石墨烯的合成
电化学法制备石墨烯

电化学法制备石墨烯电化学法制备石墨烯石墨烯(Graphene,GN)是由sp2杂化C原子组成的具有蜂窝状六边形结构的二维平面晶体。
石墨烯独特的结构特征使其具有优异的物理、化学和机械等性能,在晶体管太阳能电池传感器、锂离子电池、超级电容器、导热散热材料、电发热膜、场发射和催化剂载体等领域有着良好的应用前景。
石墨烯的制备方法对其品质和性能有很大影响,低成本、高品质、大批量的制备技术是石墨烯能得到广泛应用的关键。
现有制备石墨烯的方法有很多,包括机械剥离石墨法、液相剥离法、溶剂热合成法、化学气相沉积法、外延生长法和电化学法等。
其中,电化学方法因其成本低、操作简单、对环境友好、条件温和等优点而越来越受到人们的关注。
据最新研究报道,通过电化学方法制备的石墨烯可以达到克量级,这为石墨烯的工业化生产带来了曙光。
电化学制备技术则是通过电流作用进行物质的氧化或还原,不需要使用氧化剂或还原剂而达到制备与提纯材料的目的,具有生产工艺简单、成本低、清洁环保等优点,已在冶金、有机与聚合物合成、无机材料制备等方面得到广泛应用。
而且通过电化学电场作用,可以实现外在电解液离子(分子)对一些层状材料的插入,如锂离子电池石墨负极充电时就是锂离子在石墨层间的插入及石墨层间化合物的电化学制备。
根据电化学原理主要有两种路线制备石墨。
1、通过电化学氧化石墨电极可得氧化石墨烯,再通过电化学还原以实现电化学或化学氧化的氧化石墨烯的还原而得到石墨烯材料。
2、采用类似液相剥离,但施以电场力作用驱动电解液分子以电化学方式直接对石墨阴极进行插层,使石墨层间距变大,层间范德华力变弱,以非氧化方式直接对石墨片层进行电化学剥离制备得到石墨烯。
电化学法制备石墨烯的优势主要为:1)与普通化学氧化还原法相比,不需要用到强氧化剂、强还原剂及有毒试剂,成本低,清洁环保;2)通过电化学方式,在氧化时可以更多地以离子插入方式剥离而减少氧化程度降低对石墨烯结构的破坏,电化学还原时则能更彻底还原,因此制得的石墨烯具有更好的物理化学性质;3)以石墨工作电极为阴极进行非氧化直接剥离时,石墨片层结构没有受到破坏,可以得到与液相或机械剥离法一样高品质的石墨烯片,但因为电化学的强电场作用,比单纯的溶剂表面作用力或超声作用力要大得多,剥离的效率更高,与液相或机械剥离法相比,电化学剥离易实现高品质石墨烯批量制备;4)电化学制备过程中,电流与电压很容易精确控制,因此容易实现石墨烯的可控制备与性能调控,而且电化学法工艺过程与设备简单,容易操作控制;5)与CVD 及有机合成法相比,电化学法采用石墨为原料,我国石墨产量居世界前列,原料丰富成本低廉,不需要用到烯类等需大量进口的高价石化原料。
石墨烯的合成与转移

大面积石墨烯的合成与转移实验石墨烯(Graphene)是一种由碳原子组成六角型呈蜂巢晶格的平面薄膜,是只有一个碳原子厚度的二维材料.它的出现引起了全世界的研究热潮,并且以惊人的速度在发展。
它不但对物理化学方面的纳米技术产生了重大影响,而且对材料科学和工程以及各个学科之间的纳米技术也产生了重大的影响。
本实验中,大面积石墨烯的合成是通过化学气相沉积法(CVD)来合成,石墨烯的转移主要采用湿法转移来实现.【实验目的】1、理解利用化学气相沉积法合成纳米材料的方法;2、熟悉双温区管式炉的操作;3、掌握大面积石墨烯合成的过程;4、掌握大面积石墨烯的湿法转移过程。
