石墨烯的性质、应用及合成
石墨烯材料的性质和应用

石墨烯材料的性质和应用随着科学技术的不断进步和人类对于未知世界的探索,石墨烯材料作为新型纳米材料,越来越受到人们的重视。
石墨烯材料具有独特的结构和性质,具有广泛的应用前景。
本文将从石墨烯的结构、性质及应用三个方面着眼,介绍石墨烯材料的性质和应用。
一、石墨烯的结构石墨烯材料的基本结构是由一个碳原子单层构成。
这些碳原子排列成六边形晶格,形成一个平面的结构,可以看作是石墨单层。
因此,石墨烯材料也可以被称为石墨单晶片。
石墨烯材料的晶格结构非常特殊,具有较高的表面积和光电性能。
同时,在石墨烯材料的晶格中,每个碳原子都与它周围的三个碳原子形成“三角形”结构,也称为“sp2杂化”。
二、石墨烯的性质1.力学性质石墨烯材料具有很高的强度和硬度,同时也具有弹性和柔韧性。
石墨烯单层的强度比钢还要高200倍,而且非常轻,密度只有钢的1/6。
这使得石墨烯材料具有很高的应用价值。
2.电学性质石墨烯材料具有很高的导电率和电子迁移率,是目前已知的导电材料中最好的之一。
石墨烯材料的电子运动速度可达到约1/300光速,这就使得其可以在电子器件中应用。
同时,石墨烯材料的电子迁移率非常高,可以达到15,000cm²/V·s,远高于硅材料。
3.热学性质石墨烯材料具有很高的热导率,是目前已知的热导率最高的固体之一。
石墨烯材料的热导率达到了5300W/(mK),也就是说,我们的石墨烯材料可以在高温、高压情况下始终保持稳定的性能,而不会因温度过高而熔化变形。
三、石墨烯的应用1.电子材料领域作为新型纳米材料,石墨烯材料在电子领域拥有广泛的应用前景。
首先,石墨烯材料的高导电性和高迁移率使其成为极佳的导电材料,可以用于制造集成电路和晶体管等器件。
其次,石墨烯材料的高透明度和柔韧性,可以用于制造柔性显示器等设备。
此外,在太阳能材料领域,石墨烯材料的高光电转换效率也具有重要的应用价值。
2.能源材料领域石墨烯材料在能源材料领域也具有广泛的应用前景。
石墨烯材料的性质及其应用前景

石墨烯材料的性质及其应用前景石墨烯,是由单层碳原子形成的二维结构,它的厚度只有一个原子的大小。
由于其特殊的物理和化学性质,石墨烯在科学研究和工业领域中有着广泛的应用前景。
本文将探讨石墨烯材料的性质及其应用前景。
一、性质1.电学性质石墨烯材料是一种优良的导电材料。
由于其蜂窝状的晶格结构和高表面积,石墨烯的电阻率相对较低。
同时,由于电子可以在石墨烯的表面自由运动,石墨烯材料具有极高的电子迁移率,这使得这种材料更适合于高速电子器件。
2.力学性质石墨烯的力学性质极其优良。
在各类纳米材料中,石墨烯拥有最高的强度和模量,同时它又是非常柔软的,具有很好的弯曲性。
这些特性已经被广泛应用于构建高强度材料。
3.光学性质石墨烯是一种透明材料,且对各种波长的光谱响应很强,这使得它非常适合用于太阳能电池的制造。
在太阳能电池的应用中,石墨烯可以作为透明导电电极,同时可以替代铜箔作为阴极材料。
4.化学性质石墨烯具有很好的化学稳定性,在大多数溶剂中都能够保持稳定。
由于石墨烯的表面原子非常活泼,因此石墨烯也可以用于吸收有害物质。
这使得它可以成为一种极有价值的污染控制材料。
二、应用前景1.电子产品石墨烯材料在电子领域的应用前景非常广阔。
如今,石墨烯技术已经在液晶显示器、太阳能电池、电极和超级电容器等领域中得到应用。
石墨烯技术也被广泛应用于半导体解决方案、存储设备、太阳能电池和能源储存。
特别是在芯片行业中,石墨烯技术可以为提高芯片的性能和降低成本提供可能。
2.材料科学在材料科学领域中,石墨烯材料的应用前景也非常广阔。
石墨烯可以应用于纳米材料、纤维增强塑料、超材料、粘土纳米复合物和润滑材料等领域,极大地推动了这些领域的发展。
3.健康领域石墨烯还被广泛应用于生命科学领域。
石墨烯可以用于制造药物输送载体、生物医疗传感器、荧光探针和图像对比剂等领域。
这些应用可以改善疾病的诊断和治疗,从而增强对人类健康的保护。
综上所述,石墨烯材料的性质和应用前景都非常优秀,这使得石墨烯技术在未来十年内将会得到更广泛的应用。
