者间的关系:
SS1S V
五、储层岩石流体饱和度
1.流体饱和度是定义: 单位孔隙体积中某相流体所占的分
数.常用百分数表示. 2.表示方法:
SoV VPo SwV Vw P SgV VPg
3.几种常见的饱和度
(1)原始含水饱和度(束缚水饱和度)Sw (2)原始含油饱和度Soi (3)当前油、气、水饱和度So 、 Sg 、 Sw
表现为 动力
⑤ 毛细管压力:
PC
2 cos r
当Pc与流体流向相同时为动力,相异
时为阻力,但实际油藏中多表现为阻力.
⑥ 边水压力:动力
二.油藏能量
① 边水压头:将油驱入井底并举升到一定高度. ② 气顶压力:气体弹性驱动. ③ 液体及岩石的弹性能 ④ 溶解气的膨胀能 ⑤ 原油的重力势能
值得注意的是:在流体流向井底的过程中, 往往是各种能量同时起作用,但每种能量发挥 的大小作用不尽相同,有的处于主导地位,有的 处于从属地位.
③ 折算压力pr :
各井的原始地层压力不相等,说明油藏各处的流体除具有压能 外,还具有其他能量。从流体力学中我们知道单位重量液体具有 的总能量有比位能、比压能、和比动能。
用点M表示某井油层中部位置, 选原始油水分界面作为基准面,
用Z表示M点的标高,p表示M点的 实测压力值,γ表示油层条件下 液体的重率,u表示M点流体的流
三 储集层的特点
① 储容性 a e f
② 渗透性 K
Ka Ke Kr
③ 压缩性 C C f C l
④ 比表面性 S
⑤ 饱和度 s
⑥孔隙结构复杂性:四通八达 杂乱无序
一、 岩石的孔隙度
1.孔隙的分类

孔隙
按成因分
按孔隙 按生成 按组合 按连 大小分 时间分 关系分 通性分
注:数据来自各股份公司年报(2002年度)。
渗流的基本规律—达西定律
多孔介质组成复杂,流体渗流规律复 杂。人们最初研究渗流规律是以实验为基 础的宏观研究方法。
1 达西定律
装置中的①是横截面积为 A 的直立圆筒, 其上端开口,在圆筒侧壁装有两支相距 为 l 的侧压管。筒底以上一定距离处装 一滤板②,滤板上填放颗粒均匀的砂土。 水由上端注入圆筒,多余的水从溢水管 ③溢出,使筒内的水位维持一个恒定值。 渗透过砂层的水从短水管④流入量杯⑤ 中,并以此来计算渗流量 q。
FAvL
---与岩石结构和几何特征有关的系数
ⅲ:流体自身重力在流动方向上的投影 P Z g A S L iA n g ( Z 1 Z 2 )
根据力的平衡关系有:
=9.435MPa
B
prB>prA,所以油从B流向A。
A h=10m
第三节 油藏能量及驱动方式
一.受力分析 地下流体在地层中渗流主要受到以下
几方面里的作用: ① 重力:有时为动力,有时为阻力.
•M
•M
② 惯性力:通常表现为阻力
③ 粘滞力(阻力):
F A dv dr
速度梯度
④ 弹性力: CCf Cl
相关文档
最新文档