【实验原理】1、化学气相沉积(CVD)的基本原理化学气相沉积是一种化学气相生长法,简称CVD (Chemical Vapor Deposition)技术。
这种方法是把含有构成薄膜元素的一种或者几种化合物的单质气体提供给基片,利用加热、等离子体、紫外线乃至激光等能源,借助气相作用或者基片表面的化学反应(热分解或化学合成)生成要求的薄膜.由于CVD法是一种化学合成的方法,所以可以制备多种物质的薄膜。
如各种单晶、多相或非晶态无机薄膜。
CVD法制备薄膜的过程,可分为以下几个主要阶段:(1)反应气体向基片表面扩散;(2)反应气体吸附于表面;(3)在基片表面上发生化学反应;(4)在基片表面产生的气相副产物脱离表面而扩散掉或被真空泵抽走,在基片上留下不会发的固体反应物-薄膜。
2、大面积石墨烯在铜箔上的生长机理对于石墨烯这一新型的二维纳米材料在铜箔上生长的机理来说,暂时还没有确切的理论来解释,但目前比较流行的说法是:表面催化作用是石墨烯在铜箔上生长的主要机制(在镍箔上主要是析出机制),甲烷在铜箔的催化下被分解,碳原子键断裂并在铜箔的表面以sp2杂化键重新形成并连接生成石墨烯(如图1所示为石墨烯制备过程图).上述过程发生在图 1中所示的甲烷分解阶段,而不是在降温阶段。
化学气相沉积法制备石墨烯材料

化学气相沉积法制备石墨烯材料CVD法的基本过程如下:1.准备基底:选择合适的基底材料,例如金属箔(铜、镍等)或硅衬底。
2.清洗基底:使用适当的化学方法去除基底表面的杂质和氧化物,以确保表面干净。
3.加热基底:将基底放置在热处理炉中,使其达到适当的温度。
温度取决于所用的前体气体以及所需的石墨烯形成条件。
4.供应前体气体:将含有碳源的气体(例如甲烷、乙炔等)通过气流或者进料管道送入炉内,并与热基底表面上的金属发生反应。
5.反应过程:碳源气体在基底表面上分解,生成碳原子,并在热基底上扩散。
生成的碳原子随后通过化学反应在基底上重新组合,形成石墨烯结构。
6.石墨烯形成:在适当的条件下,石墨烯会开始在金属基底表面上生长。
通常,石墨烯以多层形式开始,并随后通过控制反应条件使其转变为单层石墨烯。
7.冷却和收集:待石墨烯生长完成后,慢慢降低温度,使基底和石墨烯冷却至室温。
如果需要分离石墨烯层,可以使用化学方法或机械方法分离。
CVD法制备石墨烯的优势在于具有较高的控制性和可扩展性。
通过调节反应温度、反应时间和气氛的成分,可以实现对石墨烯的厚度、结晶度和晶粒大小的控制。
此外,CVD法也可以在大面积基底上实现石墨烯的合成,具备工业化生产的潜力。
然而,CVD法也存在一些挑战和限制。
首先,CVD法需要昂贵的设备和复杂的操作,因此成本较高。
另外,CVD法制备的石墨烯通常需要通过化学方法或机械方法与基底分离,这可能会导致石墨烯的质量下降或损坏。
此外,CVD法制备的石墨烯往往在基底上存在大面积缺陷,对于一些应用,如柔性电子器件,缺陷的存在可能会造成问题。
尽管如此,CVD法仍然是制备石墨烯的重要方法之一,其在石墨烯研究领域和应用领域中具有广泛的应用前景。
通过进一步改进和优化CVD过程,并提高石墨烯的质量、控制性和成产率,可以推动石墨烯技术的发展和商业化应用。
cvd石墨烯的制备与转移

