综述石墨烯的制备与应用

合集下载

石墨烯材料的制备和应用

石墨烯材料的制备和应用

石墨烯材料的制备和应用石墨烯是由碳原子构成的单层蜂窝状结构材料,拥有极强的导电、导热、机械强度和化学稳定性等优良特性,具有广泛的应用前景。

本文将介绍石墨烯的制备和应用领域。

一、石墨烯的制备方法1.机械剥离法石墨烯最早的制备方法之一是机械剥离法。

该方法利用粘性较小的胶带或者放电石墨杆等将石墨中的石墨烯层分离,再用显微镜或者扫描电镜进行观察和鉴定。

这种方法制备出的石墨烯材料不仅成本较低,而且结构较为单一。

但是,其缺点也很明显:不适用于大批量生产,且对石墨质量要求极高,生产效率很低。

2.氧化-还原法除了机械剥离法外,氧化-还原法也是石墨烯的常用制备方法。

其步骤为,对石墨进行高温氧化处理,得到氧化石墨,然后通过还原反应将其还原得到石墨烯。

这种制备方法简单易行,对石墨原料的要求较低且可大规模生产。

但是生产出的石墨烯含杂质较多,且其质量受到还原反应条件的限制。

3.化学气相沉积法化学气相沉积法(CVD)用热解的气相碳源沉积在晶种上。

CVD法是石墨烯的高规模生产的主要方法,制备的石墨烯为多晶性,但石墨烯的芯片可达到厘米级别,还可以控制其厚度,并且产生的杂质很少。

此法需要高昂的设备和高温高压等极其苛刻的条件来实现,且实验步骤复杂,但是,这种方法却可以获得高纯石墨烯。

二、石墨烯的应用领域1.电子学领域石墨烯由于其优良的电导性、透明度和受限于电子的高度可调制性,是构筑微型电路和其他电子元件的理想选择。

在电子领域,石墨烯的应用将涉及到传感器、场效应晶体管以及集成电路等领域。

石墨烯电极也用于生产锂离子电池、电容器和柔性电路板等方面,有较好的应用前景。

2.生物医学领域石墨烯的高比表面积、良好的生物相容性和其他特殊的物理和化学性质在生物医学等领域中也具有巨大的潜力。

石墨烯可以用于生物传感器、分子探针、药物释放器及其它医疗器械等等。

例如,在药物释放器方面,石墨烯可以帮助精准释放药物、降低药物剂量、减轻药物不良反应、延长药物释放周期等。

石墨烯的制备技术及其应用

石墨烯的制备技术及其应用

石墨烯的制备技术及其应用第一章石墨烯的简介石墨烯是一种由碳原子组成的单层二维晶体材料,其非常薄且具有出色的电子、光学、力学等性能。

石墨烯最初被制备出来是通过机械剥离的方法,该方法通常利用胶带将石墨材料持续剥离,最终得到单层结构。

这种方法虽然简单但效率低下,难以在大规模制造中应用。

因此,发展一种高效制备石墨烯的技术是极其必要的。

第二章石墨烯的制备技术2.1 化学气相沉积法 (CVD)CVD是制备石墨烯的一种常用方法,其原理是在金属催化剂表面,将碳源分解成一层石墨烯。

这种方法优点是可以制备大面积的单层石墨烯,且制备过程中控制参数较为灵活,但由于需要使用高温等条件,对设备、条件等要求较高。

2.2 溶剂剥离法溶剂剥离法的原理是将石墨氧化物转变为石墨烯,然后使用溶剂剔除无用部分。

此方法虽然容易实施,但也较为依赖原料质量和过程参数控制。

2.3 机械剥离法机械剥离法是一种传统的石墨烯制备方法。

通过使用胶带将石墨材料持续剥离,最终得到单层结构。

