石墨烯复合材料的制备、性能与应用

合集下载

基于石墨烯的复合材料的制备及其在储能器件中的应用研究共3篇

基于石墨烯的复合材料的制备及其在储能器件中的应用研究共3篇

基于石墨烯的复合材料的制备及其在储能器件中的应用研究共3篇基于石墨烯的复合材料的制备及其在储能器件中的应用研究1基于石墨烯的复合材料的制备及其在储能器件中的应用研究随着人们对能源需求的增加和全球环境问题的日益加剧,储能技术逐渐成为了热门的研究领域。

其中,基于石墨烯的复合材料的制备及其在储能器件中的应用受到了广泛关注。

石墨烯是一种薄而坚硬的材料,它由单层碳原子组成。

石墨烯的特殊结构和优异性能使其在材料组合中展现出了无限的应用前景。

最近的研究表明,将石墨烯与其他材料结合起来可以显著提高其储能性能。

因此,制备基于石墨烯的复合材料已成为研究的重点。

基于石墨烯的复合材料的制备通常采用化学氧化法、还原法、溶剂剥离法等方法。

其中,化学氧化法是最常见的制备方法之一。

通过将石墨烯与某些化合物反应来实现对石墨烯的氧化,进而产生氧化石墨烯(GO)。

随后,将氧化石墨烯还原成石墨烯(rGO)并与其他材料组合制备成多层石墨烯复合材料。

在储能器件的应用中,基于石墨烯的复合材料已经被证明是一种具有潜力的电极材料。

石墨烯具有良好的导电性和纳米级的厚度,使得它可以高效的将电子导入储能器件中。

同时,它的高比表面积和良好的可调性也使得基于石墨烯的复合材料在储能器件中具有良好的性能。

例如,将石墨烯与氧化钴结合可以制备出具有良好电容性能的电极材料。

相比于传统的电极材料,基于石墨烯的复合材料能够实现更高的能量密度和更长的使用寿命。

此外,将石墨烯与其他材料复合还可以拓宽其应用范围。

例如,基于石墨烯的锂离子电池和钠离子电池电极材料也正在被研究和开发。

此外,基于石墨烯的复合材料在太阳能电池中也展示了良好的性能。

总之,基于石墨烯的复合材料的制备及其在储能器件中的应用是一个具有前途的研究领域。

未来的研究将致力于进一步优化复合材料的结构和性能,并深入挖掘其应用潜力基于石墨烯的复合材料在储能器件中具有良好的性能,拥有更高的能量密度和更长的使用寿命。

其制备方法多样且成熟,同时,将石墨烯与其他材料复合使其应用范围更加广泛。

石墨烯复合材料的制备、性能与应用

石墨烯复合材料的制备、性能与应用

石墨烯复合材料的制备、性能与应用摘要:纳米科学技术是当今社会科学中一个重要的研究话题。

它是现代科学技术的重要内容,也是未来技术的主流。

是基础研究与应用探索紧密联系的新兴高尖端科学技术。

石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点。

由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域。

综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景。

关键词;复合材料纳米材料石墨烯正文;一,石墨烯复合材料的制备石墨烯是2004年才被发现的一种新型二维平面复合材料,其特殊的单原子层决定了它具有丰富而新奇的物理性质。

研究表明,石墨烯具有优良的电学性质,力学性能及可加工性。

石墨烯复合材料的制备是石墨烯研究领域的一个重要的课题,如何简单,快速,绿色地制备其复合材料,而又采用化学分散法大量制备氧化石墨烯,并采用直接共混法制备氧化石墨烯/酚醛树脂纳米复合材料。