石墨烯的性质及应用

石墨烯的性质及应用石墨烯是一种由碳原子通过共价键结合形成的二维晶体结构,具有一系列独特的性质和应用潜力。
以下将详细介绍石墨烯的性质和应用。
性质:1. 单层结构:石墨烯是由单层碳原子构成的二维晶体结构,在垂直方向上只有一个原子层,具有单层的特点。
2. 高强度:尽管石墨烯只有一个碳原子层,但其强度非常高。
石墨烯的破断强度远远超过钢铁,是已知最强硬的材料之一。
3. 高导电性:石墨烯的碳原子呈现出类似于蜂窝状的排列方式,使得电子能够在其表面自由传导。
石墨烯的电子迁移率是晶体硅的200倍以上,使得其具有非常高的导电性能。
4. 高热导性:由于石墨烯中的碳原子排列紧密,热量传递效率非常高。
石墨烯的热导率超过铜的13000倍,是已知最高的热导材料之一。
5. 弹性:石墨烯具有非常强的弹性,在拉伸过程中可以扩展到原始长度的20%以上,然后恢复到原始形状。
这种弹性使得石墨烯在柔性电子学和拉伸传感器等领域具有广泛应用。
应用:1. 电子器件:石墨烯的高导电性和高迁移率使其成为制造高速电子器件的理想材料。
石墨烯可以作为传统半导体材料的替代品,用于制造更小、更快的电子元件,如晶体管、电容器和电路等。
2. 透明导电膜:石墨烯具有优异的透明导电性能,可以制备成透明导电膜,用于制造触摸屏、显示器和太阳能电池等设备。
相比于传统的氧化铟锡(ITO)薄膜,石墨烯具有更好的柔性和耐久性。
3. 电池材料:石墨烯可以用作锂离子电池的电极材料,具有高电导性和高比表面积的优势。
石墨烯电极可以提高电池的充放电速度和储能密度,有望在电动汽车和可再生能源储存等领域得到应用。
4. 传感器:石墨烯具有优异的电子迁移率和极高的比表面积,使其成为制造高灵敏传感器的理想材料。
石墨烯传感器可以用于检测气体、压力、湿度和生物分子等,具有快速响应和高灵敏度的特点。
5. 柔性电子学:石墨烯的高强度和高弹性使其成为柔性电子学的重要组成部分。
石墨烯可以制备成柔性电路、柔性显示屏和柔性传感器等,有望应用于可穿戴设备、智能医疗和可卷曲设备等领域。
石墨烯的制备及物理化学性质

石墨烯的制备及物理化学性质在材料科学中,石墨烯是一种薄而强壮、导电、导热的材料,具有许多应用的潜力。
石墨烯是由一层厚的碳原子构成的,这些碳原子形成了具有六边形排列的、类似于蜂窝的晶格。
石墨烯的厚度仅为单层碳原子,也就是说,它只有2.1埃的厚度。
本文将详细介绍石墨烯的制备及其物理化学性质。
一、石墨烯的制备方法1. 化学气相沉积法化学气相沉积法是一种制备大面积单层石墨烯的有效方法。
这种方法利用了金属催化剂(如铜)的功效,在高温下使石墨烯形成。
该方法可以通过单层石墨烯的生长时间、温度、气压和气体组成等参数来控制石墨烯层数和晶体质量。
2. 机械剥离法机械剥离法是通过用胶带将厚的石墨片层层剥离来制备单层石墨烯的简单但耗费时间和精力的方法。
在这种方法中,厚的片状石墨材料被黏在胶带上,然后胶带被剥离下来,带走一层石墨片。
通过反复剥离,可以生产出质量高、单层薄的石墨烯。
3. 氧化石墨还原法氧化石墨还原法是一种通过将石墨氧化物还原来制备石墨烯的方法。
在这种方法中,石墨被暴露在酸性溶液中以形成石墨烯氧化物。
然后,溶液中的石墨烯氧化物通过化学还原来转化为石墨烯。
这种方法是一种简单和可控的制备单层石墨烯的方法。
二、石墨烯的物理化学性质1. 强韧刚硬石墨烯具有很高的力学强度和刚度,且可以适应各种形式的弯曲或平面应变。
这种强劲和柔韧的特性使得石墨烯非常有吸引力,因为它可以应用于许多行业,如航空航天工业和军事领域等。
2. 巨大的比表面积和孔隙率石墨烯的单层结构使其具有巨大的表面积和孔隙率,因此具有优异的吸附分子的能力。
这种能力使石墨烯在油气、环保、医学等领域中有着广泛的应用前景。
3. 高导电性和热导率石墨烯是一种优异的电器材料,具有高导电性和热导率。
同时,石墨烯还表现出热稳定性和低电子热容。
这些特性使其在微电子器件、传感器、太阳能电池等领域中有广泛的应用。
4. 光学性质和透明性单层石墨烯具有很高的透明性和光学吸收能力,因此在显示技术、激光器和生物成像等领域有着广泛的应用。