这种方法虽然简单但效率低下,难以在大规模制造中应用。

第三章石墨烯的应用3.1 电子学由于石墨烯的独特电学特性,其在电子学领域的应用非常广泛。

例如,石墨烯可以被用作场效晶体管( FET)、场发射器( FE)、无源电路的元件等等。

3.2 生物学由于石墨烯材料的生物相容性和阻抗特性较低,石墨烯在生物学领域得到广泛应用。

例如,石墨烯可以用于生物传感器系统、药物释放工具等。

3.3 透明电极石墨烯可以用于制备透明电极,其具有良好的导电性和透明性。

透明电极的应用包括液晶显示器、有机太阳能电池、OLED等。

第四章结论石墨烯由于其出色的电学、力学、光学等性质已经成为材料科学、物理学和化学领域的研究热点之一。

目前,国内外对石墨烯制备技术和其应用的研究也越来越广泛深入。

未来,石墨烯将会在电子学、生物学、光电子学领域等得到更广泛的应用。

石墨烯的制备和应用发展

石墨烯的制备和应用发展

石墨烯的制备和应用发展石墨烯是由碳原子组成的一种单层厚度的薄膜,它的特殊结构使其具有诸多优异的性质和应用前景。

近年来,石墨烯制备技术的发展和其应用领域的不断拓宽,使得它成为了材料科学研究、新材料开发和应用领域内一个备受瞩目的话题。

一、石墨烯的制备方法1. 机械剥离法机械剥离法是制备石墨烯最原始的方法,通过利用胶带或粘性物质把石墨材料逐层剥离,最终得到单层厚度的石墨烯。

2. 化学气相沉积法化学气相沉积法是一种将气态前驱物在高温下分解成石墨烯的方法。

一般采用的前驱物为甲苯和丙烯等有机物,将其在高温下通过化学反应转化为石墨烯。

3. 热还原法热还原法是通过加热草酸钴或草酸铜等金属盐,使其在高温区域内还原并生成石墨烯。

4. 其他方法还有其他一些制备石墨烯的方法,如化学氧化还原法、电化学剥离法等。

这些方法都有其独特的优缺点,可以根据应用的需要进行选择。

二、石墨烯的应用发展1. 电子器件领域石墨烯具有高电导率、高透明度和优异的热稳定性等特点,因此被广泛应用于电子器件领域。

例如,用石墨烯作为透明电极可以显著提高光电器件的性能。

2. 能源领域由于石墨烯的高电导率和良好导热性,使它成为了一种理想的电极材料。

将石墨烯应用于电池、太阳能电池等领域,可以提高其转化效率和储存能力。

3. 生物医学领域石墨烯具有高生物相容性和表面活性,可以作为一种有前途的生物医学材料。

例如,利用石墨烯的优异光学性质可以制备荧光探针,用于生物诊断和细胞成像。

4. 其他领域除了以上领域,石墨烯的应用还涉及到材料科学的各个领域。

例如,用石墨烯增强材料可以制备高强度的轻型材料;用石墨烯作为气体分离膜可以实现高效的气体分离等。

总之,石墨烯是一个非常有前途的材料,可以用于各种不同的领域和应用场景。

虽然石墨烯的制备方法还存在一些问题,但随着研究的深入和技术的发展,相信石墨烯的制备方法和应用前景还有很大的发展空间。

石墨烯的制备方法及发展应用概述

石墨烯的制备方法及发展应用概述

石墨烯的制备方法及发展应用概述一、本文概述石墨烯,一种由单层碳原子紧密排列形成的二维纳米材料,自2004年被科学家首次成功制备以来,便以其独特的物理和化学性质,引发了全球范围内的研究热潮。

