石墨烯的制备方法及应用

合集下载

氧化石墨烯的制备及应用

氧化石墨烯的制备及应用

氧化石墨烯的制备及应用石墨烯是一种纳米级厚度的碳材料,具有优异的电学、热学、力学和光学性质。

它的发现被视为一项科学界的突破,引起了广泛关注并被预示着将有各种各样的应用。

然而,石墨烯在一些场合下过于脆弱,需要一些具有能力改善其力学稳定性的方法。

在这个背景下,氧化石墨烯的制备方法就非常受人关注了。

一、氧化石墨烯的制备氧化石墨烯的制备主要有两种方法:石墨氧化和还原剂还原法。

1. 石墨氧化法石墨氧化法是制备氧化石墨烯的一种常见方法。

其原理是通过物理和化学手段使石墨表面产生氧化。

该方法首先将石墨粉末与浓硫酸混合,然后再加入硝酸使反应加剧,最后用稀碱溶液中和,从而得到氧化石墨烯。

石墨氧化法制备氧化石墨烯传统方法虽然简便易行且可以得到较高纯度的氧化石墨烯,但同时制备过程中会产生较多的副产物,如硫酸、硝酸等危险化学物质,制备过程中需耗费大量的化学试剂与剩余废物的处置工作也较为繁琐。

