石墨烯的制备与应用
石墨烯材料的制备和应用

石墨烯材料的制备和应用石墨烯是由碳原子构成的单层蜂窝状结构材料,拥有极强的导电、导热、机械强度和化学稳定性等优良特性,具有广泛的应用前景。
本文将介绍石墨烯的制备和应用领域。
一、石墨烯的制备方法1.机械剥离法石墨烯最早的制备方法之一是机械剥离法。
该方法利用粘性较小的胶带或者放电石墨杆等将石墨中的石墨烯层分离,再用显微镜或者扫描电镜进行观察和鉴定。
这种方法制备出的石墨烯材料不仅成本较低,而且结构较为单一。
但是,其缺点也很明显:不适用于大批量生产,且对石墨质量要求极高,生产效率很低。
2.氧化-还原法除了机械剥离法外,氧化-还原法也是石墨烯的常用制备方法。
其步骤为,对石墨进行高温氧化处理,得到氧化石墨,然后通过还原反应将其还原得到石墨烯。
这种制备方法简单易行,对石墨原料的要求较低且可大规模生产。
但是生产出的石墨烯含杂质较多,且其质量受到还原反应条件的限制。
3.化学气相沉积法化学气相沉积法(CVD)用热解的气相碳源沉积在晶种上。
CVD法是石墨烯的高规模生产的主要方法,制备的石墨烯为多晶性,但石墨烯的芯片可达到厘米级别,还可以控制其厚度,并且产生的杂质很少。
此法需要高昂的设备和高温高压等极其苛刻的条件来实现,且实验步骤复杂,但是,这种方法却可以获得高纯石墨烯。
二、石墨烯的应用领域1.电子学领域石墨烯由于其优良的电导性、透明度和受限于电子的高度可调制性,是构筑微型电路和其他电子元件的理想选择。
在电子领域,石墨烯的应用将涉及到传感器、场效应晶体管以及集成电路等领域。
石墨烯电极也用于生产锂离子电池、电容器和柔性电路板等方面,有较好的应用前景。
2.生物医学领域石墨烯的高比表面积、良好的生物相容性和其他特殊的物理和化学性质在生物医学等领域中也具有巨大的潜力。
石墨烯可以用于生物传感器、分子探针、药物释放器及其它医疗器械等等。
例如,在药物释放器方面,石墨烯可以帮助精准释放药物、降低药物剂量、减轻药物不良反应、延长药物释放周期等。
石墨烯的制备技术及其应用

石墨烯的制备技术及其应用第一章石墨烯的简介石墨烯是一种由碳原子组成的单层二维晶体材料,其非常薄且具有出色的电子、光学、力学等性能。
石墨烯最初被制备出来是通过机械剥离的方法,该方法通常利用胶带将石墨材料持续剥离,最终得到单层结构。
这种方法虽然简单但效率低下,难以在大规模制造中应用。
因此,发展一种高效制备石墨烯的技术是极其必要的。
第二章石墨烯的制备技术2.1 化学气相沉积法 (CVD)CVD是制备石墨烯的一种常用方法,其原理是在金属催化剂表面,将碳源分解成一层石墨烯。
这种方法优点是可以制备大面积的单层石墨烯,且制备过程中控制参数较为灵活,但由于需要使用高温等条件,对设备、条件等要求较高。
2.2 溶剂剥离法溶剂剥离法的原理是将石墨氧化物转变为石墨烯,然后使用溶剂剔除无用部分。
此方法虽然容易实施,但也较为依赖原料质量和过程参数控制。
2.3 机械剥离法机械剥离法是一种传统的石墨烯制备方法。
通过使用胶带将石墨材料持续剥离,最终得到单层结构。
这种方法虽然简单但效率低下,难以在大规模制造中应用。
第三章石墨烯的应用3.1 电子学由于石墨烯的独特电学特性,其在电子学领域的应用非常广泛。
例如,石墨烯可以被用作场效晶体管( FET)、场发射器( FE)、无源电路的元件等等。
3.2 生物学由于石墨烯材料的生物相容性和阻抗特性较低,石墨烯在生物学领域得到广泛应用。
例如,石墨烯可以用于生物传感器系统、药物释放工具等。
3.3 透明电极石墨烯可以用于制备透明电极,其具有良好的导电性和透明性。
透明电极的应用包括液晶显示器、有机太阳能电池、OLED等。