石墨烯是什么材料

石墨烯是什么材料石墨烯是一种由碳原子形成的二维晶格结构的材料,被认为是科学界中的一项重大发现。
它具有许多出色的性质,使其成为研究、应用和开发各种技术的理想材料。
本文将介绍石墨烯的结构、性质和应用。
石墨烯的结构非常特殊。
它是由一个碳原子层构成的,碳原子形成了六边形的排列。
每个碳原子与周围三个碳原子形成共价键,形成一个稳定的二维晶格结构。
这种结构使石墨烯具有独特的性质。
首先,石墨烯具有优异的电子性能。
由于其二维结构,石墨烯的电子在平面内可以自由移动,表现出高度的导电性。
事实上,石墨烯的电子迁移率可以达到几百万cm2/V·s,远高于其他材料。
这使得石墨烯成为电子器件和传感器等领域的理想选择。
其次,石墨烯具有出色的力学性能。
虽然石墨烯只有一个碳原子层的厚度,但它的强度却相当高。
实验证明,石墨烯的强度是钢铁的200倍,同时也具有很高的柔韧性。
这种强度和柔韧性使石墨烯成为纳米复合材料和柔性电子设备的理想材料。
此外,石墨烯还具有很高的光学透明性。
它可以在可见光和红外光范围内实现高透射率,达到97.7%。
这使得石墨烯在显示技术和太阳能电池等领域有着广泛的应用前景。
石墨烯的应用非常广泛。
在电子领域,石墨烯可以用于制造高速电子器件、柔性电子设备和能量存储器件。
在材料领域,石墨烯可以用于制造轻质复合材料、高强度纤维和超薄薄膜。
在能源领域,石墨烯可以用于制造高效的太阳能电池和储能装置。
此外,石墨烯还可以用于制造高效的传感器、过滤器和催化剂等。
然而,尽管石墨烯具有如此出色的性质和应用潜力,但目前仍面临一些挑战。
首先,大规模合成石墨烯仍然是一个复杂和昂贵的过程。
其次,石墨烯的良好导电性和透明性容易受到氧化和杂质的影响,从而降低性能。
因此,石墨烯的制备和保护仍然需要进一步的研究和发展。
总之,石墨烯是一种由碳原子构成的二维晶格结构材料,具有出色的电子、力学和光学性能。
它在电子、材料和能源领域具有广泛的应用前景。
虽然石墨烯仍然面临挑战,但科学界对于其研究和开发仍抱有巨大的期望。
功能化石墨烯的制备及应用

功能化石墨烯的制备及应用石墨烯是一种由碳原子组成的一层厚的二维结构材料,具有高导电性、高导热性、超高比表面积、良好的机械性能和化学稳定性等优异特性,因而成为材料领域研究的热点和前沿。
为了实现石墨烯的工业化应用,需要针对其性质进行各种功能化修饰。
因此,本文将着重讨论以石墨烯为原材料的功能化修饰技术和应用。
一、石墨烯的制备技术石墨烯的制备技术可以分为机械剥离法、化学气相沉积法、化学还原法、物理气相沉积法和氧化石墨烯还原法等多种方法,其中机械剥离法和化学气相沉积法的应用最为广泛。
机械剥离法是将石墨材料通过力学剥离的方式制备石墨烯。
这种方法成本低廉,制备出的石墨烯品质较好,但是缺点也很明显,即杂质杂质多,生产成本高。
化学气相沉积法是利用金属或者金属化合物的催化作用,在高温的条件下将碳源分子分解产生石墨烯。
这种方法制备的石墨烯质量较好,生产效率也比较高,但是都要在特定高温高压及真空的条件下进行,对设备和技术要求较高。
二、石墨烯的功能化修饰技术石墨烯的功能化修饰主要是指针对石墨烯表面进行不同的化学修饰,以改变石墨烯的物理、化学性质。
主要包括氧化、还原、功能化、掺杂等多种方法。
1. 氧化石墨烯:将石墨烯表面的碳与氧作用结合,形成氧化石墨烯。
石墨烯的氧化可以在其表面形成和羟基、羧基、酮基等官能团,可以提高石墨烯与其他化学物质的响应性,也降低了其电导率。
氧化石墨烯的制备简单,但是对于石墨烯的电导性能和结构有一定的影响。
2. 还原石墨烯:将氧化石墨烯进行还原,可以恢复石墨烯的电学性质。
还原石墨烯还可以在石墨烯表面引入被还原的杂原子,进而实现对石墨烯各种性质的修饰。
3. 功能化石墨烯:通过引入不同的官能团和分子可以实现石墨烯的功能化。
功能化的目的是在石墨烯的表表面引入各种化学结构,改变石墨烯的性质,如增强机械性能、改变热学性质等。
常用官能团有COOH、OH、NH2等。
4. 掺杂石墨烯:通过引入异型原子或者化合物到石墨烯中实现对石墨烯的掺杂修饰,进而改变其电学性质、光学性质、磁学性质等。