cvd石墨烯的制备与转移CVD石墨烯的制备与转移引言:石墨烯作为一种二维材料,具有优异的电学、热学和力学性能,在电子器件、传感器、催化剂等领域具有广泛的应用前景。
其中,化学气相沉积(CVD)是一种常用的制备方法,可以在金属衬底上快速高效地合成大面积的石墨烯薄膜。
本文将重点介绍CVD石墨烯的制备过程以及转移技术。
一、CVD石墨烯的制备过程1. 基本原理CVD石墨烯的制备是通过在高温环境下使碳源气体分解生成石墨烯,并在金属衬底表面沉积形成薄膜。
常用的碳源气体有甲烷、乙烯等。
在高温条件下,碳源气体分解生成碳原子,然后在金属表面进行扩散和聚合,最终形成石墨烯结构。
2. 制备步骤(1)准备金属衬底:常用的金属衬底有镍、铜等。
首先需要对金属衬底进行表面处理,以提高石墨烯的生长质量。
(2)预处理:将金属衬底放入热处理炉中,在惰性气氛下进行退火处理,去除表面氧化物等杂质。
(3)生长条件设置:将处理后的金属衬底放入石墨炉中,加热到适当的温度。
同时,通过注入碳源气体和惰性气氛来控制反应气氛。
(4)生长时间控制:根据需要得到的石墨烯薄膜厚度,控制反应时间。
一般情况下,生长时间越长,石墨烯的厚度越大。
(5)冷却处理:将反应结束后的金属衬底冷却至室温,取出即可得到CVD生长的石墨烯。
二、CVD石墨烯的转移技术将CVD生长的石墨烯从金属衬底上转移到目标衬底上是进行后续器件制备的关键步骤。
常用的转移技术有机械剥离法、热释放法和湿法转移法。
1. 机械剥离法机械剥离法是最早被采用的一种石墨烯转移技术。
通过在石墨烯上涂覆一层粘性较弱的聚合物,然后用胶带或支撑材料将石墨烯剥离下来,再将其转移到目标衬底上。
这种方法操作简单,但对石墨烯的质量和完整性要求较高。
2. 热释放法热释放法通过在金属衬底上生长一层较厚的二硫化钼(MoS2)薄膜,然后通过加热使MoS2与金属衬底分离,从而将石墨烯转移到目标衬底上。
这种方法相对较容易实现,但需要使用高温来实现MoS2与金属衬底的分离。
电化学法石墨烯

电化学法石墨烯电化学法是一种合成石墨烯的常用方法之一。
石墨烯是一种由单层碳原子组成的二维材料,具有优异的电子、热传导性能以及高度的机械强度。
电化学法可以通过控制电解液中的化学反应,在电极上制备石墨烯。
在电化学法中,通常使用氧化石墨(GO)作为起始材料。
首先,将GO溶解在适当的溶剂中,形成GO溶液。
然后,在两个电极上施加电压,通过阳极氧化和阴极还原的反应,将GO 还原为石墨烯。
一般来说,阳极一般由金属材料制成,例如铂或不锈钢,而阴极可以是碳材料或金属材料。
电化学法合成石墨烯的主要优势是制备过程简单,可控性强,可以在大面积、连续生产石墨烯。
此外,电化学法合成的石墨烯在电子器件等领域具有广泛应用前景,因为它具有较高的电导率和良好的透明性。
然而,电化学法合成的石墨烯也存在一些缺点,例如合成过程中需要控制电流密度、温度和时间等参数,以确保石墨烯的质量和一致性。
此外,电化学法合成的石墨烯可能存在多层薄片或缺陷,因此后续的处理和处理步骤可能需要进一步提高石墨烯的质量。
总的来说,电化学法是一种重要的石墨烯合成方法,具有许多优点和应用前景。
随着研究和技术的不断发展,电化学法合成石墨烯的效率和质量将会得到进一步提高。
除了上述电化学还原法,电化学剥离法也是一种常用的电化学合成石墨烯的方法。