本文旨在全面概述石墨烯的制备方法,以及其在各个领域的发展应用。

我们将介绍石墨烯的基本结构和性质,为后续的制备方法和应用探讨提供理论基础。

接着,我们将重点阐述石墨烯的几种主要制备方法,包括机械剥离法、化学气相沉积法、氧化还原法等,并分析各方法的优缺点。

随后,我们将深入探讨石墨烯在能源、电子、生物医学等领域的应用现状和发展前景。

我们将对石墨烯的未来研究方向进行展望,以期为其在实际应用中的进一步推广提供参考。

二、石墨烯的制备方法石墨烯的制备方法多种多样,每一种方法都有其独特的优缺点和适用范围。

目前,石墨烯的主要制备方法包括机械剥离法、化学气相沉积法(CVD)、氧化还原法、碳化硅外延生长法以及液相剥离法等。

机械剥离法:这是最早用于制备石墨烯的方法,由英国科学家Geim和Novoselov在2004年首次报道。

他们使用胶带反复剥离石墨片,最终得到了单层石墨烯。

这种方法虽然简单,但产量极低,且无法控制石墨烯的尺寸和形状,因此只适用于实验室研究,不适用于大规模生产。

化学气相沉积法(CVD):CVD法是目前工业上大规模制备石墨烯最常用的方法。

它通过高温下含碳气体在催化剂表面分解生成石墨烯。

这种方法可以制备出大面积、高质量的石墨烯,且生产效率高,成本低,因此被广泛应用于石墨烯的商业化生产。

氧化还原法:这种方法首先通过化学方法将石墨氧化成石墨氧化物,然后通过还原反应将石墨氧化物还原成石墨烯。

这种方法制备的石墨烯往往含有较多的缺陷和杂质,但其制备过程相对简单,成本较低,因此也被广泛用于石墨烯的大规模制备。

碳化硅外延生长法:这种方法通过在高温和超真空环境下加热碳化硅单晶,使硅原子从碳化硅表面升华,剩余的碳原子重组形成石墨烯。

这种方法制备的石墨烯质量高,但设备成本高,制备过程复杂,限制了其在大规模生产中的应用。

石墨烯的制备、功能化及在化学中的应用

石墨烯的制备、功能化及在化学中的应用

石墨烯的制备、功能化及在化学中的应用石墨烯为当前已知最薄且最坚硬的碳质材料,几乎为全透明物质,仅吸收2.3%的光,属于透明良好导体,故极具应用前景。

目前,该材料在制备及应用方面已日渐多元化与功能化,因此,对石墨烯的制备、功能化与化学应用加以探讨极为必要。

标签:石墨烯;制备;功能化;化学应用0 引言石墨烯属单层片状二维材料,由碳原子构成、以SP2杂化轨道所构成的呈蜂巢晶格六角型的平面薄膜[1]。

石墨烯由英国曼彻斯特大学物理学家安德烈·海姆与康斯坦丁·诺沃消格夫于2004年从试验中首次成功分离,至此该材料的单独存在得以证实。

二维石墨烯、一维碳纳米管、零维富勒烯三者共同构成碳纳米材料的家族骨干,且三者之间形式上可进行转化。

石墨烯其独特结构与优异性能使其应用前景极为广阔。

因此,对其制备方法、功能化技术及其在化学应用加以分析意义重大。

1 石墨烯的制备分析目前石墨烯制备方法主要包括化学气相沉积法、溶剂剥离法、氧化还原法、微机械剥离法、外延生长法、电弧法、有机合成法、电化学法等,具体如下所述。

1.1 化学气相沉积法(CVD)所谓CVD法,指的是反应物质于气态条件下产生化学反应,进而在加热固态基体表生成固态物质,从而实现固体材料的制成的工艺技术[2]。

目前,以CVD 法进行石墨烯制备时通过将碳氢化合物等含碳气体通入以镍为基片、管状的简易沉积炉中,通过高温将含碳气体分解为碳原子使其沉积于镍的表面,进而形成石墨烯,再通过轻微化学刻蚀来使镍片与石墨烯薄膜分离,从而获得石墨烯薄膜。

