石墨烯的合成与应用
综述石墨烯的制备与应用

半导体物理课程作业石墨烯的制备与应用(材料)目录一、石墨烯概述 (2)二、石磨烯的制备 (3)1、机械剥离法 (3)2、外延生长法 (5)3、化学气相沉积法 (6)4、氧化石墨-还原法 (6)5、电弧法 (9)6、电化学还原法 (9)7、有机合成法 (10)三、石墨烯的应用 (11)1、石墨烯在电子器件领域的应用 (11)1.1 石墨烯场效应晶体管 (11)1.2 石墨烯基计算机芯片 (12)1.3 石墨烯信息存储器件 (13)2、石墨烯在能源领域的应用 (14)2.1 石墨烯超级电容器 (14)2.2 锂离子电池 (15)2.3 太阳能电池 (16)2.4 储氢/甲烷器件 (17)3、石墨烯在材料领域的应用 (18)3.1 特氟龙材料替代物 (18)3.2 石墨烯聚合物复合材料 (18)3.3 光电功能材料 (19)4、石墨烯在生物医药领域的应用 (20)4.1 基于氧化石墨烯的纳米载药体系 (20)4.2 氧化石墨烯对DNA/基因/蛋白的选择性检测 (21)4.3用于生物成像技术 (23)4.4 石墨烯在肿瘤治疗方面的应用 (23)四、总结及展望 (24)参考文献 (25)一、石墨烯概述碳广泛存在于自然界中,是构成生命有机体的基本元素之一。
碳基材料是材料界中一类非常具有魅力的物质,从无定形的碳黑到晶体结构的天然层状石墨;从零维纳米结构富勒烯到一维碳纳米管无不给人们带来炫丽多彩的科学新思路。
而二维碳基材料石墨烯的发现,不仅极大地丰富了碳材料的家族,而且其所具有的特殊纳米结构和性能,使得石墨烯无论是在理论还是实验研究方面都已展示出了重大的科学意义和应用价值,从而为碳基材料的研究提供新的目标和方向。
碳的晶体结构—石墨和金刚石(三维)是自然界中最早为人们熟知的两种碳同素异构体,因化学成键方式不同而具有截然相反的特性。
1985年,一种被称为“巴基(零维)被首次发现,三位发现者于11年后, 即1996年获诺贝尔球”的足球形分子C60化学奖。
混凝土中掺加石墨烯的原理及应用

混凝土中掺加石墨烯的原理及应用一、石墨烯的特性和应用石墨烯是一种由碳原子以蜂窝状排列而成的单层平面结构,具有高强度、高导热性、高电导性、高透明度和高柔韧性等特性。
由于这些特性,石墨烯已经被广泛应用于电子器件、生物医药、能源存储和催化等领域。
其中,石墨烯在混凝土中的应用也备受关注。
二、混凝土中掺加石墨烯的原理1. 提高混凝土的强度和耐久性石墨烯的高强度和高柔韧性可以提高混凝土的强度和耐久性。
石墨烯的高强度使得混凝土的抗拉强度和抗压强度都得到了提升,而石墨烯的高柔韧性则可以防止混凝土出现裂缝和断裂。
此外,石墨烯的高耐腐蚀性和高耐久性可以延长混凝土的使用寿命,减少维护成本。
2. 提高混凝土的导电性和导热性石墨烯的高电导性和高导热性可以提高混凝土的导电性和导热性。
掺加石墨烯的混凝土可以作为传感器,用于监测混凝土中的应力、变形和温度等信息。
此外,石墨烯的高导热性也可以用于混凝土的防冻处理。
3. 提高混凝土的自洁性能石墨烯的高表面积和高化学反应性可以提高混凝土的自洁性能。
掺加石墨烯的混凝土可以通过光催化和氧化还原等反应,将空气中的污染物和有害物质转化为无害的物质,从而净化空气和保护环境。
三、混凝土中掺加石墨烯的制备方法1. 机械混合法机械混合法是将石墨烯粉末和混凝土原料一起放入混合机中搅拌混合的方法。
这种方法简单易行,但是混合效果不稳定,会导致石墨烯的不均匀分散,影响混凝土的性能。
2. 分散剂法分散剂法是将石墨烯粉末和分散剂一起加入混凝土原料中进行混合的方法。
分散剂可以使石墨烯均匀分散在混凝土中,提高混凝土的性能。
但是分散剂会增加制备成本,影响混凝土的工作性能。
3. 水热合成法水热合成法是将石墨烯粉末和混凝土原料一起放入高压反应釜中,在高温高压下进行反应合成的方法。
这种方法可以使石墨烯均匀分散在混凝土中,而且制备过程中不需要添加分散剂,具有制备成本低和工作性能好的优点。
四、混凝土中掺加石墨烯的应用1. 混凝土结构掺加石墨烯的混凝土可以用于建筑物的地基、墙体、楼板和桥梁等结构的建造。
石墨烯是什么材料