电化学剥离法主要通过在石墨电极上施加电压,在电极表面生长出石墨烯,并通过剥离的方式将石墨烯从电极上分离。
具体步骤如下:首先,在石墨电极表面形成一层氧化物保护层,例如氧化铜(Cu2O)或氧化锌(ZnO);然后,在保护层上施加电压,使含有碳原子的分子在保护层上形成石墨烯;最后,通过适当的方法(例如化学剥离或机械剥离)将石墨烯剥离出来。
与电化学还原法不同,电化学剥离法可以在常温下进行,并且对材料的选择更加灵活。
此外,电化学剥离法制备的石墨烯通常具有较高的质量和单层厚度,适用于许多应用领域,例如电子器件、传感器和储能材料等。
值得注意的是,电化学法合成的石墨烯通常还需要进一步进行后续处理,以去除可能存在的副产物、杂质和多层薄片。
石墨烯制方法Hummers法

石墨烯制方法Hummers法改进的Hummer法制备氧化石墨改进的Hummer法制备氧化石墨:在冰水浴中装配好500ml的反应瓶,将5g石墨粉和5g硝酸钠与200ml浓硫酸混合均匀,搅拌下加入25g高氯酸钾,均匀后,再分数次加入15g高锰酸钾,控制温度不超过20℃,搅拌一段时间后,撤去冰浴,将反应瓶转移至电磁搅拌器上,电磁搅拌持续24h。
之后,搅拌下缓慢加入200ml去离子水,温度升高到98℃左右,搅拌20min后,加入适量双氧水还原残留的氧化剂,使溶液变为亮黄色。
然后分次以10000rpm转速离心分离氧化石墨悬浮液,并先后用5%HCl溶液和去离子水洗涤直到分离液pH=7。
将得到的滤饼真空干燥即得氧化石墨。
氧化石墨的制备工艺流程如图3-1所示。
注:低温反应(<20℃)中,由于温度很低,硫酸的氧化性比较低,不足以提供插层反应的驱动力,所以,石墨烯原先没有被氧化。
当加入高锰酸钾后,溶液的氧化性增强,石墨烯的边缘首先被氧化。
随着氧化过程的进行和高锰酸钾加入量的增加,石墨里的碳原子平面结构逐渐变成带有正电荷的平面大分子,边缘部分因氧化而发生卷曲。
此时,硫酸氢根离子和硫酸分子逐渐进入石墨层间,形成硫酸-石墨层间化合物。
中温反应(<40℃)时,硫酸-石墨层间化合物被深度氧化,混合液呈现褐色。
高温反应(90℃-100℃)阶段,残余的浓硫酸与水作用放出大量的热,使混合液温度上升至98℃左右,硫酸-石墨层间化合物发生水解,大量的水进入硫酸-石墨层间化合物的层间,成为层间水并排挤出硫酸,而水中的OH-与硫酸氢根离子发生离子交换作用,置换出部分硫酸氢根离子并与石墨层面上的碳原子相结合,结果使石墨层间距变大,出现石墨烯体积膨胀现象,此时溶液呈亮黄色。
在水洗和干燥过程中,氧化石墨层间的OH-与H+结合以水分子形式脱去,因此产物由金黄色逐渐变成黑色。
石墨烯制备:图3-2为氧化石墨制备石墨烯的工艺流程图。
将氧化石墨研碎,称取300mg分散于60ml去离子水中,得到棕黄色的悬浮液,超声分散1h后得到稳定的胶状悬浮液。
石墨烯合成过程

1 将3g石墨粉,2.5g k2S2O8(过硫酸钾)和2.5g P2O5(五氧化二磷)加入到12ml的浓硫酸中,在80o C的温度下强力搅拌4.5h。
(注:80o C以上即可,搅拌过程中时刻注意在水浴中加水,还要注意搅拌子是否转动,不要让溶液溅到内侧小烧杯中)
2 溶液冷却到室温后,将500ml的去离子水加入上述溶液中,静置12h。
(12h左右即可)
3 过滤出悬浮液,清洗、干燥,得到黑色固体。