2. 还原剂还原法还原剂还原法是一种新的制备氧化石墨烯方法,主要是利用还原剂对氧化石墨烯进行还原。

还原过程中,还原剂可以充分还原石墨烯中的氧元素,从而提高氧化石墨烯的还原度和结晶度。

与氧化石墨烯比较,还原的石墨烯有比较好的物理性质和力学性质,不易破碎。

二、氧化石墨烯的应用氧化石墨烯的普及和应用,已迅速发展成为石墨烯领域的一个热点。

由于其独特的结构和性质,可以应用于电子器件、传感器、能量材料、生物医药等方面。

1. 传感器应用氧化石墨烯具有很高的电导率和比表面积,这使其非常适合用作电化学传感器的工作电极材料。

利用氧化石墨烯的高电导率,可以大大提高传感器的灵敏度和响应速度。

因此,氧化石墨烯广泛应用于环境监测、食品检测、生物传感器等领域。

2. 能量材料应用氧化石墨烯对于锂离子电池,太阳能电池、超级电容器等能量材料有着广泛应用。

其高电导率和良好的电化学性质,可以提高这些材料的能量密度和耐久性,增强其使用效果。

例如,通过改变氧化石墨烯层的数量,可以调整太阳能电池的吸收光谱范围和效率。

氧化石墨烯材料的制备及应用

氧化石墨烯材料的制备及应用

氧化石墨烯材料的制备及应用氧化石墨烯 (GO) 是石墨烯 (graphene) 的一种衍生物,是一种单层碳原子结构的二维材料。

GO是石墨烯在实际应用中使用广泛的形态之一,因其独特的物理和化学特性,被广泛应用于生物、能源、传感器、电池等领域。

本文将就氧化石墨烯材料的制备及应用进行论述。

一、氧化石墨烯的制备方法1、Hummers法Hummers法是一种在实验条件下将天然石墨氧化得到氧化石墨烯的方法。

其基本原理是使用硫酸和氧化剂 (如硝酸) 与天然石墨反应,制备出氧化石墨烯。

这种方法在制备氧化石墨烯方面已经被广泛应用,而且可以得到高质量的氧化石墨烯。

2、改良的Hummers法改良的Hummers法是 Hummers法的一种改良。

基本的反应方式与 Hummers法相似,但是改良方法中添加了氯化钠和硝酸钾,从而使反应速度得到了提高。

该方法是一种更加经济和环保的方法,使得制备氧化石墨烯的成本大大降低。

3、热还原法热还原法是一种利用热处理将氧化石墨烯还原成石墨烯的方法。

其基本原理是在高温下,使用还原剂 (如氢气、乙炔等) 将氧化石墨烯还原成石墨烯,从而得到单层石墨烯。

该方法具有高效、低成本等优点,但与其他方法相比,实现单层石墨烯的比例较低。

二、氧化石墨烯的应用1、生物医学领域应用氧化石墨烯具有较好的生物兼容性、低毒性、低免疫原性和高表面积等特性,因此在生物医学领域应用前景广阔。

例如,可以将 GO 纳米材料作为药物载体使用,GO 纳米材料可以将药物包裹在内,增加药物的稳定性和生物利用度,从而提高药物的疗效。

2、环境污染治理氧化石墨烯也可以用于治理环境污染。

例如,一些研究表明,氧化石墨烯可以作为吸附剂,吸附工业废水中的重金属离子,从而实现废水的净化。

3、锂离子电池氧化石墨烯也可以用于制备锂离子电池。

在锂离子电池中,将氧化石墨烯作为电极材料使用,可以有效提高电池的能量密度和循环寿命。

4、传感器应用氧化石墨烯还可以用于制备传感器,例如,氧化石墨烯技术可以用于制备高灵敏度的气体传感器、光学传感器和生物分子传感器等。

石墨烯的介绍

石墨烯的介绍
能源 石墨2烯1的3介绍
-
1 石墨烯的基本性质 2 石墨烯的制备方法 3 石墨烯的应用领域 4 结论与展望
石墨烯的介绍
石墨烯是一种由碳原子组成 的二维材料,它是单层石墨 的片状结构,具有极高的电 导率、热导率和机械强度
下面我们将详细介绍石墨烯 的基本性质、制备方法、应 用领域以及研究现状
CHAPTER 1
石墨烯的应用领域
能源领域
石墨烯的热导率和电导率都非常高,因此它在能源领域也有广泛的应用。例如,石墨烯可 以用于制造高效能电池和超级电容器等能源器件。此外,石墨烯还可以作为催化剂载体用 于燃料电池等领域
石墨烯的应用领域
生物医学领域
石墨烯具有良好的生物相容性和抗氧化性,因此在生物医学领域也有广泛的应用。例如, 石墨烯可以用于制造药物载体、生物传感器和成像试剂等生物医学器件。此外,石墨烯还 可以作为生物材料用于组织工程等领域
CHAPTER 3
石墨烯的应用领域
石墨烯的应用领域
石墨烯的应用领域
由于石墨烯具有优异 的物理和化学性质, 它在许多领域都有广 泛的应用。以下是石 墨烯的主要应用领域
石墨烯的应用领域
电子器件领域
石墨烯具有很高的电 导率,因此它在电子 器件领域具有广泛的 应用。例如,石墨烯 可以用于制造晶体管 、场效应管、太阳能 电池等电子器件。此 外,石墨烯还可以作 为透明导电膜用于显 示器等领域
CVD法
CVD法是一种常用的制备石墨烯的方法,它是通过加热含碳气体(如甲烷、乙炔等)在基底 表面形成石墨烯。这种方法可以制备大面积、高质量的石墨烯,但需要高温条件和复杂的 设备
石墨烯的制备方法
氧化还原法
氧化还原法是一种通过氧化剂将石墨氧化成氧化石墨,再通过还原剂将氧化石墨还原成石 墨烯的方法。这种方法制备的石墨烯质量较高,但需要使用化学试剂和复杂的工艺流程

石墨烯的制备及其在铅酸电池中的应用

石墨烯的制备及其在铅酸电池中的应用

过 1 5 0 0 0 c m / ( v・ S ) ,在温 度 为 4 K时 ,电子迁 移 率
约为 6 0 0 0 0 c m / ( v・ S ) p ] 。该 法能 够得 到 晶型 完整 的
石 墨烯 ,但 是 效率 很 低 ,不 能 用于 大规 模 生产 。现
阶段机械法有 了新的发展 ,如球磨法、三辊机械剥
从而 形成 极 薄 的石 墨 层 ,研究 结 果表 明该 方 法能 可 控地 制备 出单 层或 是 多层石 墨 烯 。
金 属 催 化 外 延 生 长 法 是 在 超 高 真 空 下 将 碳 氢
制 备石 墨烯 的 方法 。Li 【 6 ] 等 人选 用 CH 和 H: 混 合 气 体 ,在 1 0 0 0 ℃ 条件 下 ,在铜 箔表 面 生长 出石 墨 烯 ,得 到 的石 墨 烯 主要 为 单 层 ,将 其 转 移 到 S i基
经氧 气 或氢 气 刻蚀 处 理得 到 的样 品 ,除去 氧 化物 ,
化学 气相 沉淀 法 ( C VD)是 以 甲烷 、乙炔等 作 为 碳 源 ,将平 面 基板 C u 、Ni 放 置于 高温 含碳 源 的 气 氛 中进 行化 学 反应 ,反应 持 续一 定 时 间后进 行 冷
却 ,形成 的 固体 沉 积在加 热的 固态 基 体表 面 ,进 而
向裂 解 石墨 ,用等 离 子体 进 行刻 蚀 得到 微槽 ,然后 将其 固定在 玻 璃衬 底 上 ,之 后使 用 胶带 对其 进 行 反
种 ,不 同的 方 法 氧 化 的 程 度 不 同 ,其 中最 常 用 的 为 Hu mme r s法 [ 。氧 化石 墨 因含 有极 性 基 团如 羧 基 、羟基 等 ,从 而使 石 墨烯 具 有 强烈 的亲 水性 ,水 分 子 能 插 入 片 层 之 间 ,可 采 用 超 声 将 氧 化 石 墨 完 全 剥 离 ,分 散 在 水 介 质 中 。通 过 化 学 还 原 ( 用 还 原 剂 如 肼 、硼 氢 化 钠 等 ) 、热 还 原 、光 催化 辅 助