第四章结论石墨烯由于其出色的电学、力学、光学等性质已经成为材料科学、物理学和化学领域的研究热点之一。
目前,国内外对石墨烯制备技术和其应用的研究也越来越广泛深入。
未来,石墨烯将会在电子学、生物学、光电子学领域等得到更广泛的应用。
综述石墨烯的制备与应用

半导体物理课程作业石墨烯的制备与应用(材料)目录一、石墨烯概述 (2)二、石磨烯的制备 (3)1、机械剥离法 (3)2、外延生长法 (5)3、化学气相沉积法 (6)4、氧化石墨-还原法 (6)5、电弧法 (9)6、电化学还原法 (9)7、有机合成法 (10)三、石墨烯的应用 (11)1、石墨烯在电子器件领域的应用 (11)1.1 石墨烯场效应晶体管 (11)1.2 石墨烯基计算机芯片 (12)1.3 石墨烯信息存储器件 (13)2、石墨烯在能源领域的应用 (14)2.1 石墨烯超级电容器 (14)2.2 锂离子电池 (15)2.3 太阳能电池 (16)2.4 储氢/甲烷器件 (17)3、石墨烯在材料领域的应用 (18)3.1 特氟龙材料替代物 (18)3.2 石墨烯聚合物复合材料 (18)3.3 光电功能材料 (19)4、石墨烯在生物医药领域的应用 (20)4.1 基于氧化石墨烯的纳米载药体系 (20)4.2 氧化石墨烯对DNA/基因/蛋白的选择性检测 (21)4.3用于生物成像技术 (23)4.4 石墨烯在肿瘤治疗方面的应用 (23)四、总结及展望 (24)参考文献 (25)一、石墨烯概述碳广泛存在于自然界中,是构成生命有机体的基本元素之一。
碳基材料是材料界中一类非常具有魅力的物质,从无定形的碳黑到晶体结构的天然层状石墨;从零维纳米结构富勒烯到一维碳纳米管无不给人们带来炫丽多彩的科学新思路。
而二维碳基材料石墨烯的发现,不仅极大地丰富了碳材料的家族,而且其所具有的特殊纳米结构和性能,使得石墨烯无论是在理论还是实验研究方面都已展示出了重大的科学意义和应用价值,从而为碳基材料的研究提供新的目标和方向。
碳的晶体结构—石墨和金刚石(三维)是自然界中最早为人们熟知的两种碳同素异构体,因化学成键方式不同而具有截然相反的特性。
1985年,一种被称为“巴基(零维)被首次发现,三位发现者于11年后, 即1996年获诺贝尔球”的足球形分子C60化学奖。
石墨烯的制备方法及发展应用概述

石墨烯的制备方法及发展应用概述一、本文概述石墨烯,一种由单层碳原子紧密排列形成的二维纳米材料,自2004年被科学家首次成功制备以来,便以其独特的物理和化学性质,引发了全球范围内的研究热潮。
本文旨在全面概述石墨烯的制备方法,以及其在各个领域的发展应用。
我们将介绍石墨烯的基本结构和性质,为后续的制备方法和应用探讨提供理论基础。
接着,我们将重点阐述石墨烯的几种主要制备方法,包括机械剥离法、化学气相沉积法、氧化还原法等,并分析各方法的优缺点。
随后,我们将深入探讨石墨烯在能源、电子、生物医学等领域的应用现状和发展前景。
我们将对石墨烯的未来研究方向进行展望,以期为其在实际应用中的进一步推广提供参考。
二、石墨烯的制备方法石墨烯的制备方法多种多样,每一种方法都有其独特的优缺点和适用范围。
目前,石墨烯的主要制备方法包括机械剥离法、化学气相沉积法(CVD)、氧化还原法、碳化硅外延生长法以及液相剥离法等。
机械剥离法:这是最早用于制备石墨烯的方法,由英国科学家Geim和Novoselov在2004年首次报道。
他们使用胶带反复剥离石墨片,最终得到了单层石墨烯。
这种方法虽然简单,但产量极低,且无法控制石墨烯的尺寸和形状,因此只适用于实验室研究,不适用于大规模生产。
化学气相沉积法(CVD):CVD法是目前工业上大规模制备石墨烯最常用的方法。