通过AFM、SEM、FT-IR、TG等对其进行表征,结果表明,氧化石墨烯完全剥离,并在基体中分散均匀,而且两者界面相容性好,提高了复合材料的热稳定性。

通过高温热处理使复合材料薄膜在兼顾形貌的同时实现导电,当氧化石墨烯含量为2%(质量分数)时,其导电率为96.23S/cm。

采用原位乳液聚合和化学还原法制备了石墨烯和聚丙乙烯的复合材料。

研究表明PS微球通过公家方式连接到石墨烯的表面。

通过PS微球修饰后的石墨烯在氯仿中变现良好的分散性。

制备的复合材料具有优良的导电性,同时PS的玻璃化温度的热稳定性得到了提高。

本研究所提出的方法具有环境友好高效的特点,渴望被采用到其他聚合物和化合物来修饰石墨烯。

石墨烯复合材料的制备及应用研究进展

石墨烯复合材料的制备及应用研究进展

石墨烯复合材料的制备及应用研究进展一、本文概述石墨烯,作为一种新兴的二维纳米材料,因其独特的电子结构、优异的物理和化学性能,在复合材料领域引起了广泛的关注。

石墨烯复合材料结合了石墨烯和其他材料的优点,使得这种新型复合材料在力学、电学、热学等方面表现出色,因此具有广阔的应用前景。

本文旨在综述石墨烯复合材料的制备方法、性能特点以及在不同领域的应用研究进展,以期为石墨烯复合材料的进一步研究和实际应用提供理论支持和参考。

本文将首先介绍石墨烯及其复合材料的基本概念和特性,然后重点综述石墨烯复合材料的制备方法,包括溶液混合法、原位合成法、熔融共混法等。

接着,文章将探讨石墨烯复合材料在能源、电子、生物医学、航空航天等领域的应用研究进展,分析其在提高材料性能、降低成本、推动相关产业发展等方面的重要作用。

本文还将对石墨烯复合材料未来的研究方向和应用前景进行展望,以期推动这一领域的持续发展和创新。

二、石墨烯复合材料的制备方法石墨烯复合材料的制备方法多种多样,每一种方法都有其独特的优点和适用范围。

以下是几种主要的制备方法:溶液混合法:这是最简单且最常用的方法之一。

首先将石墨烯分散在适当的溶剂中,然后通过搅拌或超声处理使其均匀分散。

接着,将所需的基体材料(如金属氧化物、聚合物等)加入溶液中,通过搅拌或热处理使石墨烯与基体材料充分混合。

通过过滤、干燥等步骤得到石墨烯复合材料。

这种方法操作简便,但石墨烯在溶剂中的分散性和稳定性是关键因素。

原位生长法:这种方法通常在高温或特定气氛下进行,利用石墨烯与基体材料之间的化学反应,使石墨烯在基体材料表面或内部原位生长。

例如,通过化学气相沉积(CVD)或热解等方法,在金属氧化物或聚合物表面生长石墨烯。

这种方法可以得到石墨烯与基体材料结合紧密、性能优异的复合材料,但操作过程较复杂,且需要特殊的设备。

熔融共混法:对于高温稳定的基体材料,如金属或某些聚合物,可以采用熔融共混法制备石墨烯复合材料。

【精品文章】几种石墨烯复合材料制备方法及催化应用介绍

【精品文章】几种石墨烯复合材料制备方法及催化应用介绍

几种石墨烯复合材料制备方法及催化应用介绍
石墨烯具有独特的热、电和光学性能,并以高的比表面积性能,使其非常适于用作复合材料的理想载体。

目前,石墨烯基复合材料广泛应用于传感器、新能源、光催化、电容器、生物材料等领域,特别是在在光催化和电催化领域,具有广阔应用前景。

下面小编介绍石墨烯复合材料在催化领域应用。

 一、石墨烯/TiO2复合材料
 1、石墨烯/TiO2复合材料光催化性能
 石墨烯作为TiO2光催化材料的载体,不仅可以提高催化材料的比表面积和吸附性能,还能够抑制TiO2内部光生载流子的复合,降低了电子-空穴对的重组率,从而促进TiO2的光催化性能,提高其利用效率,因此制备TiO2/石墨烯复合材料可以进一步提高材料的光催化活性。

 石墨烯/TiO2复合材料光催化机理示意图
 2、石墨烯/TiO2复合材料制备方法
 目前,石墨烯/TiO2复合材料的制备方法主要有溶胶-凝胶法和水热法等。

两种方法对于石墨烯的前体准备都是通过Hummers法得到氧化石墨烯,然后通过还原手段一步法得到还原氧化石墨烯/TiO2复合材料。

 左图:石墨烯结构示意图;右图:氧化石墨烯结构示意图
 (1)溶胶-凝胶法
 溶胶-凝胶法通常是将钛的前体与氧化石墨烯溶液混合并搅拌均匀,氧化石墨烯通过氢键作用力与钛的前体结合并发生缩合、聚合反应最终形成具有Ti-O-Ti三维网络结构的凝胶,然后经过干燥、焙烧、研磨得到石墨烯。