石墨烯的性质与应用前景

石墨烯的性质与应用前景石墨烯是一种二维的碳材料,具有出色的物理、化学性质和广泛的应用前景。
它的结构由由单层碳原子组成的六角形格子构成,具有高强度、高导电性、高热导性、高透明度等特点。
由于其独特的性质,石墨烯被广泛关注,已被探索出许多应用前景。
一、石墨烯的物理性质1.高强度和韧性石墨烯的碳碳键强度高,相比其他材料更为坚硬,在温度范围内具有极高的韧性。
同时,由于石墨烯可以卷曲或扭曲形成纳米结构,因此还可以用于弯曲电子学和柔性电子器件。
2.高导电性和透明度石墨烯具有高导电性和透明度,是一种优良的导电薄膜材料。
在透明电子器件中应用广泛,因其透明度高、导电性能好、机械性能佳的特点,有望在LCD、电子纸及光电器件等领域得到广泛应用。
3.高热导性石墨烯具有非常好的热导性质,具有将热量快速传输的能力,可以作为高效的散热材料。
4.低能量损耗和高韧性石墨烯可以吸收大量的机械能,而不会发生断裂,同时石墨烯投工小,可以避免机械衰竭和损伤。
二、石墨烯的化学性质1.高化学稳定性石墨烯能够在多种化学液体中保持稳定,能够抵抗许多酸、碱的腐蚀,且不会被风化,具有很高的耐用性。
2.石墨烯的表面特性石墨烯在物理、化学反应过程中表现得非常活跃和敏感,可以广泛用于表面分析的研究领域,如传感器、化学电源器件等。
三、石墨烯的应用前景石墨烯是一种具有广泛应用前景的材料,特别是当被深度研究和开发出应用的技术后,其影响将会非常大。
1.电子学和光学应用由于石墨烯有极好的导电性和透明度,可以用于开发各种电子学和光学应用,如光伏电池、热电半导体、电子显示器、光电探测器、光电发射器等。
2.生物医学应用石墨烯因其大的比表面积和小的孔径,可以用于生物医学领域的细胞成像、药物释放和细胞分离,同时石墨烯具有出色的生物相容性。
3.电池和超级电容器的应用石墨烯作为电池和超级电容器的材料之一,具有很高的比容量、循环性能和导电性,可以用于开发微型化、高能量密度和长寿命的电池和超级电容器,具有广泛的应用前景。
石墨烯的介绍

-
1 石墨烯的基本性质 2 石墨烯的制备方法 3 石墨烯的应用领域 4 结论与展望
石墨烯的介绍
石墨烯是一种由碳原子组成 的二维材料,它是单层石墨 的片状结构,具有极高的电 导率、热导率和机械强度
下面我们将详细介绍石墨烯 的基本性质、制备方法、应 用领域以及研究现状
CHAPTER 1
石墨烯的应用领域
能源领域
石墨烯的热导率和电导率都非常高,因此它在能源领域也有广泛的应用。例如,石墨烯可 以用于制造高效能电池和超级电容器等能源器件。此外,石墨烯还可以作为催化剂载体用 于燃料电池等领域
石墨烯的应用领域
生物医学领域
石墨烯具有良好的生物相容性和抗氧化性,因此在生物医学领域也有广泛的应用。例如, 石墨烯可以用于制造药物载体、生物传感器和成像试剂等生物医学器件。此外,石墨烯还 可以作为生物材料用于组织工程等领域
CHAPTER 3
石墨烯的应用领域
石墨烯的应用领域
石墨烯的应用领域
由于石墨烯具有优异 的物理和化学性质, 它在许多领域都有广 泛的应用。以下是石 墨烯的主要应用领域
石墨烯的应用领域
电子器件领域
石墨烯具有很高的电 导率,因此它在电子 器件领域具有广泛的 应用。例如,石墨烯 可以用于制造晶体管 、场效应管、太阳能 电池等电子器件。此 外,石墨烯还可以作 为透明导电膜用于显 示器等领域
CVD法
CVD法是一种常用的制备石墨烯的方法,它是通过加热含碳气体(如甲烷、乙炔等)在基底 表面形成石墨烯。这种方法可以制备大面积、高质量的石墨烯,但需要高温条件和复杂的 设备
石墨烯的制备方法
氧化还原法
氧化还原法是一种通过氧化剂将石墨氧化成氧化石墨,再通过还原剂将氧化石墨还原成石 墨烯的方法。这种方法制备的石墨烯质量较高,但需要使用化学试剂和复杂的工艺流程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯的性质、应用及合成摘要:自2004年Geim教授和Novoselov教授在实验室用胶带剥离出石墨烯后,其令人惊叹的性质激发了人们对这一材料的强烈兴趣,Geim教授和Novoselov 教授也因他们“对二维材料石墨烯的开拓性研究”而获得了2010年的诺贝尔物理学奖。