它通过高温下含碳气体在催化剂表面分解生成石墨烯。
这种方法可以制备出大面积、高质量的石墨烯,且生产效率高,成本低,因此被广泛应用于石墨烯的商业化生产。
氧化还原法:这种方法首先通过化学方法将石墨氧化成石墨氧化物,然后通过还原反应将石墨氧化物还原成石墨烯。
这种方法制备的石墨烯往往含有较多的缺陷和杂质,但其制备过程相对简单,成本较低,因此也被广泛用于石墨烯的大规模制备。
碳化硅外延生长法:这种方法通过在高温和超真空环境下加热碳化硅单晶,使硅原子从碳化硅表面升华,剩余的碳原子重组形成石墨烯。
这种方法制备的石墨烯质量高,但设备成本高,制备过程复杂,限制了其在大规模生产中的应用。
石墨烯复合材料的制备及应用研究进展

石墨烯复合材料的制备及应用研究进展一、本文概述石墨烯,作为一种新兴的二维纳米材料,因其独特的电子结构、优异的物理和化学性能,在复合材料领域引起了广泛的关注。
石墨烯复合材料结合了石墨烯和其他材料的优点,使得这种新型复合材料在力学、电学、热学等方面表现出色,因此具有广阔的应用前景。
本文旨在综述石墨烯复合材料的制备方法、性能特点以及在不同领域的应用研究进展,以期为石墨烯复合材料的进一步研究和实际应用提供理论支持和参考。
本文将首先介绍石墨烯及其复合材料的基本概念和特性,然后重点综述石墨烯复合材料的制备方法,包括溶液混合法、原位合成法、熔融共混法等。
接着,文章将探讨石墨烯复合材料在能源、电子、生物医学、航空航天等领域的应用研究进展,分析其在提高材料性能、降低成本、推动相关产业发展等方面的重要作用。
本文还将对石墨烯复合材料未来的研究方向和应用前景进行展望,以期推动这一领域的持续发展和创新。
二、石墨烯复合材料的制备方法石墨烯复合材料的制备方法多种多样,每一种方法都有其独特的优点和适用范围。
以下是几种主要的制备方法:溶液混合法:这是最简单且最常用的方法之一。
首先将石墨烯分散在适当的溶剂中,然后通过搅拌或超声处理使其均匀分散。
接着,将所需的基体材料(如金属氧化物、聚合物等)加入溶液中,通过搅拌或热处理使石墨烯与基体材料充分混合。
通过过滤、干燥等步骤得到石墨烯复合材料。
这种方法操作简便,但石墨烯在溶剂中的分散性和稳定性是关键因素。
原位生长法:这种方法通常在高温或特定气氛下进行,利用石墨烯与基体材料之间的化学反应,使石墨烯在基体材料表面或内部原位生长。
例如,通过化学气相沉积(CVD)或热解等方法,在金属氧化物或聚合物表面生长石墨烯。
这种方法可以得到石墨烯与基体材料结合紧密、性能优异的复合材料,但操作过程较复杂,且需要特殊的设备。
熔融共混法:对于高温稳定的基体材料,如金属或某些聚合物,可以采用熔融共混法制备石墨烯复合材料。
功能化石墨烯的制备及应用

功能化石墨烯的制备及应用石墨烯是一种由碳原子组成的一层厚的二维结构材料,具有高导电性、高导热性、超高比表面积、良好的机械性能和化学稳定性等优异特性,因而成为材料领域研究的热点和前沿。
为了实现石墨烯的工业化应用,需要针对其性质进行各种功能化修饰。
因此,本文将着重讨论以石墨烯为原材料的功能化修饰技术和应用。
一、石墨烯的制备技术石墨烯的制备技术可以分为机械剥离法、化学气相沉积法、化学还原法、物理气相沉积法和氧化石墨烯还原法等多种方法,其中机械剥离法和化学气相沉积法的应用最为广泛。
机械剥离法是将石墨材料通过力学剥离的方式制备石墨烯。
这种方法成本低廉,制备出的石墨烯品质较好,但是缺点也很明显,即杂质杂质多,生产成本高。
化学气相沉积法是利用金属或者金属化合物的催化作用,在高温的条件下将碳源分子分解产生石墨烯。
这种方法制备的石墨烯质量较好,生产效率也比较高,但是都要在特定高温高压及真空的条件下进行,对设备和技术要求较高。