石墨烯及其复合材料的制备与应用

石墨烯及其复合材料的制备与应用

石墨烯及其复合材料的制备与应用石墨烯是一种由碳原子构成的单层二维晶体,具有独特的物理和化学性质。

自它的发现以来,人们对石墨烯的制备与应用进行了广泛的研究。

本文将介绍一些石墨烯的制备方法,以及石墨烯与其他材料的复合,以及它们的应用。

石墨烯的制备方法有多种,其中最常用的是机械剥离法和化学气相沉积法。

机械剥离法是通过用胶带剥离石墨矿石表面的石墨层来得到石墨烯。

这种方法简单易行,但只能制备少量的石墨烯。

化学气相沉积法则是将碳源气体(如甲烷)在金属基底上热解,生成石墨烯。

这种方法可以制备大面积的石墨烯,但需要高温和特殊的实验条件。

石墨烯与其他材料的复合可以改善其性能,并拓宽其应用范围。

例如,石墨烯与聚合物的复合材料具有优异的导电性和机械性能。

这种复合材料可用于制备柔性显示器和电子设备。

此外,石墨烯与金属氧化物的复合材料具有良好的催化性能,可用于电催化和能源转换。

石墨烯与纳米粒子的复合材料还具有优异的光学性能,可用于光学传感和光催化。

除了复合材料,石墨烯还有许多其他的应用。

例如,石墨烯在电子器件中的应用已经引起了广泛的关注。

由于石墨烯具有极高的电子迁移率和较低的电阻率,使得它成为理想的导电材料。

石墨烯晶体管已被用于制备高性能的智能手机和电子设备。

此外,石墨烯还可以用于制备超级电容器和锂离子电池,以提高储能性能。

石墨烯还可以用于制备高强度的复合材料,用于航空航天和汽车工业。

然而,石墨烯的大规模制备和应用仍然面临一些挑战。

一方面,石墨烯的制备成本较高,制备方法仍需要进一步改进。

另一方面,石墨烯在生物医学领域的应用还需要深入研究。

尽管石墨烯具有许多独特的性质,但其在生物体内的生物相容性和毒性仍然存在争议。

综上所述,石墨烯及其复合材料具有巨大的应用潜力。

石墨烯的制备方法日趋成熟,可以制备大面积和高质量的石墨烯。

与其他材料的复合可以改善石墨烯的性能,拓宽其应用范围。

石墨烯在电子器件、能源储存和复合材料等领域具有广阔的应用前景。

石墨烯-MOFs复合材料的制备及其吸附性能研究

石墨烯-MOFs复合材料的制备及其吸附性能研究

石墨烯-MOFs复合材料的制备及其吸附性能研究石墨烯/MOFs复合材料的制备及其吸附性能研究一、引言石墨烯和金属有机骨架材料(MOFs)是近年来受到广泛关注的两种新型材料。