石墨烯材料在纺织及其他领域中的应用

石墨烯材料在纺织及其他领域中的应用

2、石墨烯材料在纺织品抗菌中 的应用
2、石墨烯材料在纺织品抗菌中的应用
石墨烯具有较好的抗菌性能,可有效杀灭大肠杆菌、金黄色葡萄球菌等常见 细菌。将石墨烯与棉纤维结合,可制备出具有抗菌性能的棉织物,提高纺织品的 卫生安全性。此外,石墨烯抗菌织物还可以用于医疗、卫生等领域,提高医疗器 械和用品的消毒效果。
石墨烯材料在纺织及其他领 域中的应用
目录
01 一、石墨烯材料在纺 织领域中的应用
03 参考内容
02
二、石墨烯材料在其 他领域中的应用
内容摘要
石墨烯是一种由单层碳原子组成的二维材料,具有优异的物理和化学性质, 如高导电性、高热导率、高强度、高柔韧性等。近年来,随着石墨烯制备技术的 不断发展,其在纺织领域以及其他领域中的应用逐渐受到广泛。本次演示将介绍 石墨烯材料在纺织及其他领域中的应用情况。
石墨烯及氧化石墨烯的结构与性能
氧化石墨烯也是一种二维材料,但与石墨烯不同,它是由石墨氧化物组成。 它的结构中含有大量的官能团,如羟基、羧基等,因此具有很好的亲水性和化学 反应活性。同时,氧化石墨烯也具有很好的力学性能和电学性能。
石墨烯及氧化石墨烯在纺织领域 的应用
石墨烯及氧化石墨烯在纺织领域的应用
一、石墨烯材料在纺织领域中的 应用
1、石墨烯材料在纺织品功能整 理中的应用
1、石墨烯材料在纺织品功能整理中的应用
石墨烯材料具有较好的导电性和热导率,可将石墨烯制备成功能整理剂,用 于提高纺织品的导电性和热导率。将石墨烯功能整理剂应用于棉织物,可有效提 高其抗静电性能和吸湿性,同时也能提高织物的舒适性和透气性。此外,石墨烯 功能整理剂还可以用于制备抗菌整理剂,提高纺织品的抗菌性能。
为人类创造更加健康、舒适、可持续的环境。随着石墨烯制备技术的不断发 展和成本的不断降低,相信石墨烯材料在未来将会有更加广泛的应用和推广。

石墨烯的制备方法和物理性质

石墨烯的制备方法和物理性质

石墨烯的制备方法和物理性质石墨烯是一种由碳原子构成的单层平面晶体材料,具有极高的强度、导电性、热传导性和柔韧性等优异性能,在材料科学和纳米技术领域受到广泛的研究和应用。