该薄膜处于透光率为80%的状态下时其导电率便高达1.1×106S/m。

通过CVD法可制备出大面积高质量石墨烯,但单晶镍价格则过于昂贵,该方法可满足高质量、规模化石墨烯的制备要求,但工艺复杂,成本高,使得该方法的广泛应用受到限制。

1.2 溶剂剥离法该方法通过将少量石墨散于溶剂中,配制成低浓度分散液,而后使用超声波破坏石墨层间存在的范德华力,经过上述操作溶剂便可成功插入石墨层并进行逐层剥离,至此石墨烯制备完成。

功能化石墨烯的制备及应用

功能化石墨烯的制备及应用

功能化石墨烯的制备及应用石墨烯是一种由碳原子组成的一层厚的二维结构材料,具有高导电性、高导热性、超高比表面积、良好的机械性能和化学稳定性等优异特性,因而成为材料领域研究的热点和前沿。

为了实现石墨烯的工业化应用,需要针对其性质进行各种功能化修饰。

因此,本文将着重讨论以石墨烯为原材料的功能化修饰技术和应用。

一、石墨烯的制备技术石墨烯的制备技术可以分为机械剥离法、化学气相沉积法、化学还原法、物理气相沉积法和氧化石墨烯还原法等多种方法,其中机械剥离法和化学气相沉积法的应用最为广泛。

机械剥离法是将石墨材料通过力学剥离的方式制备石墨烯。

这种方法成本低廉,制备出的石墨烯品质较好,但是缺点也很明显,即杂质杂质多,生产成本高。

化学气相沉积法是利用金属或者金属化合物的催化作用,在高温的条件下将碳源分子分解产生石墨烯。

这种方法制备的石墨烯质量较好,生产效率也比较高,但是都要在特定高温高压及真空的条件下进行,对设备和技术要求较高。

二、石墨烯的功能化修饰技术石墨烯的功能化修饰主要是指针对石墨烯表面进行不同的化学修饰,以改变石墨烯的物理、化学性质。

主要包括氧化、还原、功能化、掺杂等多种方法。

1. 氧化石墨烯:将石墨烯表面的碳与氧作用结合,形成氧化石墨烯。

石墨烯的氧化可以在其表面形成和羟基、羧基、酮基等官能团,可以提高石墨烯与其他化学物质的响应性,也降低了其电导率。

氧化石墨烯的制备简单,但是对于石墨烯的电导性能和结构有一定的影响。

2. 还原石墨烯:将氧化石墨烯进行还原,可以恢复石墨烯的电学性质。

还原石墨烯还可以在石墨烯表面引入被还原的杂原子,进而实现对石墨烯各种性质的修饰。

3. 功能化石墨烯:通过引入不同的官能团和分子可以实现石墨烯的功能化。

功能化的目的是在石墨烯的表表面引入各种化学结构,改变石墨烯的性质,如增强机械性能、改变热学性质等。

常用官能团有COOH、OH、NH2等。

4. 掺杂石墨烯:通过引入异型原子或者化合物到石墨烯中实现对石墨烯的掺杂修饰,进而改变其电学性质、光学性质、磁学性质等。

石墨烯的制备及其应用综述

石墨烯的制备及其应用综述

石墨烯的制备及其应用摘要石墨烯是2004年才被发现的一种新型二维平面纳米材料, 其特殊的单原子层结构决定了它具有丰富而新奇的物理性质. 过去几年中, 石墨烯已经成为了备受瞩目的国际前沿和热点. 在石墨烯的研究和应用中, 为了充分发挥其优良性质, 并改善其成型加工性(如分散性和溶解性等), 必须对石墨烯进行功能化, 研究人员也在这方面开展了积极而有效的工作. 但是, 关于石墨烯的功能化方面的研究还处在探索阶段, 对各种功能化的方法和效果还缺乏系统的认识. 如何根据实际需求对石墨烯进行预期和可控的功能化是我们所面临的机遇和挑战. 本文重点阐述了石墨烯的制备及其的最新进展, 并对功能化石墨烯的应用作了介绍,最后对相关领域的发展趋势作了展望。