4 将黑色固体混合120ml浓硫酸和15g的KMnO4,放到20o C一下的冰浴中冷却,然后转移到油浴(或水浴)中,在35o C下强力搅拌2h。
(注:注意添加顺序,浓硫酸和高锰酸钾容易发生爆炸)
5 将产生的黑灰色泥浆缓慢加入250ml的去离子水,再搅拌2h。
(加水时注意,以免发生危险)
6 用20ml(30wt%)的H2O2缓慢加入到溶液中,产生金灰色溶液。
(注:加双氧水要缓慢,以免发生危险)
7 合成产物离心,样品用稀盐酸(1:10)和去离子水清洗,直到溶液ph约为6,然后产物在40o C温度下干燥即可。
石墨烯制备四种主要方法

石墨烯制备四种主要方法石墨烯制备技术发展迅速。
石墨烯优良的性能和广泛的应用前景,极大的促进了石墨烯制备技术的快速发展。
自2004年Geim等首次用微机械剥离法制备出石墨烯以来,科研人员又开发出众多制备石墨烯的方法。
其中比较主流的方法有外延生长法、化学气相沉淀CVD 法和氧化石墨还原法等。
现有制法还不能满足石墨烯产业化的要求。
包括微机械剥离法、外延生长法、化学气相沉淀CVD法和氧化石墨还原法在内的众多制备方法目前仍不能满足产业化的要求。
特别是产业化要求石墨烯制备技术能稳定、低成本地生产大面积、纯度高的石墨烯,这一制备技术上的问题至今尚未解决。
微机械剥离法石墨烯首先由微机械剥离法制得。
微机械剥离法即是用透明胶带将高定向热解石墨片按压到其他表面上进行多次剥离,最终得到单层或数层的石墨烯。
2004年,Geim,Novoselov 等就是通过此方法在世界上首次得到了单层石墨烯,证明了二维晶体结构在常温下是可以存在的。
微机械剥离方法操作简单、制作样本质量高,是当前制取单层高品质石墨烯的主要方法。
但其可控性较差,制得的石墨烯尺寸较小且存在很大的不确定性,同时效率低,成本高,不适合大规模生产。
外延生长法外延生长方法包括碳化硅外延生长法和金属催化外延生长法。
碳化硅外延生长法是指在高温下加热SiC单晶体,使得SiC表面的Si原子被蒸发而脱离表面,剩下的C原子通过自组形式重构,从而得到基于SiC衬底的石墨烯。
金属催化外延生长法是在超高真空条件下将碳氢化合物通入到具有催化活性的过渡金属基底如Pt、Ir、Ru、Cu等表面,通过加热使吸附气体催化脱氢从而制得石墨烯。
气体在吸附过程中可以长满整个金属基底,并且其生长过程为一个自限过程,即基底吸附气体后不会重复吸收,因此,所制备出的石墨烯多为单层,且可以大面积地制备出均匀的石墨烯。
化学气相沉淀CVD法:最具潜力的大规模生产方法CVD法被认为最有希望制备出高质量、大面积的石墨烯,是产业化生产石墨烯薄膜最具潜力的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合成化学综述论文——石墨烯的合成姓名:常俊玉学号:1505120528学院:化学化工学院班级:应化1204班时间:2015-4-19石墨烯合成综述应化1204 常俊玉1505120528摘要:由于石墨烯优异的电学、光学、机械性能以及石墨烯广泛的应用前景,自英国曼彻斯特大学物理学教授Geim 等得到了稳定存在的石墨烯以来,掀起对碳材料的又一次研究热潮。
这10年来,石墨烯的制备方法上取得了重大进展。
本文对石墨烯的机械剥离法、化学气相沉积法、氧化还原法、有机合成法四种制备方法进行了综述,比较可以发现各种合成方法有其优缺点,实际生产可以根据实际情况选择对应方法。