二、石墨烯的功能化修饰技术石墨烯的功能化修饰主要是指针对石墨烯表面进行不同的化学修饰,以改变石墨烯的物理、化学性质。
主要包括氧化、还原、功能化、掺杂等多种方法。
1. 氧化石墨烯:将石墨烯表面的碳与氧作用结合,形成氧化石墨烯。
石墨烯的氧化可以在其表面形成和羟基、羧基、酮基等官能团,可以提高石墨烯与其他化学物质的响应性,也降低了其电导率。
氧化石墨烯的制备简单,但是对于石墨烯的电导性能和结构有一定的影响。
2. 还原石墨烯:将氧化石墨烯进行还原,可以恢复石墨烯的电学性质。
还原石墨烯还可以在石墨烯表面引入被还原的杂原子,进而实现对石墨烯各种性质的修饰。
3. 功能化石墨烯:通过引入不同的官能团和分子可以实现石墨烯的功能化。
功能化的目的是在石墨烯的表表面引入各种化学结构,改变石墨烯的性质,如增强机械性能、改变热学性质等。
常用官能团有COOH、OH、NH2等。
4. 掺杂石墨烯:通过引入异型原子或者化合物到石墨烯中实现对石墨烯的掺杂修饰,进而改变其电学性质、光学性质、磁学性质等。
石墨烯纳米材料的制备与应用

石墨烯纳米材料的制备与应用石墨烯是一种由碳原子组成的一层厚度非常薄的二维碳材料,它具有极高的强度和导电性,也拥有许多其他令人惊奇的特性。
因此,石墨烯被广泛应用于生物学、电子学、光学、催化和其他领域的研究。
而在石墨烯的制备和应用中,纳米材料也扮演着十分重要的角色。
一、石墨烯的制备方式目前,石墨烯的制备方法主要分为机械剥离法、化学气相沉积法、化学剥离法、去氧还原法和电化学法五种。
而其中,化学气相沉积法和化学剥离法是较为常用的两种方法。
化学气相沉积法是利用化学反应在基底上沉积石墨烯薄膜。
该方法可以得到单晶石墨烯,薄膜质量较好,但生产难度较高,且设备成本高。
化学剥离法是指采用各种方法在各种材料表面制备石墨烯的一种技术。
该方法成本较低,操作简单,但是石墨烯质量较差,难以控制其层数和晶体质量。
二、石墨烯纳米材料的制备方式目前,石墨烯纳米材料的制备方式主要包括机械法、物理法、化学法和生物学法四种。
机械法是指利用机械磨擦、高温等方法将石墨烯制备成纳米材料。
这种方法制备的纳米材料质量较高,但是生产效率较低,且成本较高。
物理法是指利用物理方法,如离子束雕刻、电子束雕刻等将石墨烯制备成纳米材料。
这种方法可以制备各种形状的纳米材料,但是成本较高,难度较大。
化学法是指利用化学反应将石墨烯制备成纳米材料。
这种方法操作简单,成本低廉,但是石墨烯质量较差,存在一定的毒性。
生物学法则是指利用生物学反应将石墨烯制备成纳米材料。
与化学法相比,该方法更为安全,但是生产效率较低,成本也较高。
三、石墨烯纳米材料的应用由于石墨烯纳米材料具有许多优异的特性,在各个领域都有广泛的应用。
在生物学领域中,石墨烯纳米材料可用于生物传感器的制备及生物医学成像等;在电子学领域中,石墨烯纳米材料可用于半导体材料、太阳能电池等的制备;在光学领域中,石墨烯纳米材料可制备光电器件;在化学领域中石墨烯纳米材料可用于催化反应。
此外,在纳米电子学中,石墨烯纳米材料还可以作为晶体管和其他电子元件的材料,其导电性及传输率远高于硅材料,这也为电子学的进一步发展提供了更广阔的空间。
石墨烯及其复合材料的制备与应用

石墨烯及其复合材料的制备与应用石墨烯是一种由碳原子构成的单层二维晶体,具有独特的物理和化学性质。
自它的发现以来,人们对石墨烯的制备与应用进行了广泛的研究。
本文将介绍一些石墨烯的制备方法,以及石墨烯与其他材料的复合,以及它们的应用。
石墨烯的制备方法有多种,其中最常用的是机械剥离法和化学气相沉积法。
机械剥离法是通过用胶带剥离石墨矿石表面的石墨层来得到石墨烯。