本文将介绍石墨烯的制备方法和物理性质,以及在材料科学和纳米技术领域的应用前景。

石墨烯的制备方法1. 机械剥离法机械剥离法是最早被报道的石墨烯制备方法之一,它利用石墨的层状结构,在硅衬底上加工磨砂纸,使碳原子分层剥离并转移到硅衬底上。

这种方法简单易行,可以制备出大面积、厚薄均匀的石墨烯,但缺点是产率低、成本高、无法控制石墨烯的尺寸和形状等。

2. 化学气相沉积法化学气相沉积法是一种高效、可控的石墨烯制备方法。

该方法利用高温下的催化剂,将气态前体分子(如甲烷、乙烯等)在金属表面上沉积并裂解,生成碳原子层状沉积在金属表面上,形成石墨烯。

该方法可以制备出高质量、大面积、走向统一的石墨烯,但需要高温反应条件,需要复杂的仪器设备和专业的操作技能。

3. 化学还原法化学还原法是一种以氧化石墨为前体,通过化学还原还原成石墨烯的方法。

该方法简单易行、操作方便,但化学过程中产生的有毒物质对环境和健康有一定危害。

4. 离子注入法离子注入法是一种通过离子注入技术,在石墨上注入高能度离子,使其形成缺陷、空陷、裂纹等,从而剥离出石墨烯的方法。

该方法可以制备出高质量、规模可控的石墨烯,但需要特殊的离子注入设备和专业的技术。

石墨烯的物理性质1. 强度石墨烯具有极高的强度,是目前已知最强的材料之一。

石墨烯是由碳原子单层构成的平面晶体,具有很好的延展性和柔性,在受力时可以自由伸展、收缩或扭曲,而不会断裂或变形。

2. 导电性石墨烯具有极高的导电性,是目前已知最好的导电材料之一。

由于石墨烯具有特殊的层状结构和π电子共轭体系,它的电子可以在单层平面上自由运动,形成二维电子气,导电性能极佳。

3. 热传导性石墨烯具有极高的热传导性,是目前已知最好的热传导材料之一。

由于石墨烯具有特殊的层状结构和强的σ键和π键共轭体系,它的热电子可以在平面内自由传递,热传导性能极佳。

碳纳米管和石墨烯的制备和应用

碳纳米管和石墨烯的制备和应用

碳纳米管和石墨烯的制备和应用近年来,碳纳米管和石墨烯作为纳米材料的代表,备受人们的关注。

这两种材料具有独特的结构和性质,在电子、光学、力学等领域有着广泛的应用前景。

本文将从碳纳米管和石墨烯的制备方法入手,探讨它们在不同领域的应用。

一、碳纳米管的制备碳纳米管是由碳元素构成的空心圆柱形结构,具有优异的力学、导电性和导热性能。

目前,碳纳米管的制备方法主要有热解法、化学气相沉积法、电化学法等。

其中,热解法是最早发现并用于碳纳米管生长的方法。

该方法的原理是在一定温度下,将一定的碳源(如甲烷、乙炔等)和催化剂(如金属镍、铁、钴等)放入反应釜中,通过化学反应得到碳纳米管。

该方法制备的碳纳米管品质较高,但操作复杂,设备成本高。

化学气相沉积法是目前常用的制备碳纳米管的方法之一。

该方法在高温和高压的条件下,将碳源和催化剂引入反应釜,形成气相反应,得到碳纳米管。

该方法制备的碳纳米管品质较好,且操作简单,设备成本相对较低。

电化学法是新近发展的一种碳纳米管制备方法。

该方法利用电化学过程,在特定电位下,通过碳源电解得到碳纳米管。

该方法制备的碳纳米管品质较好,且操作简单,设备成本也相对较低。

二、碳纳米管的应用碳纳米管具有优异的力学和电学性能,因此在电子、传感、能源等方面有广泛的应用。

1.电子领域碳纳米管具有比硅和铜更好的导电性和导热性,在微电子器件中有着广泛的应用。

例如,碳纳米管晶体管具有高电流开关和系统响应速度,可以用于高速数据处理和通信系统。

2.生物传感和药物输送领域碳纳米管的比表面积大、生物相容性好、生物荧光性强等优点,使得其在生物传感和药物输送领域有广泛的应用。

例如,利用碳纳米管在胶体中的性质,可以制备高度灵敏的生物传感器和药物递送系统。

3.能源领域由于碳纳米管具有高导电性和导热性能,可以用于制备高效的电池、超级电容器、太阳能电池等。

例如,采用碳纳米管作为电极材料,可以制备高性能的锂离子电池。

三、石墨烯的制备石墨烯是由碳元素构成的单层蜂窝状结构,具有极高的强度和导电性。

石墨烯材料的性质及应用

石墨烯材料的性质及应用

石墨烯材料的性质及应用石墨烯是一种类似于石墨的二维材料,是由碳原子通过共价键连接成一个平面网络。

石墨烯的单层结构具有许多惊人的性质,如高导电性、高热导性、高强度、高柔韧性、高光学透明性等。

这些性质使得石墨烯材料在电子学、光学、能源、生物医学等领域应用极为广泛,有着巨大的潜力和市场前景。

1. 石墨烯的制备石墨烯最早是由英国的两位诺贝尔奖获得者安德里·海姆和康士坦丁·诺沃肖洛夫在2004年实验室中发现的。