关键词:石墨烯、机械剥离法、化学气相沉积法、氧化还原法、有机合成法一.引言石墨烯是由碳原子通过sp2 杂化,构成的单层蜂窝状二维网格结构。
石墨烯是构成其他碳同素异形体的基本单元,它可折叠成富勒烯(零维),卷曲成碳纳米管(一维),堆垛成石墨(三维),如图一所示[1]。
石墨烯的理论研究已经有60 多年,当时主要用来为富勒烯和碳纳米管等结构构建模型,没有人认为石墨烯会稳定存在,因为物理学家认为,热力学涨落不允许二维晶体在有限温度下存在。
2004 年,英国曼彻斯特大学物理学教授Geim 等,用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯[2]。
该发现立即引起了物理学家、化学家和材料学家的广泛关注,掀起了继富勒烯和碳纳米管之后碳材料的又一次研究热潮。
由于石墨烯优异的电学、光学和机械性能,以及石墨烯广泛的应用前景,石墨烯的发现者Geim 教授和Novoselov 博士被授予2010 年度诺贝尔物理学奖。
图一:石墨烯是构成其他维度碳材料的基本单元石墨烯可以折叠成零维的富勒烯,卷曲成一维的碳纳米管和堆垛成三维的石墨。
石墨烯的发现,对当时的物理认知产生了巨大冲击,同时点燃了美好希望。
作为一种独特的二维晶体,石墨烯有着非常优异的性能:具有超大的比表面积,理论值为2630m2/g;机械性能优异,杨氏模量达1.0TPa;热导率为5300W·m-1·K-1 ,是铜热导率的10 多倍;几乎完全透明,对光只有2.3%的吸收;在电和磁性能方面具有很多奇特的性质,如室温量子霍尔效应、双极性电场效应、铁磁性、超导性及高的电子迁移率[3]。
这些优异的性质,使得石墨烯在晶体管、太阳能电池、传感器、超级电容器、场发射和催化剂载体等领域有着良好的应用前景。
制备高质量的石墨烯和促进石墨烯的应用,是石墨烯领域的研究热点。
本文综述了近些年在石墨烯的制备方法方面取得的进展。
二.石墨烯制备方法从发现稳定存在的石墨烯到现在的6 年多时间里,石墨烯在制备方面取得了长足的进步,目前的研究热点已经从获得石墨烯发展到可控地制备石墨烯,如控制石墨烯的形状、尺寸、层数、元素掺杂和聚集形态等[4]。
目前制备石墨烯的方法有很多,主要包括机械剥离法、剖开碳纳米管法、化学气相沉积法、还原氧化石墨法和有机合成等方法。
以下对石墨烯的机械剥离法、化学气相沉积法、氧化还原法、有机合成法四种制备方法进行了综述。
2.1机械剥离法石墨是层状堆垛结构,层与层之间以较弱的范德华力结合,简单施加外力即可将石墨的层状结构分离。
机械剥离法是利用机械力,将石墨烯从高定向热解石墨晶体表面剥离下来的方法。
2004 年Geim 和Novoselov 等就是用透明胶带反复剥离高定向热解石墨获得石墨烯[2],从而开启了碳材料发展的新纪元。
该方法得到的石墨烯宽度一般在几微米至几十微米,最大可达到毫米量级,肉眼可观察到。
该方法设备简单,成本较低,同时由于高定向热解石墨内部的缺陷很少,制备的石墨烯质量较好。
但是这种方法制备石墨烯的偶然性很大,对层数的控制较为困难,机械剥离法实现工业化生产还有很大的困难。
原料石墨可以采用天然鳞片石墨,如果用高定向热解石墨为原料,可以进行以下操作[5]:(1)首先采用离子束在1mm厚的高定向热解石墨表面进行氧化等离子处理,在表面刻蚀出宽20μm—2mm,深5μm的微槽。