关键词:石墨烯;石墨烯氧化物;量子霍耳效应;量子电导率;功率密度;电极材料;目录目录摘要 (I)目录 ........................................................................................................................................ I I1 绪论 (1)2 石墨烯的结构和性质 (3)2.1 石墨烯的结构 (3)2.2 石墨烯的性质 (4)3 石墨烯的合成方法 (5)3.1 微机械分离法 (5)3.2 取向附生法 (5)3.3 加热SiC的方法 (5)3.4 化学分散法 (5)4 石墨烯的应用前景 (6)4.1 石墨烯在纳电子器件方面的应用 (6)4.2 未来的计算机芯片材料:石墨烯取代硅 (6)4.3 高电子迁移率可用于制造最快的碳晶体管 (6)5 结语 (7)参考文献 (7)1 绪论1 绪论1.1引言石墨烯是一种由碳原子构成的单层片状结构的新材料。

是一种由碳原子以sp²杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料[1]。

石墨烯材料的制备与应用

石墨烯材料的制备与应用

石墨烯材料的制备与应用石墨烯是一种具有非常优异物理、化学和电学性质的二维材料,因其极高的导电性、导热性、透明性等性质,被广泛认为是革命性的新材料,具有广泛的研究和应用前景。

本文将介绍石墨烯材料的制备方法和一些重要的应用领域。

1. 石墨烯的制备方法石墨烯最早是通过一种叫做“机械剥离法”的方法被制备出来的。

这种方法就是通过用胶带多次在石墨表面撕扯来制备出单层厚度的石墨烯,但该方法存在盈亏不平衡、样品品质不稳定等问题,因此被较早的大规模制备方法所替代。

化学气相沉积法和化学气相还原法是两种常用的石墨烯制备方法。

化学气相沉积法是通过在金属衬底上沉积碳化物来制备石墨烯。

首先,在金属表面上沉积一层碳源,如甲烷、乙烯等,然后通过高温热解将碳源转化为石墨烯。

化学气相还原法是通过将氧化石墨烯置于高温还原气氛中来还原石墨烯,这种方法以得到高质量、可控性强的石墨烯为优点。

除此之外,还有一些其他的制备方法,如去氧化副反应法、水热法、化学还原法等,这些方法每种有各自的特点和适用范围。

2. 石墨烯的应用领域2.1 电子学由于石墨烯极高的导电性,在电子学领域中具有很大的潜力,如电子器件、传感器等。

石墨烯晶体管的出现,使得晶体管的性能有了极大提升。

除此之外,石墨烯应用于传感器领域,能够制造出高灵敏度、低功耗、高品质的传感器。

2.2 材料学石墨烯能够通过不同的方法来制备出具有不同性质的石墨烯复合材料,在材料学领域中得到了广泛应用。

例如,石墨烯复合材料可以用于强化和耐高温塑料、聚合物和纳米复合材料。

2.3 能源转换与储存由于石墨烯极高的导电性和导热性,被广泛应用于能源转化和储存。

石墨烯作为一种电极材料,可用于制备出高效、高性能的储能器。

石墨烯复合材料可用于制备高效的太阳能电池、储氢技术等。

2.4 生物技术石墨烯在生物技术领域的应用也受到越来越多研究者的关注。