石墨烯具有超高的比表面积、高导电性和优异的力学性能,而MOFs则具有大孔隙度、特殊的孔道结构和高度可调性的化学性质。

将二者合并成复合材料,不仅能够发挥各自的优点,还可以在催化、吸附、储能等领域中展示出卓越的性能。

本文将重点探讨石墨烯/MOFs复合材料的制备方法及其吸附性能的研究进展。

二、石墨烯/MOFs复合材料的制备方法制备石墨烯/MOFs复合材料的方法有许多种,常见的有混合法、原位法和化学还原法等。

混合法是将已制备好的石墨烯和MOFs混合,并通过超声处理使其混合均匀。

这种方法简单易行,但由于两种材料之间的界面接触不够紧密,可能影响复合材料的性能。

原位法是在制备石墨烯的过程中,加入MOFs的前体,使MOFs在石墨烯表面形成。

这种方法可以使MOFs与石墨烯之间的界面接触更紧密,提高复合材料的性能。

化学还原法则是将二氧化石墨烯和金属离子一起还原成金属纳米颗粒,形成复合材料。

这种方法制备的材料结构较为复杂,但拥有更好的导电性和可调性。

三、石墨烯/MOFs复合材料的吸附性能研究石墨烯/MOFs复合材料在吸附性能上具有优异的表现,广泛应用于环境污染物的去除、气体分离和储氢等方面。

以环境污染物去除为例,石墨烯/MOFs复合材料具有较大的比表面积和丰富的孔道结构,能够提供更多的吸附活性位点,从而实现对污染物的高效吸附。

同时,石墨烯的导电性能使得复合材料能够通过外加电场的作用,实现对吸附过程的可控和再生。

在气体分离方面,石墨烯/MOFs复合材料的孔道结构可以选择性地吸附不同大小和性质的气体分子,从而实现对混合气体的高效分离。

在储氢方面,石墨烯/MOFs复合材料由于石墨烯的高导电性和MOFs的大孔隙度,可以提供更大的气体吸附容量和较快的吸附速率,从而在储氢材料中具有巨大的应用潜力。

石墨烯复合材料的合成与应用

石墨烯复合材料的合成与应用

石墨烯复合材料的合成与应用
石墨烯是一个由碳原子形成的二维晶体结构,其独特的结构和性质赋予了它在材料科学领域中极高的潜力。

石墨烯的电子运动速度非常快,热传导和机械强度也非常强,使得它可以应用于许多不同的领域。

然而,由于石墨烯本身非常薄,并且很难大规模生产,因此将石墨烯与其他材料复合以获得更好的物理特性是一种实现其实用化的有效方法。

在石墨烯复合材料中,石墨烯通常被包裹在其他材料的基质中,以防止其在处理过程中的损失。

一些石墨烯复合材料的例子包括石墨烯复合纳米颗粒,石墨烯微片/树脂复合材料和石墨烯聚合物复合材料。

合成石墨烯复合材料的方法通常包括物理、化学和机械方法。

其中,化学还原法是一种较为常见的方法,它使用还原剂将石墨烯氧化物转化为石墨烯,并在此过程中与其他材料进行混合。

石墨烯复合材料在许多领域中都有应用。

例如,在电子学领域,石墨烯复合材料可以帮助改进锂离子电池和太阳能电池的性能。

在机械领域,石墨烯聚合物复合材料可以用于生产更耐用和轻便的汽车部件。

在生物领域,石墨烯复合材料可以用于制备生物传感器和药物输送系统。

目前,虽然石墨烯复合材料已经得到了广泛的研究,但在其实际应用方面仍面临一些挑战。

例如,石墨烯的大规模生产和处理仍然面临许多困难。

同时,石墨烯与其他材料的复合过程也需要更多的研究和改进。

总的来说,石墨烯复合材料具有巨大的潜力,因为它们可以在许多不同的领域中提供独特的性能。

我们相信,随着技术的进步和更多的研究,石墨烯复合材料将会在未来的科技创新中发挥越来越重要的作用。

石墨烯基复合材料的制备与性能研究

石墨烯基复合材料的制备与性能研究

石墨烯基复合材料的制备与性能研究石墨烯是一种单层碳原子排列成的二维晶体,具有极高的强度、导电性和导热性。

在过去的几年里,石墨烯在材料科学领域引起了广泛的关注。

为了进一步发展石墨烯的应用,研究人员开始将石墨烯与其他材料相结合,形成石墨烯基复合材料。

这些复合材料具有优异的性能和多样化的应用前景。

本文将探讨石墨烯基复合材料的制备方法以及其性能研究。

一、石墨烯基复合材料的制备方法1. 化学气相沉积法(CVD)化学气相沉积法是一种常用的制备大面积石墨烯的方法。

该方法通过在金属衬底上加热挥发的碳源,使其在高温下与金属表面反应生成石墨烯。

石墨烯的生长在具有合适结晶特性的金属表面上进行,如铜、镍等。