目前,石墨烯的制备方法主要有以下几种:(1)机械剥离法机械剥离法是最早发现的石墨烯制备方法,其原理是通过石墨石材料的机械剥离可以获得单层石墨烯结构。

这种方法简单易行,但是有着较低的制备效率和较粗糙的表面。

(2)化学气相沉积法(CVD)化学气相沉积法是一种典型的材料制备方法,通过在高温下将气相前体分子反应在金属基底上,可以实现石墨烯薄膜的制备。

该方法成品质量较高,但需要高成本设备和复杂操作。

(3)氧化还原法(GO/RGO)氧化还原法是用强酸处理粉末石墨制备氧化石墨(GO),再通过还原还原氧化石墨(RGO)的方法制备石墨烯的过程。

这种方法制备的石墨烯具有高度的可控性和高质量程度。

2. 石墨烯材料的性质石墨烯具有许多优异的性质和特点,使其成为当今材料科学中的新宠。

(1)高导电性石墨烯中的碳原子只有两个相邻的原子可以形成共价键,因此石墨烯的电子可以自由运动,电荷载流性能极佳。

它的电学性质趋近于一个理想的二维金属,因此在电子学、光学、能源、生物医学等领域被广泛应用。

(2)高热导性由于石墨烯中碳原子的高度紧密排列,热量可以快速传导。

与金属材料相比,石墨烯的热导率达到了非常高的数值,这种性质需要在热管理、电子冷却等应用中得到广泛应用。

(3)高强度和高柔性石墨烯具有极高的强度和柔性,在普通条件下可承受巨大的拉力和压力,同时保持材料的完整性,因此在制备微型机械、生物传感器等领域应用中具有很大的潜力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石墨烯的制备方法及应用无机光电0901 3090707020 黄飞飞摘要:石墨烯具有非凡的物理性质,如高比表面积、高导电性、高机械强度、易于修饰及大规模生产等。

2004年石墨烯的成功剥离,使石墨烯成为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,其产品研发和应用目前正在全球范围内急剧增加,本文通过对石墨烯特性、制备方法、在光电器件方面的应用几方面进行了综述,希望对石墨烯的综合应用进展有所了解。

关键词:石墨烯制备方法应用1 引言人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。

当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。

石墨烯(Graphene)的理论研究已有 60 多年的历史。

石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至 2004 年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因在二维石墨烯材料的开创性实验而共同获得2010年诺贝尔物理学奖。

石墨烯的出现在科学界激起了巨大的波澜,从2006年开始,研究论文急剧增加,作为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,旨在应用石墨烯的研发也在全球范围内急剧增加,美国、韩国,中国等国家的研究尤其活跃。

石墨烯或将成为可实现高速晶体管、高灵敏度传感器、激光器、触摸面板、蓄电池及高效太阳能电池等多种新一代器件的核心材料。

2 石墨烯的基本特性至今为止,已发现石墨烯具有非凡的物理及电学性质,如高比表面积、高导电性、机械强度高、易于修饰及大规模生产等。

石墨烯是零带隙半导体,有着独特的载流子特性,为相对论力学现象的研究提供了一条重要途径;电子在石墨烯中传输的阻力很小,在亚微米距离移动时没有散射,具有很好的电子传输性质;石墨烯韧性好,有实验表明,它们每 100nm 距离上承受的最大压力可达 2.9 N,是迄今为止发现的力学性能最好的材料之一。

石墨烯特有的能带结构使空穴和电子相互分离,导致了新电子传导现象的产生,如量子干涉效应、不规则量子霍尔效应等。

Novoselov 等观察到石墨烯具有室温量子霍耳效应,使原有的温度范围扩大了10 倍。

石墨烯在很多方面具备超越现有材料的特性,具体如图 1 所示[1],日本企业的一名技术人员形容单层石墨碳材料“石墨烯”是“神仙创造的材料”。

石墨烯的出现,有望从构造材料到用于电子器件的功能性材料等广泛领域引发材料革命。

图1 神奇材料石墨烯的特点3 石墨烯的制备方法3.1 石墨烯的制备方法概述目前有关石墨烯的制备方法, 国内外有较多的文献综述[2], 石墨烯的制备主要有物理方法和化学方法。