石墨烯具有与生命体系相容性好、氧气透过性高、光透明性等优良性能,这些特点可以用于生物传感的制备和生物医学领域中的仿生材料研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体物理课程作业石墨烯的制备与应用(材料)目录一、石墨烯概述 (2)二、石磨烯的制备 (3)1、机械剥离法 (3)2、外延生长法 (5)3、化学气相沉积法 (6)4、氧化石墨-还原法 (6)5、电弧法 (9)6、电化学还原法 (9)7、有机合成法 (10)三、石墨烯的应用 (11)1、石墨烯在电子器件领域的应用 (11)1.1 石墨烯场效应晶体管 (11)1.2 石墨烯基计算机芯片 (12)1.3 石墨烯信息存储器件 (13)2、石墨烯在能源领域的应用 (14)2.1 石墨烯超级电容器 (14)2.2 锂离子电池 (15)2.3 太阳能电池 (16)2.4 储氢/甲烷器件 (17)3、石墨烯在材料领域的应用 (18)3.1 特氟龙材料替代物 (18)3.2 石墨烯聚合物复合材料 (18)3.3 光电功能材料 (19)4、石墨烯在生物医药领域的应用 (20)4.1 基于氧化石墨烯的纳米载药体系 (20)4.2 氧化石墨烯对DNA/基因/蛋白的选择性检测 (21)4.3用于生物成像技术 (23)4.4 石墨烯在肿瘤治疗方面的应用 (23)四、总结及展望 (24)参考文献 (25)一、石墨烯概述碳广泛存在于自然界中,是构成生命有机体的基本元素之一。

碳基材料是材料界中一类非常具有魅力的物质,从无定形的碳黑到晶体结构的天然层状石墨;从零维纳米结构富勒烯到一维碳纳米管无不给人们带来炫丽多彩的科学新思路。

而二维碳基材料石墨烯的发现,不仅极大地丰富了碳材料的家族,而且其所具有的特殊纳米结构和性能,使得石墨烯无论是在理论还是实验研究方面都已展示出了重大的科学意义和应用价值,从而为碳基材料的研究提供新的目标和方向。

碳的晶体结构—石墨和金刚石(三维)是自然界中最早为人们熟知的两种碳同素异构体,因化学成键方式不同而具有截然相反的特性。

1985年,一种被称为“巴基(零维)被首次发现,三位发现者于11年后, 即1996年获诺贝尔球”的足球形分子C60化学奖。

1991年,由石墨层片卷曲而成的一维管状结构: 碳纳米管被发现,发现者饭岛澄男(Sumio Iijima)于2008年获卡弗里纳米科学奖。

石墨烯(Graphene)是只有一个原子层厚的单层石墨片,是石墨的极限形式。

作为碳的二维晶体结构, 石墨烯的出现最终为人类勾勒出一幅点、线、面、体(从零维到三维)相结合的完美画面(图1)。

图1 碳的晶体结构石墨烯作为一种独特的二维晶体,有着非常优异的性能:具有超大的比表面积,理论值为2630m2/g;机械性能优异,杨氏模量达1.0TPa;热导率为5300W·m-1·K-1,是铜热导率的10多倍;几乎完全透明,对光只有2.3%的吸收;在电和磁性能方面具有很多奇特的性质,如室温量子霍尔效应、双极性电场效应、铁磁性、超导性及高的电子迁移率。

这些优异的性质,使得石墨烯在晶体管、太阳能电池、传感器、超级电容器、场发射和催化剂载体等领域有着良好的应用前景。

制备高质量的石墨烯和促进石墨烯的应用,是石墨烯领域的研究热点。

本文综述了近些年在石墨烯的制备方法和应用研究方面取得的进展。

石墨烯的基本结构单元与石墨材料相同,构成石墨烯的每个碳原子与其他3个碳原子通过σ键相连接. 碳原子的排列也与石墨单原子层一样,形成如图2所示的结构,换言之,石墨烯就是由单层六角元胞碳原子组成的蜂窝状二维晶体,这些很强的C —C 键(sp 2)使石墨烯成为已知最为牢固的材料之一:单层石墨烯的厚度只有0.335nm,仅为头发丝直径的1 /200000,理论上,如果能够制作出厚度为100nm 的石墨烯,那么需要施加约200kN 的力才能够将其扯断。

(a)模型图 (b)HRTEM 图像图2 石墨烯的结构碳原子有4个价电子,其中3个电子生成sp 2键,即每个碳原子都贡献一个未成键的电子位于p z 轨道,近邻原子的p z 轨道与平面成垂直方向可形成π键,此时π键为半填满状态,所以电子可在二维晶体内自由移动,赋予石墨烯良好的导电性和其他独特的电学性质。