石墨烯由六方蜂巢晶格排列的碳原子组成,仅有一个原子层厚。
下面我将简单介绍一下石墨烯的性质、应用及合成。
关键字:石墨烯性质应用合成石墨烯的性质对于石墨烯的性质,在此简单介绍一下石墨烯的电学性质、光学性质、电子自旋性质、力学性质和热学性质。
石墨烯的电学性质引起了科技工作者的广泛兴趣,通过简单的最近邻紧束缚计算可以得到较近似的单层石墨烯的能带结构。
其能带结构揭示了单层石墨烯的三个吸引人的电学性质:狄拉克点处的载流子密度为零,伪自旋现象和载流子的相对论特性。
利用化学反应修饰石墨烯结构已有超过150年的历史,化学过程对石墨烯带来的有利的结构变化主要有两种:从块状石墨剥离得到石墨烯片层,或者进行层间插层。
当考虑石墨烯和石墨中的电子自旋时,需要考虑两种类型的自旋,即与缺陷相关的静态自旋和传导电子自旋。
在石墨烯中,碳原子采用共价的三重键和方式,即sp2杂化。
我们都知道决定键强度的一个重要因素是原子轨道间的重叠度,杂化体系的一个很关键的优势在于,根据最大重叠定律进行的键合会十分牢固,化学键的强度对于一个材料的物理和力学性能十分重要,如熔点、相变的活化能、拉伸和抗剪强度等。
实际上,在石墨烯中sp2杂化碳采用的是最强的C-C化学键,考虑到三重键和的C-C键是最强的化学键,所以不难推测石墨烯具有良好的力学性能。
碳材料具有多种性质差异显著的同素异形体,不同同素异形体的热导率横跨5个数量级,最高的为金刚石和石墨烯,(2000W/mK),最低的为无定形碳(0.01W/mK),尽管石墨烯为二维晶体材料,和金刚石不太一样,但在很多前沿领域也表现出了优良的热操控性能。
石墨烯的应用对于石墨烯的应用,我主要讲述一下石墨烯电子器件、石墨烯复合材料以及石墨烯储能器件。
自2004年Geim教授和Novoselov教授在实验室用胶带剥离方法制备出石墨烯,并且制备出石墨烯器件之后,石墨烯在各种电子器件的应用方面取得了很大的进展。
石墨烯独特且优异的载流子输运特性使得石墨烯有望成为下一代集成电路的基础材料。
石墨烯具有很高的机械强度,这也使得石墨烯适用于微机电系统和纳机电系统器件的制造;石墨烯还具有良好的透光性和导电性,又使其适用于光电器件透明电极。
石墨烯高的导电率和特殊的能带结构,使其特别适用于场效应晶体管方面,也已经制备出了石墨烯场效应晶体管(GFET)。
石墨烯良好的导电性能、透光性能及化学稳定性使其与传统的透明电极材料氧化铟锡(ITO)相比更具有优势,而且石墨烯在整个光谱上光透过率维持着统一的分布。
例如,2010年6月,韩国SKKU和三星联合报道了在铜箔上生长30英寸单层石墨烯,他们所制备的单层石墨烯面电阻为125Ω/sq,透过率高达97.4%,这一性能已经超过了ITO,在触控显示屏以及柔性电子器件领域具有非常好的应用前景。
石墨烯具有高迁移率、高透光率了、高稳定性、可功能化及其他优异的电学特性,这使其不仅可以用于太阳能电池的窗口层材料,还可作为功能层直接参与光电转换等关键过程。
石墨烯因其优异的性能,常被用作复合材料中的功能相和增强相。
自20世纪中期以来,聚合物基复合材料一直因其高性能低密度在航天航空、医学等领域发挥着重要作用,特别是随着纳米颗粒、纳米纤维等多功能增强相的应用,聚合物基复合材料更是取得了突飞猛进的发展。
随着石墨烯制备、化学修饰和分散技术的成熟,近几年基于石墨烯的聚合物复合材料的研究进展很快,聚合物中石墨烯对其整体性能的增强主要取决于两个方面,即单层石墨烯的分散以及与石墨烯之间的结合强度。
虽然石墨烯具有优异的载流子迁移率,但高质量的石墨烯很难大批量生产。
氧化还原的方法制得的石墨烯一般都会含有大量含氧官能团,其导电性大大降低。
因此,在基于石墨烯的聚合物基导电复合材料中,提高化学修饰石墨烯的本证电导率成为研究的重要方向。
石墨烯是目前已知材料中热导率最高的材料,可以达到5000Wm-1K-1,因此被认为是最好的热控材料。