(2)将其用光刻胶粘到玻璃衬底上,然后再用透明胶带反复撕揭,将多余的高定向热解石墨去除。
(3)将粘有石墨薄片的玻璃衬底放入丙酮溶液中超声;(4)将单晶硅片放入丙酮溶剂中,将单层石墨烯“捞出”,在范德华力或毛细力作用下,单层石墨烯会吸附在单晶硅片上。
另一种机械剥离法简单有效:将石墨表面在另一个固体表面上摩擦,使石墨烯片附着在固体表面上,但尺寸不宜控制。
此方法操作简单,但产量极低。
2.2 化学气相沉积法2006 年,Somani 等[6]用化学气相沉积法,以樟脑为碳源,在850°C 的高温条件下,在镍箔上沉积碳原子,由镍箔在炉腔中自然冷却制备出石墨烯,该方法获得的石墨烯较厚,约有35 层。
此法虽然没有制得单层的石墨烯,但为石墨烯的制备提供了新的思路和手段。
Kim 等[7]在1000°C 的高温条件下通入甲烷,在金属镍上沉积碳原子,然后在氩气保护下,将镍以大约10°C/s 的速度冷却至室温,从而在镍薄膜表面析出一层石墨烯。
通过一定的溶液(如FeCl3溶液)将镍基底刻蚀掉,即得到漂浮在液面上的石墨烯,有利于石墨烯的转移和应用。
Kim 等的工作,促进了石墨烯的制备和转移,不过由于镍对碳的溶解能力较大,他们制备的石墨烯仍然以3~5 层为主,还没有实现单层石墨烯的可控制备。
Li 等[8]换用溶解碳能力比较低的金属铜作为基底,用类似于Kim 等的工艺条件,制备了大面积的石墨烯,单层石墨烯的比例约占95%。
同时他们发现,石墨烯的生长是自我限制的(self-limiting),制备样品的层数不会因为碳源进给量的增加而增加。
化学气相沉积法有利于石墨烯的可控制备,Qu 等[9]用甲烷为碳源在氨气气氛下,用类似于Kim 等的方法制备了氮掺杂的石墨烯[9]。
通过控制甲烷和氨气的比例,有望实现对石墨烯氮掺杂浓度的控制,这对石墨烯的应用是非常有利的。
Wei等[10]以ZnS 为模板,用化学气相沉积法制备了石墨烯。
ZnS 可以催化石墨烯的生长,通过控制ZnS 模板的形状,即可实现对石墨烯形状的控制,这种方法的可控性和可扩展性很好,将对石墨烯的应用产生重大的推动作用。
整体讲化学气相沉积法制备的石墨烯质量较高,可控性较好,同时易于得到完整薄膜状的石墨烯,利于石墨烯在太阳能和场发射等领域的应用,但是这种方法制备的石墨烯的量比较少,不利于石墨烯在超级电容器等领域的应用。
中国科学院沈阳金属所成会明课题组[11]以30μm 直径的镍颗粒为基板、甲烷为碳源,生长5min 后,用快速冷却的方法制备了5mg 的石墨烯,这种方法虽然石墨烯的产量较大,不过制备的石墨烯是宏观的块体结构,而不是薄膜状结构,使得化学气相沉积法制备的石墨烯失去了在太阳能和场发射电极等领域的应用优势。
常用制备方法:化学气相沉积法制备石墨烯多采用有机气体(如甲烷、乙烯等)、液体(如乙醇)或固态(如樟脑、蔗糖)。
下面以乙醇为例,介绍化学气相沉积法制备石墨烯的具体工艺步骤。
用于制备石墨烯的化学气相沉积装置如图所示,反应装置主体部分为电阻炉,以长度为1.5m,内径为35mm的石英管为反应室。
以乙醇为碳源,以金属箔(本实验采用铜箔和镍箔)为基底。
反应溶液在精密流量泵的带动下通过毛细管输入反应室中。
碳源在高温反应区中分解出碳原子并在基底上沉积并逐渐生长成连续的石墨烯薄膜。