石墨烯是什么材料石墨烯是一种由碳原子形成的二维晶格结构的材料,被认为是科学界中的一项重大发现。
它具有许多出色的性质,使其成为研究、应用和开发各种技术的理想材料。
本文将介绍石墨烯的结构、性质和应用。
石墨烯的结构非常特殊。
它是由一个碳原子层构成的,碳原子形成了六边形的排列。
每个碳原子与周围三个碳原子形成共价键,形成一个稳定的二维晶格结构。
这种结构使石墨烯具有独特的性质。
首先,石墨烯具有优异的电子性能。
由于其二维结构,石墨烯的电子在平面内可以自由移动,表现出高度的导电性。
事实上,石墨烯的电子迁移率可以达到几百万cm2/V·s,远高于其他材料。
这使得石墨烯成为电子器件和传感器等领域的理想选择。
其次,石墨烯具有出色的力学性能。
虽然石墨烯只有一个碳原子层的厚度,但它的强度却相当高。
实验证明,石墨烯的强度是钢铁的200倍,同时也具有很高的柔韧性。
这种强度和柔韧性使石墨烯成为纳米复合材料和柔性电子设备的理想材料。
此外,石墨烯还具有很高的光学透明性。
它可以在可见光和红外光范围内实现高透射率,达到97.7%。
这使得石墨烯在显示技术和太阳能电池等领域有着广泛的应用前景。
石墨烯的应用非常广泛。
在电子领域,石墨烯可以用于制造高速电子器件、柔性电子设备和能量存储器件。
在材料领域,石墨烯可以用于制造轻质复合材料、高强度纤维和超薄薄膜。
在能源领域,石墨烯可以用于制造高效的太阳能电池和储能装置。
此外,石墨烯还可以用于制造高效的传感器、过滤器和催化剂等。
然而,尽管石墨烯具有如此出色的性质和应用潜力,但目前仍面临一些挑战。
首先,大规模合成石墨烯仍然是一个复杂和昂贵的过程。
其次,石墨烯的良好导电性和透明性容易受到氧化和杂质的影响,从而降低性能。
因此,石墨烯的制备和保护仍然需要进一步的研究和发展。
总之,石墨烯是一种由碳原子构成的二维晶格结构材料,具有出色的电子、力学和光学性能。
它在电子、材料和能源领域具有广泛的应用前景。
虽然石墨烯仍然面临挑战,但科学界对于其研究和开发仍抱有巨大的期望。
石墨烯的特性及应用前景