碳材料作为一种传统的储能材料,在锂离子电池、超级电容器等设备中有着广泛的应用,通常在储能材料中使用的碳材料是各种不同形态和结构的石墨或石墨衍生物。
石墨烯作为sp2杂化石墨的二维极限形式,具有超大的比表面积、优异的导电和导热性能以及良好的化学稳定性,是一种理想的储能材料,石墨烯基储能材料主要包括超级电容器电极材料和锂离子电池电极材料。
石墨烯的合成石墨烯有很多合成方法,这里我们主要介绍6种实验室常用的方法,即机械剥离、还原石墨烯氧化物、由分子前驱体自底而上合成石墨烯、使用催化金属的化学气相沉积、在非金属上CVD合成石墨烯、在SiC上外延生长石墨烯,并将简单介绍一下石墨烯的转移。
众所周知,石墨具有层状结构,所以我们借助机械外力从块状石墨中剥离出石墨烯,机械剥离就是基于这一原理而制备出石墨烯的。
2004年,Geim教授和Novoselov教授在实验室用胶带粘附到石墨的表面,然后利用将粘附在胶带上的石墨烯剥离,并转移到二氧化硅上,从而首次观察到了二维石墨烯,由于石墨烯具有优异的物理化学性能,为了表彰Geim教授和Novoselov教授在石墨烯方面的突出贡献,2010年的诺贝尔物理学奖授予了他们。
简单的实验过程和较低的成本使机械剥离法成为最常用的方法,具体包括微机械剥离法、溶液超声处理法、碾磨和插层法,尽管人们在这些领域取得了巨大进展,但仍然面临一些挑战。
机械剥离法的主要缺点是其产量无法满足很多应用的需求,而且产物中通产含有残留的剥离媒介。
微机械剥离可能会使石墨烯沉积到基底的过程中受应力作用,从而使获得的石墨烯含有多种缺陷,例如:褶皱、波纹、原子缺陷、微观起皱等,这些都会降低石墨烯器件的电学性能。
球墨法和超声法有望大规模制的少层,甚至单层石墨烯,但这两种方法的缺点也是显而易见的,例如:制得的石墨烯尺寸大小及层数难以控制,而且超声法制得的石墨烯中还残留有剥离介质。
但是机械剥离法作为很简单的一种获得石墨烯的方法仍具有很强的吸引力,人们期望能找到一种更好的原料来获得高质量的石墨烯。
氧化还原法是目前应用的最广泛的一种液相法,其基本原理是将石墨氧化并将氧化的片层分散于水中,再将石墨烯氧化物还原即可得到石墨烯。
这种方法最大的有点是其实原料为石墨,便宜而且易得,最大的不足和固相剥离一样,就是所制得的石墨烯尺寸大小及层数难以控制,而且制得的石墨烯中还残留有氧化剂或者还原剂。
常用的氧化方法有Hummers法、Brodie法和Standenmaier法,为了使石墨烯的氧化更加充分,可对块状石墨进行膨胀预处理。
即将石墨浸泡在由双氧水和浓硫酸组成的溶液中,由于石墨的层状结构,故酸分子可以插层到石墨的夹层中,从而得到可膨石墨。
最常用的还原石墨烯的方法主要有3种,即化学还原、电化学还原、热处理。
由分子前驱体自底而上合成石墨烯的方法主要包括化学气相沉积法(chemical vapor depostion,CVD)和基于自底而上路径的分子组装方法。
化学气相沉积法将在下一种方法中详细介绍,此外也可以利用溶液法,由于石墨烯实际上是多环芳烃(polycyclic aromatic hydrocarbon,PAH)类分子的一种,所以我们有足够的理由设想在合成小的PAHs后,可以通过一些方法将小分子的芳香烃经过多种偶联反应结合在一起,最终得到小面积的石墨烯。
虽然溶液化学方法有很多优点,但在实用性方面仍然存在很大的不足,因为大多数环系的溶解性会降低,所以要想合成大面积石墨烯很难。
利用化学气相沉积(CVD)在金属上生长石墨烯,是目前最流行也是应用最广泛的合成途径之一,及其原因,主要是该技术有潜力实现大规模生产,也已经建立了良好的工业设备基础,并且很容易在实验室搭建设备进行研究。
在金属催化剂上用CVD法可以制备出大面积的石墨烯,这对应用来说十分重要,因为很多工业上需要用的石墨烯必须是连续覆盖的,这与用剥离法得到的石墨烯有很大区别,因为剥离法得到的石墨烯是散落在基底上的。
这里所用的CVD法是以金属作为基底和催化剂的。
在CVD法中我们一般用的是固体铜箔,但我们都知道固体表面并不均匀,而且有晶界的存在,所以注定我们得到的石墨烯表面不均匀,而且作为催化剂的铜箔不仅用量大而且不可重复利用。