CVD法制备的石墨烯可以获得高质量、大尺寸的单层石墨烯。

2. 液相剥离法液相剥离法是一种以石墨为原料制备石墨烯的方法。

通过在石墨表面涂覆一层粘性聚合物,然后利用粘性聚合物与石墨之间的相互作用力,将石墨从衬底上剥离,最终得到石墨烯。

这种方法能够制备出大面积的石墨烯,并且使用简便、成本较低。

3. 氧化石墨烯还原法氧化石墨烯还原法是一种制备石墨烯的简单方法。

首先将石墨烯氧化生成氧化石墨烯,然后通过还原处理,还原为石墨烯。

该方法可以在实验室条件下进行,操作简单方便。

然而,由于氧化石墨烯的导电性较差,所得石墨烯的质量较低。

二、石墨烯基复合材料的性能研究1. 机械性能石墨烯具有出色的机械性能,其强度和刚度超过大多数材料。

石墨烯基复合材料的机械性能主要取决于基体材料和石墨烯的界面相互作用。

研究表明,合适添加石墨烯可以显著提升材料的强度和硬度。

2. 电学性能石墨烯具有优异的电学性能,可以用作电极材料、导电填料等。

石墨烯基复合材料在导电性能方面表现出色,可以用于制备柔性电子器件、传感器等。

3. 热学性能由于石墨烯的热导率高达3000-5000 W/(m·K),石墨烯基复合材料在热学性能方面具有巨大的潜力。

石墨烯能够显著提高基体材料的热导率,因此可以应用于散热材料、热界面材料等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石墨烯复合材料的制备、性能与应用摘要:纳米科学技术是当今社会科学中一个重要的研究话题。

它是现代科学技术的重要内容,也是未来技术的主流。

是基础研究与应用探索紧密联系的新兴高尖端科学技术。

石墨烯具有独特的结构和优异的电学、热学、力学等性能,自从2004年被成功制备出来,一直是全世界范围内的一个研究热点。

由于石墨烯具有巨大的表面体积比和独特的高导电性等特性,石墨烯及其复合材料在电化学领域中有着诱人的应用前景,因此,石墨烯材料的制备及其在电化学领域应用的研究是石墨烯材料研究的一个重要领域。

综述了石墨烯与石墨烯复合材料的制备及其在超级电容器、锂离子电池、太阳能电池、燃料电池等电化学领域中应用的研究现状,展望了石墨烯材料的制备及其在电化学领域应用的未来发展前景。

关键词;复合材料纳米材料石墨烯正文;一,石墨烯复合材料的制备石墨烯是2004年才被发现的一种新型二维平面复合材料,其特殊的单原子层决定了它具有丰富而新奇的物理性质。

研究表明,石墨烯具有优良的电学性质,力学性能及可加工性。

石墨烯复合材料的制备是石墨烯研究领域的一个重要的课题,如何简单,快速,绿色地制备其复合材料,而又采用化学分散法大量制备氧化石墨烯,并采用直接共混法制备氧化石墨烯/酚醛树脂纳米复合材料。

通过AFM、SEM、FT-IR、TG等对其进行表征,结果表明,氧化石墨烯完全剥离,并在基体中分散均匀,而且两者界面相容性好,提高了复合材料的热稳定性。

通过高温热处理使复合材料薄膜在兼顾形貌的同时实现导电,当氧化石墨烯含量为2%(质量分数)时,其导电率为96.23S/cm。

采用原位乳液聚合和化学还原法制备了石墨烯和聚丙乙烯的复合材料。

研究表明PS微球通过公家方式连接到石墨烯的表面。

通过PS微球修饰后的石墨烯在氯仿中变现良好的分散性。

制备的复合材料具有优良的导电性,同时PS的玻璃化温度的热稳定性得到了提高。

本研究所提出的方法具有环境友好高效的特点,渴望被采用到其他聚合物和化合物来修饰石墨烯。

制备了石墨烯-硫化锌纳米球复合材料,该过程利用氧化石墨烯作为分散剂的生长模板,同时作为石墨烯的前驱体,醋酸作为锌源,硫代乙酰胺作为硫源和还原剂,采用微波辅助的方法再水介质中制备得到复合材料。

研究发现该纳米材料对甲基蓝呈现特异的光催化活性。

采用原位分散聚合和化学还原法制备了石墨烯和聚甲基丙烯酸甲酸的复合材料。

以石墨烯和有机硅烷为反应物,所述有机硅烷发生水解反应后与石墨烯上的羟基发生脱水缩合反应,得到有机硅烷改性的石墨烯。

与现有技术相比,所述有机硅烷改性的石墨烯加大了石墨烯的层间距,因此,有机硅烷修饰的石墨烯与聚合物混合时,有机硅烷修饰的石墨烯不易团聚,从而使有机硅烷改性的石墨烯均匀分散在聚合物基体中制备的石墨烯复合材料具有增强效果。