二、石磨烯的制备从发现稳定存在的石墨烯到现在七年多时间里,石墨烯在制备方面取得了长足的进步。

目前制备石墨烯主要包括以下几种方法:1、机械剥离法该方法首先利用离子束在lmm 厚的高定向热解石墨表面用氧等离子干刻蚀进行离子刻蚀。

在表面刻蚀出宽2μm ~2 mm、深5μm的微槽,并将其用光刻胶粘到玻璃衬底上;然后用透明胶带进行反复撕揭,将多余的高定向裂解石墨HOPG(highly oriented pyrolitic graphite)去除;随后将粘有微片的玻璃衬底放入丙酮溶液中作超声处理;再将单晶硅片放入丙酮溶剂中,将单层石墨烯“捞出”。

由于范德华力或毛细管力,单层石墨烯会吸附在单晶硅片上。

利用这一方法成功制备了准二维石墨单层并观测到其形貌。

将微机械剥离法制得的含有单层石墨烯的硅晶片放置于一个经过刻蚀的金属架上,用酸将硅晶片腐蚀掉,获得了由金属支架支撑的悬空的单层石墨烯。

用透射电镜观测到其形貌,发现单层石墨烯并不是一个平整的平面,而是平面上面有一定高度(50 Å~100 Å)的褶皱。

通过对单层石墨烯和双层石墨烯表面的褶皱程度的研究发现,石墨烯表面的褶皱可能是二维石墨烯存在的必要条件。

单层石墨烯表面褶皱明显大于双层石墨烯,并且随着石墨烯层数的增加褶皱程度越来越小,趋于平滑。

这是因为单层石墨烯片为降低其表面能量,由二维向三维形貌转换。

尽管利用这种方法很难大规模制备石墨烯,而且尺寸不易控制,但是机械剥离法仍然是制备高质量石墨烯最有效的方法之一。

Manchester大学Geim领导的研究组2004年在Science上发表论文,报道了他们用机械剥离法制备得到了最大宽度可达10μm的石墨烯片(图3)。

图3 机械剥离法制备石墨烯的示意图2、外延生长法图4 金刚砂高温还原制备石磨烯该方法是通过加热单晶SiC脱除硅,在单晶(001)面上分解出石墨烯片层(在超高真空、1000℃条件下,硅会被释放出来,剩下的只有石墨化的碳)利用这种方法能可控地制备出单层或是多层石墨烯(最多可获得100 层的多层石墨烯),其厚度由加热温度决定,缺点是制备大面积、具有单一厚度的石墨烯比较困难。

具体方法是:将经氧气或氢气刻蚀处理得到的样品在高真空下通过电子轰击加热,除去氧化物。

用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至1 250℃~1450℃后,恒温1分钟~20分钟,从而得到极薄的石墨烯层。

加州理工大学的de Heer 等利用这种方法成功制备了石墨烯(图4),但从这种方法制备出来的二维石墨中并没有观测到由HOPG 剥离出的二维石墨所表现出的量子霍尔效应,并且石墨烯表面的电子性质受SiC衬底的影响很大,进一步的研究仍在进行中。

Claire Berger等利用加热SiC 的方法制备出单层和多层石墨烯薄片并研究了其性能,在单晶6H-SiC的Si-terminated(00001)面上通过热解脱除Si来制取石墨烯。

将表面经过氧化或H2蚀刻后的样品在高真空下通过电子轰击加热到1000℃以除掉表面的氧化物(多次去除氧化物以改善表面质量),用俄歇电子能谱确定氧化物被完全去除后,升温至1250~1450℃,恒温1~20min,形成石墨烯薄片,其厚度由加热温度决定。