为了克服固体催化剂的这些缺点,我们实验室尝试以液态金属为催化剂来制备石墨烯,不仅可以获得均匀的石墨烯,而且用量少,所用的基底W片也可重复利用。
所以液态金属作为催化剂会成为未来发展的一个重要方向。
在CVD法制备石墨烯中,采用非金属催化剂具有很大的吸引力。
例如,把石墨烯用作场效应晶体管的沟道材料时,需要将石墨烯置于非金属上,这样才能与栅栏材料绝缘。
因为在金属上生长石墨烯需要经过后续的转移处理,这往往会对石墨烯造成不可修复的破坏,所以我们可以大胆设想直接在绝缘材料上生长石墨烯,这样就无需进行后处理,并且科学家们也希望能在500℃以下生长石墨烯,因为高温可能会损坏基地上的其它器件。
但是在非金属上生长石墨烯仍然面临着巨大的挑战,尽管如此,用非金属催化剂生长CNTs的研究已经取得了很大进展,科学工作者们也尝试了其它的很多方法并且取得了一些突破,所以这是未来生长石墨烯的一个重要研究领域。
碳化硅制备石墨烯的优势在于石墨烯薄膜可以在商品化的碳化硅基底上的外延生长,而且生长的石墨烯无需转移即可使用标准的纳米刻蚀技术制的图形,由此该技术得以与目前的半导体技术有很好的兼容性。
而且由于碳源是由基底碳化硅直接提供的,不需要金属或者烃类,故这一技术非常清洁,而且制得的石墨烯迁移率超过25000cm2V-1s-1,所以该技术不仅得到了广泛的关注,而且得到了极大的应用。
该技术基于的原理是硅从碳化硅表面控制升华,在升华过程中,材料由固相转变为气相,并不保持二元化合物的化学计量比。
就碳化硅来说,硅先升华留下基层几乎自由的碳,这基层碳在表面发生重排形成石墨烯从而降低能量。
总结和展望在本文中,石墨烯的性质、应用及合成被大致的回顾了一下,我们对于石墨烯优异的电学、光学、热力学等性质有了一些了解,并且对于石墨烯的制备方法也有了一些初步了解,但对于石墨烯的实际应用来说,制备高质量、大面积、低成本的石墨烯仍然面临着巨大的挑战。
为了使石墨烯能更有效的被应用,必须使其附着于其它材料的表面,尤其是半导体纳米材料的表面。
在不久的将来,有望找到制备高质量、大面积、低成本石墨烯的方法,并且石墨烯的应用也会得到极大的应用。
参考文献:【1】Mattevi, C., Kim, H. & Chhowalla, M. A review of chemical vapour deposition of graphene on copper. J. Mater. Chem. 21, 3324–3334 (2011). 【2】Chung DDL. Review graphite. J Mater Sci 2002;37(8):1475–89. 【3】Castro Neto AH.Guinea F.Peres N M R.et al. The electronic properties of graphene.Rev Mod Phys.2009.81:109-162.【4】Das Sarma S.Adam S.Hwang E H.et al.Electronic transport intwo-dimensional graphene. Rev Mod Phys.2011.83:407-470【5】Zhang, Y. et al. Landau-level splitting in graphene in high magnetic fi elds. Phys. Rev. Lett.96, 136806 (2006).【6】Drzal LT, Fukushima H. Graphite nanoplatelets as reinforcements for polymers. Polym Prepr (Am Chem Soc, Div Polym Chem) 2001;42(2):42–3.【7】Kelly BT. Physics of graphite. London: Applied Science; 1981. 【8】Celzard A. Electrical conductivity of carbonaceous powders. Carbon 2002;40:2801–15.