此外,所述有机硅烷改性的石墨烯与聚合物发生化学键合或分子间作用力,从而使制备的石墨烯复合材料具有优异的界面相容性。

实验结果表明,本发明制备的石墨烯复合材料具有良好的力学性能。

二,石墨烯复合材料的性能超级电容器是一种性能介于传统电容器和化学电池之间的新型储能元件,具有比传统电容器更高的能量密度及比普通电池更高的功率密度和更长的循环寿命。

目前,对超级电容器的研究主要集中在高性能的电极材料的制备上。

本文制备了纳米结构的石墨烯以及石墨烯/氢氧化镍复合材料,研究了他们的制备工艺和电化学性能,并通过并用傅立叶转换红外光谱、X射线衍射、X射线光电子能谱、透射电子显微镜、扫描电子显微镜、比表面积、循环伏安、交流阻抗、恒电流充放电分析等对其进行了表征。

利用hummers制备了氧化石墨,研究了于氮气气氛中不同的反应温度对石墨烯的结构和性能的影响。

测试表明反应温度为400℃时的产物具有较好的形貌,在10mA·cm~(-2)放电电流密度下,其比电容达到了187.92 F·g~(-1),充放电循环1000次之后仍能保持在173.16F·g~(-1),与氧化石墨相比,石墨烯的比容量有了较大的提高。

利用热膨胀法在空气气氛中制备得到了单层和多层石墨烯材料,测试表明空气气氛下热膨胀得到的石墨烯的含氧量低于惰气气氛下热还原得到的石墨烯,空气气氛下制备的石墨烯的电化学性能明显优于氮气气氛下制备的石墨烯材料以天然鳞片石墨为原料通过氧化还原法制备了单层,厚度为1 nm的二维碳纳米材料石墨烯,并在此基础上制备了具有高强度二维导电和耐热性的石墨烯/环氧树脂纳米复合材料,分析并研究了石墨烯对于环氧树脂复合体的电学、力学和热学等多方面性能的改善效果。

通过化学氧化和物理超声作用获得了单层氧化石墨烯,片层厚度为1 nm。

傅里叶红外光谱和X射线衍射证明含氧基团的引入大大增加了石墨的层间距离,导致石墨片层剥离,形成单片层结构;透射电子显微镜和原子力显微镜的照片显示氧化还原法获得了单层结构的氧化石墨烯。

紫外-可见光吸收光谱、拉曼光谱和热失重分析结果表明通过水合肼能够部分还原氧化石墨烯中的含氧基团,同时利用真空中热还原,能进一步恢复石墨烯的表面结构,提高其共轭程度,使其电导率和耐热性得到了较大的提升,同时表面疏水性增强,水合肼部分还原的石墨烯比进一步热还原的石墨烯具有更好的亲水性。

将两种还原法制备的石墨烯分别用偶联剂进行改性,并作为纳米填料添加到环氧树脂中,获得功能化处理的石墨烯/环氧树脂纳米复合材料。

石墨烯基纳米阻隔复合材料,是以二维纳米材料石墨烯片为增强剂,通过化学交联均匀分散在聚烯烃聚合物材料中,形成具有优良阻隔和力学性能的复合材料。

其制备方法包括:一,用偶联剂对氧化石墨烯的表面进行功能化修饰,使其表面接枝上活性官能团,然后再将修饰之后的氧化石墨烯还原成石墨烯。

二,将经修饰的石墨烯均匀分散到聚烯烃溶液中,在引发剂的作用下交联键合得到纳米复合材料。

本发明原料成本低廉易得、操作容易、工艺简单、重现性好,石墨烯能够在聚烯烃中很好分散,制得的石墨烯基纳米复合材料不仅对极性和非极性溶剂都具有优异的阻隔性能,而且其拉伸强度和断裂韧性得到明显改善。

三,石墨烯复合材料的应用石墨烯是从石墨材料中剥离出来、由碳原子组成的二维晶体,只有一层碳原子的厚度,是迄今最薄也最坚硬的材料,其导电、导热性能超强,远远超过硅和其他传统的半导体材料。