物理方法通常是以廉价的石墨或膨胀石墨为原料, 通过微机械剥离法、液相或气相直接剥离法来制备单层或多层石墨烯, 此法原料易得, 操作相对简单, 合成的石墨烯的纯度高、缺陷较少, 但费时、产率低下, 不适于大规模生产。

目前实验室用石墨烯主要多用化学方法来制备, 该法最早以苯环或其它芳香体系为核, 通过多步偶联反应取代苯环或大芳香环上6个, 循环往复, 使芳香体系变大, 得到一定尺寸的平面结构的石墨烯(化学合成法)[3]。

2006 年 Stankovich 等[4]首次用肼还原脱除石墨烯氧化物(graphene oxide, 以下简称 GO)的含氧基团从而恢复单层石墨的有序结构(氧化还原法), 在此基础上人们不断加以改进, 使得氧化还原法(含氧化修饰还原法)成为最具有潜力和发展前途的合成石墨烯及其材料的方法[5]。

除此之外, 晶体外延生长、化学气相沉积也可用于大规模制备高纯度的石墨烯。

本文重点总结近三年化学法, 尤其是氧化还原法制备石墨烯的研究进展, 并对制备石墨烯的各种途径的优缺点加以评述。

3.2 物理法制备石墨烯3.2.1 微机械剥离法微机械剥离法是最早用于制备石墨烯的物理方法。

Geim等[1]在1mm厚的高定向热解石墨表面进行干法氧等离子刻蚀, 然后将其粘到玻璃衬底上, 接着在上面贴上 1μm 厚湿的光刻胶,经烘焙、反复粘撕, 撕下来粘在光刻胶上的石墨片放入丙酮溶液中洗去, 最后将剩余在玻璃衬底上的石墨放入丙醇中进行超声处理, 从而得到单层石墨烯. 虽然微机械剥离是一种简单的制备高质量石墨烯的方法, 但是它费时费力, 难以精确控制, 重复性较差, 也难以大规模制备。

3.2.2 液相或气相直接剥离法通常直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000℃以上把表面含氧基团除去来获取)加在某种有机溶剂或水中, 借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。

Coleman 等参照液相剥离碳纳米管的方式将石墨分散在 N-甲基-吡咯烷酮 (NMP) 中, 超声1h后单层石墨烯的产率为1%[6], 而长时间的超声(462h)可使石墨烯浓度高达 1.2mg/mL, 单层石墨烯的产率也提高到 4%[7]。

他们的研究表明[8], 当溶剂的表面能与石墨烯相匹配时, 溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量, 而能够较好地剥离石墨烯的溶剂表面张力范围为40~50mJ/m2;Hamilton 等[9]把石墨直接分散在邻二氯苯(表面张力: 36.6mJ/m2)中, 超声、离心后制备了大块状(100~500nm)的单层石墨烯;Drzal等[10]利用液-液界面自组装在三氯甲烷中制备了表面高度疏水、高电导率和透明度较好的单层石墨烯. 为提高石墨烯的产率, 最近Hou等[11]发展了一种称为溶剂热插层(solvothermal-asssisted exfoliation)制备石墨烯的新方法(图 2), 该法是以 EG为原料, 利用强极性有机溶剂乙腈与石墨烯片的双偶极诱导作用(dipole-induced dipole interaction)来剥离、分散石墨, 使石墨烯的总产率提高到 10%~12%. 同时, 为增加石墨烯溶液的稳定性, 人们往往在液相剥离石墨片层过程中加入一些稳定剂以防止石墨烯因片层间的范德华力而重新聚集。

Coleman 研究小组在水/十二烷基苯磺酸钠( SDBS) 中超声处理石墨 30min, 详细研究了石墨初始浓度以及 SDBS 浓度对石墨烯产率的影响, 发现所得的石墨烯多数在 5 层以下, 并且具有较高的导电率(~104S/m)[27], 后来发现柠檬酸钠作为稳定剂也具有较好的离分散效果[12]。

Englert等[13]合成一种新型的水溶性含大芳香环的两亲性物质并作为片层石墨的稳定剂(图3), 利用该物质与石墨片层的π-π堆积与疏水作用来制备稳定的石墨烯水溶液。