这种方法简单易行,但只能制备少量的石墨烯。
化学气相沉积法则是将碳源气体(如甲烷)在金属基底上热解,生成石墨烯。
这种方法可以制备大面积的石墨烯,但需要高温和特殊的实验条件。
石墨烯与其他材料的复合可以改善其性能,并拓宽其应用范围。
例如,石墨烯与聚合物的复合材料具有优异的导电性和机械性能。
这种复合材料可用于制备柔性显示器和电子设备。
此外,石墨烯与金属氧化物的复合材料具有良好的催化性能,可用于电催化和能源转换。
石墨烯与纳米粒子的复合材料还具有优异的光学性能,可用于光学传感和光催化。
除了复合材料,石墨烯还有许多其他的应用。
例如,石墨烯在电子器件中的应用已经引起了广泛的关注。
由于石墨烯具有极高的电子迁移率和较低的电阻率,使得它成为理想的导电材料。
石墨烯晶体管已被用于制备高性能的智能手机和电子设备。
此外,石墨烯还可以用于制备超级电容器和锂离子电池,以提高储能性能。
石墨烯还可以用于制备高强度的复合材料,用于航空航天和汽车工业。
然而,石墨烯的大规模制备和应用仍然面临一些挑战。
一方面,石墨烯的制备成本较高,制备方法仍需要进一步改进。
另一方面,石墨烯在生物医学领域的应用还需要深入研究。
尽管石墨烯具有许多独特的性质,但其在生物体内的生物相容性和毒性仍然存在争议。
综上所述,石墨烯及其复合材料具有巨大的应用潜力。
石墨烯的制备方法日趋成熟,可以制备大面积和高质量的石墨烯。
与其他材料的复合可以改善石墨烯的性能,拓宽其应用范围。
石墨烯在电子器件、能源储存和复合材料等领域具有广阔的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯的制备与应用
2012级化工2班朱立帅摘要石墨烯的发现使热力学涨落不允许任何二维晶体在有限温度下存在的理论被重新探讨。
其稳定的晶格结构使碳原子具有优秀的材料性质。
本文从石墨烯的结构、特性、制备及应用前景等方面加以阐述。
关键词石墨烯;二维晶体;最薄;光学性能;
石墨煤(graphene,简称GE),作为单层的石墨结构,是目前世界上最薄却最强的材料。
由于具备超高的力学性能、吸附性和导热、导电性等物理化学性能,石墨烯在材料科学与工程领域中的应用渗透到各个方面。
本文主要对石墨烯的几种制备方法以及应用前景做一个简单综述。
2004年,英国曼切斯特大学科学家AndreGeim和KonstantinNovosetov,通过胶带反复剥离石墨片的方法,成功的分离出仅有一个原子层厚度的石墨单片一一石墨稀,打破了二维晶体由于热动力学不稳定而不存在的设想。
两人也因此共同获得2010年诺贝尔物理学奖。
近二十年来,科学家们对石墨炼产生极大的兴趣并围绕石墨炼展了广泛地研究,石墨炼在各个领域也得以应用。
类似的发现引起了一股研宄石墨稀及其它二维材料的热潮,如氮化硼(BN)丨6],硫化销(MoS2) 17]等
1 石墨烯的结构与性能
石墨烯是由碳原子紧密结合,以六元环形式组成的片层材料。
(1)机械性能
单层的石墨稀虽然仅有一个原子层厚度,却是人们测量的所有材料中强度最高的材料。
(2)热学性能
炼室温下的热导率为5300 W/mK,优于碳纳米管(3500 W/mK)。
石墨稀高的导热系数也进一步支持其在新电子器件中得到应用,有望成为未来超大规模纳米集成电路的散热材料[11-12]。
(3)其他性能
石墨稀为二维片状材料,且仅有单个原子层厚度,因此其具有很高的比表面积,理论值高达2630 mVg。
类似于石墨表面,石墨稀可以吸附和脱附各种原子和分子。
因此,石墨在废水、重金属离子和有机污染物的处理等方面具有潜在的应用价值[18_19]。
2 石墨烯的制备方法