很多人认为,石墨烯可能取代硅成为未来的电子元件材料,在超级计算机、触摸屏和光子传感器等多个领域“大显身手”。

张跃刚和同事此前的研究也都专注于石墨烯在电子设备上的应用。

在最新研究中,该研究团队将石墨烯和锡交替层叠制造出了这种纳米复合材料。

他们将一层锡薄膜沉积在石墨烯上,接着在锡薄膜上方放置另一层石墨烯,然后不断重复这个过程制造出了这种复合材料。

他们还对材料进行了热处理,通过在一个充满氢气和氩气的环境中将其加热到300摄氏度,锡薄膜转变成很多柱子,增加了锡层的高度。

石墨烯以其独特的电学、机械学及热学性质,开创了广阔的应用领域,吸引了越来越多的关注。

通过对石墨烯进行功能化改性,制备出修饰后的石墨烯纳米材料,可最大程度上保留石墨烯本征属性,并通过功能化引入其它一些有意义的特性。

深入研究将获得一系列性能更为优异的新型石墨烯功能材料,并从科学及技术上为实现该类材料的实际应用奠定基础。

本研究就如何实现石墨烯功能化,实现何种形式功能化,功能化后的石墨烯纳米复合材料在电学及催化等领域中的应用等方面进行了详细的阐释,并重点围绕石墨烯功能化材料的便捷、高效制备及功能化石墨烯材料在电学及催化等领域中的应用等两方面开展了详细研究: 1.功能化石墨烯纳米材料的便捷、高效制备我们通过一步法便捷制备了锗纳米颗粒/石墨烯纳米复合材料,也通过温和的乙二醇还原法成功制备了钯纳米颗粒/壳聚糖修饰的石墨烯纳米复合材料,还设计制备了钯纳米颗粒/石墨烯氧化物纳米复合材料及具有生物相容性及超大比表面的的三维石墨烯介孔材料等。

此外,我们在微波辅助条件下,直接从石墨出发,高效剥离出大尺寸石墨烯(尺寸可达4微米),且最大程度保留石墨烯本征性质新纳米复合材料中石墨烯层之间的高度变化会对电池的电化学循环有所改善,锡高度的变化会改进电极的性能。

另外,这种适应性也意味着电池能被快速地充电,而且重复充放电也不会降低其性能,这对电动汽车内的可充电电池来说非常关键参考文献:[1] 倪芳. 双氢氧化物膜修饰电极对电活性物质的直接电分析[D]. 安徽师范大学, 2010 .[2] 杜庆来. 石墨烯及其复合材料的制备、表征和超电容性能研究[D]. 南京航空航天大学, 2010 .[3] 张立逢. 以石墨烯为载体制备直接甲醇燃料电池阳极催化剂的研究[D].南京航空航天大学, 2010 .[4] 游从辉. 低温化学解理石墨烯的改性及电化学性质研究[D]. 天津大学,2010 .[5] 徐方强. 氧化石墨泡沫材料的制备及其对气体的吸附性能研究[D]. 天津大学, 2010 .[6] 李帅. 石墨烯及其复合材料的制备及性能研究[D]. 天津大学, 2010 .[7] 董建会. 碳纳米材料制备及其场发射特性研究[D]. 电子科技大学, 2009 .[8] 季兆林. 石墨微结构磁电效应及甚小电阻信号读取[D]. 南京理工大学,2009 .[9] 韦勇. 拉力调控下石墨烯电子性质的理论研究[D]. 浙江师范大学, 2009 .[10] 牛亮. 半导体纳米晶体光伏器件的性能测试系统[D]. 长春理工大学,2010 .The Preparation And Applications Of Graphene Hybrid Materialname:zhongshengliang student number:5602209104 class:shenggong092Abstract:Graphene had been successfully produced in 2004. This type of new material has been paying great attention due to its unique physical, chemical, and mechanics properties. In this thesis, graphene were synthesized by the chemical reduction and thermal exfoliation of graphite oxide, respectively. In addition, graphene oxide/amorphous carbon, FGS300/FDU15, FGS300/RuO_2·xH_2O composites are prepared by the blending and self-assembly method. The obtained samples were characterized by XRD, SEM, TEM, N2 adso... Since the graphene was successfully prepared in 2004,it has been one of the researching hotspots for the science and technology all over the world.It has been confirmed that graphene has unique structure and excellent properties in electricity,calorifics,mechanics,andotherwise.Because of the properties of huge surface-to-volume ratio and unique high-conductivity of graphene,graphene and graphene-based composites hold great promising for potential applications in the electrochemistry field.And so,the resear...Key word: gangplow plumbaginous Naziism。

相关文档
最新文档