3、化学气相沉积法该法是近几十年发展起来的制备无机材料的新技术,是目前应用最广泛的一种大规模制备半导体薄膜材料的方法。

而且,该方法已成功的应用于工业化大规模制备多壁碳纳米管,生产工艺十分完善。

Kim首先在SiO2/Si基底上沉积一层100~500nm厚的金属镍薄层,然后在1000℃及高真空下,以甲烷、氢气及氩气混合气为反应气,在较短的时间内制备了石墨烯。

Wei等采用甲烷和氨气为反应气,一步法直接合成了氮掺杂的石墨烯。

在该氮掺杂的石墨烯中氮原子采取石墨化、“吡咯化”及“吡啶化”这三种掺杂方式(如图5)。

该法是大规模制备大尺寸、高质量石墨烯的最有希望的方法之一。

但目前还不是很完善,还有待于进一步的研究。

图5 石磨烯制备4、氧化石墨-还原法石墨首先经化学氧化得到边缘含有羧基、羟基,层间含有环氧及羰基等含氧基团的石墨氧化物(graphite oxide),此过程可使石墨层间距离从0.34nm扩大到约0.78 nm,再通过外力剥离(如超声剥离)得到单原子层厚度的石墨烯氧化(graphene oxide),进一步还原可制备得到石墨烯。

这种方法制备的石墨烯为独立的单层石墨烯片,产量高,应用广泛。

石墨的氧化方法主要有Hummers、Brodie和Staudenmaier三种方法,它们都是用无机强质子酸(如浓硫酸、发烟HNO3 或它们的混合物)处理原始石墨,将强酸小分子插入石墨层间,再用强氧化剂(如KMnO4、KClO4等)对其进行氧化。

Hummers氧化法的优点是安全性较高;与Hummers法及Brodie法相比,Staudemaier法由于使用浓硫酸和发烟硝酸混合酸处理石墨,对石墨层结构的破坏较为严重。

氧化剂的浓度和氧化时间对制备的石墨烯片的大小及厚度有很大影响,因此,氧化剂浓度及氧化时间需经过仔细筛选,才能得到大小合适的单层氧化石墨烯片。

无论是哪种方法都是将石墨与强酸、强氧化剂作用,在石墨原有的C-C骨架之间引入了大量的-OH,-COOH和环氧基。

氧化石墨烯上C原子属于sp3杂化,大大破坏了石墨烯的平面结构,从而降低了石墨烯原有的优良导电性能。

因此,许多科学家正试图利用热退火或化学还原等手段将氧化石墨还原,恢复原有的优良性能。

氧化石墨烯是目前研究最多的一类石墨烯衍生物,在水、乙二醇、DMF、NMP和THF中有良好的溶解度(图6)。

图6 氧化石磨烯结构和溶解度示意图将氧化石墨与水以1mg/mL的比例混合,用超声波振荡至溶液清晰无颗粒状物质,加入适量肼在100℃回流24h,产生黑色颗粒状沉淀,过滤、烘干即得石墨烯。

Sasha Stankovich等利用化学分散法制得厚度为1nm左右的石墨烯。

随着制备方法的深入开展,一些科学家修正或发展了原有的化学制备可溶液加工处理的高质量石墨烯方法(如图7)。

图7 几种利用化学法制备石墨烯的方法制备的石墨氧化物均需经过剥离、还原等步骤才能得到单层的石墨烯。

剥离的方法一般用超声剥离法, 即将石墨氧化物悬浮液在一定功率下超声一定的时间。

超声波在氧化石墨悬浮液中疏密相间地辐射,使液体流动而产生数量众多的微小气泡,这些气泡在超声波纵向传播的负压区形成、生长,而在正压区迅速闭合,在这种被称之为“空化”效应的过程中,气泡闭合可形成超过1.0×108Pa个大气压的瞬间高压,连续不断产生的高压就象一连串小“爆炸”不断地冲击石墨氧化物,使石墨氧化物片迅速剥落生成单层石墨氧化物(即石墨烯氧化物)。

相关文档
最新文档