【9】Hontoria-Lucas C, Lopez-Peinado AJ, Lopez-Gonzalez JdD, Rojas- Cervantes ML, Martin-Aranda RM. Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon 1995;33(11):1585–92.【10】An, H., Lee, W. J. & Jung, J. Graphene synthesis on Fe foil using thermal CVD. Curr. Appl. Phys. 11, S81–S85 (2011).【11】Reina, A. et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2009). 【12】K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L.Stormer, Solid State Commun. 146 (2008) 351.【13】Drzal LT, Fukushima H. Exfoliated graphite as a nano-reinforcement for polymers. Int SAMPE Symp Ex 2003:1635–42.【14】Stankovich S, Piner RD, Nguyen ST, Ruoff RS. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006;44(15):3342–7.【15】Hummers W, Offeman R. Preparation of graphitic oxide. J Am Chem Soc 1958;80:1339.【16】Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisited. J Phys Chem B 1998;102(23):4477–82.【17】Weng W-G, Chen G-H, Wu D-J, Yan W-L. HDPE/expanded graphite electrically conducting composite. Compos Interf 2004;11(2):131–43. 【18】Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, et al. Graphene-based composite materials. Nature 2006;442(7100):282–6.【19】Brodie BC. Sur le poids atomique du graphite. Ann Chim Phys 1860;59:466–72.【20】Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, et al. Functionalized single graphene sheets derivedfrom splitting graphite oxide. J Phys Chem B 2006;110(17):8535–9. 【21】Hofmann U, Frenzel A. The reduction of graphite oxide by hydrogen sulfide. Kolloid-Z 1934;68:149–51.【22】Vlassiouk, I. et al. Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5, 6069–6076 (2011). 【23】Yazyev, O. V. & Louie, S. G. Electronic transport in polycrystalline graphene. Nat. Mater. 9, 806–809 (2010).。