(1)机械剥离法
机械剥离是将块状石墨分割成单原子片层的过程。
在“透明胶带法”未发明之前,人们是观察不到分离的单层材料的自从首次利用微机械分离方法制备出石墨炼以来,该方法被广泛应用于制备高质量的石墨稀。
(2)氧化石墨炼(Graphene oxide, GO)还原法
制备石墨炼最广泛应用的方法是还原GO的方法。
GO通常是将天然石墨粉在酸性介质下,利用强氧化剂氧化剥离而成,常用的方法有三种:Brodie法,Staudenmeier法和Hummers法。
其中,改性Hummers法己经成为生产GO最普遍的方法,此法制备时间较短且无毒性副产物127_28]。
(3)化学气相沉积
化学气相沉积(Chemical vapor deposition,CVD)法是大规模生产单层或多层石墨炼最有效的技术之一。
一般在高温下,通过将碳氢先驱体(例如甲院)裂解,可以在单晶和多晶过渡金属的表面生长出晶片尺寸大小的石墨烯薄膜【⑷。
石墨烯的层数主要取决于碳在金属基体中的溶解性。
3 石墨烯的应用
石墨烯具有最薄、强度最高、优秀的导热导电性及高的光透过性。
这些优点使其在材料领域,特别是透明导电薄膜的应用中独具优势,这类薄膜在光伏电池及液晶显示屏等方面尤为重要。
另外,高效储能器件和高敏传感器等方面,石墨烯也展示出很好的应用前景。
它的研究给科学领域提供了一个无限广阔和充满魅力的材料空间。
(1)制作透明电极及光学元件
已商业化规模生产的透明薄膜材料是氧化铟锡,因铟是稀有金属,制备层沉积需要严格的真空条件,特别是毒性大,其他的取代物亟待被寻找。
作为纳米材料界的新星,石墨烯以其厚度最薄、比表面积大、超强的柔韧度,能够在低密度的情况下形成导电网格的特点被作为氧化铟锡最完美的替代材料。
其制备成本低、工艺简单,高强度及柔韧性可在
纳米尺度内按要求塑形。
将石墨烯卷成管状或球形碳纳米管,将在多种领域有重要的应用。
无缺陷的石墨烯几乎是透明的,透光率大于97%。
用其制作光学器件,可使制备成本大幅度降低。
(2)超级电容器
石墨烯比多孔碳材料拥有更高的比表面积和电导率。
用其制作的电容器,功能远超化学电容。
石墨烯电容器质量小、储能大、充电迅速、反复上万次充放电不影响其使用性能,高压下也能稳定放电。
与一维纳米材料相比,石墨烯基电子器件可以将整个电路:电极、势垒、分子开关集成在同一片层结构上。
制作成本低、功耗小。
将为超级计算机技术、高分辨率成像、军事雷达、高频宽带通信领域开辟新的途径。
(3)复合材料
石墨烯拥有独特的机械和电学性能,在纳米增强材料方面有许多新应用。
作为添加剂使用,可显著改善聚合物的导电、导热及力学性质。
例如制造功能性复合材料,高分子导电材料和高强度多孔陶瓷等。
另外,将半导体或金属纳米粒子与纳米级石墨烯层片进行表面制备,可丰富石墨烯的层间结构,减少片层之间的相互作用,阻断团聚,以更好的保持各片层的独立机能,并产生新的协同效应,使性能更稳定。
5 结论与展望
随着石墨烯研究的不断深入,其应用将会有一个广阔的前景。
在化工行业、电子行业、建筑行业、材料行业等都会有很大的发展前景。
石墨烯的应用将会是我们生活的一场巨大变革。
如果真的有那么一天,我们的生活肯定会因为这种材料发生翻天覆地的变化,二者需要我们对石墨烯更加深入的研究。
参考文献:
[ 1 ]Geim A K,Novoselov K S. Hie rise of graphene. Nat Mater. 2007,6:183-191
[ 2 ]张玲、韩晓芳、胡彦杰、杨晓玲基于石墨烯的纳米复合材料的制备2014-4-16
TB34
[ 3 ]郑小青冯苗詹红兵石墨烯纳米带0613.71 ; TB383。