制备石墨烯薄膜的具体实验操作如下[5]:(1)准备色谱纯(99.9%)的乙醇溶液为碳源;(2)将金属箔放入电炉的加热区中央,密封反应室;(3)通入氩气,流量为200mL/min,加热反应室温度至1000℃;(4)保持氩气流量200mL/min不变,保温一段时间,对金属箔进行高温预热处理;(5)开启精密流量泵,使反应溶液通过毛细管注入反应室,溶液进给速度为20μL/min,反应时间为5min;(6)反应完毕,停止进给反应溶液,将金属箔快速移动到炉口,关闭电炉,保持氩气流量200mL/min,直至炉温冷却至300℃一下。
石墨烯在镍和铜上的生长机制不同。
以镍作为基底时,碳原子首先在高温与镍形成固溶体,冷却时过饱和的碳在镍表面析出,形成石墨烯。
渗碳浓度和冷却速率对石墨烯的厚度(层数)至关重要,控制也较为困难。
而碳和铜不互溶,在石墨烯形成过程中,铜主要起类似催化剂的作用。
碳原子在同表面吸附并结晶生成石墨烯。
当一层石墨烯形成并覆盖在铜表面后,阻碍了后续碳原子沉积。
因此,在一定条件下,在铜基底上生长的石墨烯可控制为单层。
图二:石墨烯的生长机制(a)渗碳/析碳机制(b)表面吸附催化剂机制2.3氧化还原法氧化还原法,其基本思路是将机械剥离法应用于液相。
两者均以块体的石墨为原料制备石墨烯,此方法成本低,周期短,产量大,常被应用于石墨复合材料的制备。
将石墨氧化,能够在石墨边沿接上一些官能团,甚至在石墨层间插入一些物质,使得石墨层之间的引力变小,有利于石墨层的剥离,再通过还原剂还原剥离下来石墨片层,制备出石墨烯。
2005年,Stankovich等人[12]将石墨氧化并分散在水中,形成平均厚度只有几个纳米的石墨烯悬浊液。
同年,他们首次使用氧化还原法制备石墨烯,并将还原得到的石墨烯用聚合物包覆均匀地分散在水中[13].氧化还原法的原理如图3所示,第一步,将石墨进行氧化还原处理,改变石墨层片的自由电子对,对其表面进行含氧官能团(如羟基、羧基、羰基和环氧基)的修饰,这些官能团可以降低石墨层片间的范德华力,增强石墨的亲水性,便于分散在水中;第二步,将氧化石墨在水中剥离,形成均匀稳定的氧化石墨烯胶体;第三步,由于氧化石墨烯是绝缘体,而且缺陷多,需要将其还原成石墨烯,常见方法有化学还原、热还原和催化还原等方法,得到缺陷少,性能较好的石墨烯,但由于表面含氧官能团减少,导致石墨烯在水中的分散性变差。
图三:氧化还原法原理为了更好的分离石墨烯,得到更高单层石墨烯比例,氧化还原处理过程是制备石墨烯的关键。
石墨的层间距只有0.34nm,经过氧化后石墨的层间距扩大为0.7-1.2nm。
石墨是一种既不亲水也不亲油的物质,与之相比,氧化还原由于其表面的含氧官能团而有良好的亲水性。
图四是单层氧化石墨示意图。
图四:单层氧化石墨示意图自1859年Brodie首次发现氧化石墨以来,石墨的氧化方法主要有三种:Hummers法、Brodie法和Standenmaier法。
为了使石墨氧化更加充分,可对石墨进行膨胀预处理。
将石墨浸泡在有浓硫酸和双氧水组成的酸溶液中,是酸分子插层到石墨的夹层中,得到石墨层间化合物,有称可膨石墨,然后将可膨石墨在氩气的保护下快速加热到900℃,石墨夹层中的酸分子急速分解汽化成水蒸气和二氧化碳,将层片膨胀开,得到膨胀石墨,石墨层片可在垂直方向上膨胀几十倍甚至几百倍。