最近, 为同时提高单层石墨烯的产率及其溶液的稳定性, Li 等[14]提出“exfoliation-rein-tercalation-expansion”方法(图4), 以高温处理后的部分剥离石墨为原料, 用特丁基氢氧化铵插层后,再以 DSPE-mPEG 为稳定剂, 合成的石墨烯 90%为单层, 且透明度较高(83%~93%)。

另外, 一些研究人员研究了利用气流的冲击作用来提高剥离石墨片层的效率, Janowska 等[15]以膨胀石墨为原料, 微波辐照下发现以氨水做溶剂能提高石墨烯的总产率(~8%), 深入研究证实高温下溶剂分解产生的氨气能渗入石墨片层中, 当气压超过一定数值足以克服石墨片层间的范德华力而使石墨剥离. Pu 等[16]将天然石墨浸入超临界 CO2中30min 以达到气体插层的目的, 经快速减压后将气体充入 SDBS 的水溶液中即制得稳定的石墨烯水溶液, 该法操作简便、成本低, 但制备的石墨烯片层较多(~10 层)。

因以廉价的石墨或膨胀石墨为原料, 制备过程不涉及化学变化, 液相或气相直接剥离法制备石墨烯具有成本低、操作简单、产品质量高等优点, 但也存在单层石墨烯产率不高、片层团聚严重、需进一步脱去稳定剂等缺陷. 为克服这种现象, 最近Knieke 等[17]发展了一种大规模制备石墨烯的方法,即液相“机械剥离”。

该法采取了一种特殊的设备,高速剪切含十二烷基磺酸钠的石墨水溶液, 3h 后溶液中单层和多层石墨烯的浓度高达 25g/L, 而 5h 后50%以上的石墨烯厚度小于 3nm, 该法具有成本低、产率高、周期短等优势, 是一种极有诱惑力的大规模制备石墨烯的途径。

图2 溶剂热剥离法制备石墨烯图3 合成的水溶性两亲性物质图4 “剥离−再插层−膨胀”法制备石墨烯3.3 化学法制备石墨烯3.3.1 化学气相沉积法(CVD)化学气相沉积(chemical vapor deposition, CVD)是反应物质在相当高的温度、气态条件下发生化学反应, 生成的固态物质沉积在加热的固态基体表面,进而制得固体材料的工艺技术。

CVD 是工业上应用最广泛的一种大规模制备半导体薄膜材料的方法,也是目前制备石墨烯的一条有效途径. Srivastava等制备[18]采用微波增强 CVD 在 Ni 包裹的 Si 衬底上生长出了约 20nm 厚的花瓣状石墨片, 形貌并研究了微波功率对石墨片形貌的影响. 研究结果表明:微波功率越大, 石墨片越小, 但密度更大。

此种方法制备的石墨片含有较多的Ni元素。

Zhu 等[19]用电感耦合射频等离子体 CVD 在多种衬底上生长出纳米石墨微片。

这种纳米薄膜垂直生长在衬底上,形貌类似于 Srivastava 等[20]制备的“花瓣状”纳米片, 进一步研究发现这种方法生长出来的纳米石墨片平均厚度仅为 1nm, 并且在透射电镜下观察到了垂直于衬底的单层石墨烯薄膜(厚 0.335nm)。

Berger等[21]将SiC置于高真空、1300 ℃下,使 SiC 薄膜中的 Si 原子蒸发出来, 制备了厚度仅为1~2 个碳原子层的二维石墨烯薄膜。

最近韩国成均馆大学研究人员[22]在硅衬底上添加一层非常薄的镍(厚度< 300nm), 然后在甲烷、氢气与氩气混合气流中加热至 1000℃, 再将其快速冷却至室温, 即能在镍层上沉积出 6~10 层石墨烯, 通过此法制备的石墨烯电导率高、透明性好、电子迁移率高(~3700 cm2/(V·s)),并且具有室温半整数量子 Hall 效应, 而且经图案化后的石墨烯薄膜可转移到不同的柔性衬底, 可用于制备大面积的电子器件(如电极、显示器等), 为石墨烯的商业化应用提供了一条有效的途径。

CVD 法可满足规模化制备高质量、大面积石墨烯的要求,但现阶段较高的成本、复杂的工艺以及精确的控制加工条件制约了 CVD 法制备石墨烯的发展, 因此该法仍有待进一步研究[23]。

相关文档
最新文档