石墨烯的制备、结构、特性及应用前景班级:热能082姓名:陆时杰学号:10084621致乔文明老师:乔老师这课讲的很有意思,我虽然是学热能与动力工程的,但是我对这些新型材料很有兴趣,尤其是它在航空航天和军事等领域的应用。
在上这个课之前我就知道多孔碳材料可用用来做雷达波的吸收材料,像现在一些民用器材,比如汽车、自行车。
鱼竿等等,都有采用碳纤维材料,不但重量很轻,而且强度很大。
就是目前市场上这种材料的商品价格往往高的离谱,买不起啊!不过在上这个课还是收获蛮多的,对碳材料有了更深入的认识,就拿石墨烯来说,以前就是听过这玩意很坚固,其他方面的东西还真不知道,通过这门课了解到它的性质和其他的一些用途。
我记得曾今美国有位老师问他的学生地球上的石油多少年能用完,他的学生立刻开始了计算。
这时这位老师说,永远都用不完。
这时因为每当一种材料面临枯竭的时候人类就会找到其替代品。
现在看来是这样,这些碳材料在未来锁发挥的作用将会非常巨大。
但就是每次一讲到这些碳材料的制备和一些条件云云,就听不懂了,因为不是学化工的,对里面好多专业术语不了解,而且还是英文的,不查字典基本就瞎了。
不过对这课的兴趣,还是满浓厚的。
废话不扯了,下面该到正题了,因为引用了很多文献,也不确定里面有些东西的正确性,如有问题,请老师指正。
前言碳材料(如炭黑、煤炭、石墨、金刚石) 几乎和人类一样历史悠久。
20 世纪60 年代以来陆续从聚丙烯腈中得到了碳纤维,由化学分解烃蒸气而产生的热解碳以及来自于非石墨化程序的玻璃状碳等新型碳材料,这些新型碳材料与传统石墨电极、碳黑和活性炭等碳材料有着不同的结构和特性。
在20 世纪70 年代,出现了针型焦碳、新型微珠,生长蒸气型碳纤维,高密度各向同性石墨,碳纤维加强型混凝土、碳分子筛、金刚石- C 和其他新型碳材料。
富勒烯(C60) 和纳米碳管的发现更是开启了一个与光滑石墨层碳材料为基础的碳材料完全不同的世界。
新碳材料的发展促进了碳科学的新发展,这使重新构造C-C 键,观察杂化轨道(SP + 2π,SP2 +π和SP3) 成为一种趋势。
双层石墨烯的合成与应用

双层石墨烯的合成与应用双层石墨烯是一种具有非常特殊性质的二维材料。
相比单层石墨烯,它具有更高的机械强度和更强的光吸收能力,同时还具有其他石墨烯所没有的性质,如能带调控和电学和磁学优异性等等。
因此,双层石墨烯的研究一直是科学家们关注的热点问题之一。
首先让我们来谈谈双层石墨烯的合成方法。
目前,主要的方法有机械剥离法和浸渍法。
在机械剥离法中,先用胶带或其他方法将单层石墨烯剥离下来,再将其层层堆叠压实得到双层石墨烯。
而在浸渍法中,则是将一层石墨烯放在其他材料的溶液中浸泡,然后将其干燥得到双层石墨烯。
此外,还有化学气相沉积法、电子束蒸发法以及化学还原法等合成方法。
这些方法各有优缺点,根据需要选择不同的方法来得到所需的双层石墨烯。
那么,双层石墨烯有什么应用呢?最为广泛的应用就是在电子学领域。
双层石墨烯的载流子质量明显比单层石墨烯大,因此具有更高的电导率。
研究表明,双层石墨烯的电流密度比单层石墨烯高了一个数量级,因此可以在某些场合下取代现有的电子学材料,如二极管等。
同时,双层石墨烯还有用于光电器件的潜在应用价值,如磁光器件和各种光电传感器等。
除了电子学以外,双层石墨烯还在纳米材料领域具有广泛的应用。
例如,可以用双层石墨烯制造纳米机械元件,用于微处理器和微机械系统。
此外,双层石墨烯还可以被用于制备纳米传感器,用于检测不同类型的物质和生化分子等。
双层石墨烯还具有极高的比表面积和出色的化学稳定性,因此还可以作为电池和催化剂等领域的理想材料。
尽管双层石墨烯具有如此多的优点和广阔的应用前景,但目前它的研究仍处于发展初期,许多问题和挑战也需要我们去面对和解决。
例如,在制备过程中,如何控制双层石墨烯的厚度、结构和排列方式等,仍是一个亟待解决的问题。
此外,双层石墨烯的制备成本仍较高,这也制约了其实际应用。
这些问题的解决离不开材料科学和纳米科技的进一步发展,科学家们需要继续开展深入的研究,以促进双层石墨烯的广泛应用并发掘其更多的应用潜力。
电化学法石墨烯

电化学法石墨烯电化学法是一种合成石墨烯的常用方法之一。
石墨烯是一种由单层碳原子组成的二维材料,具有优异的电子、热传导性能以及高度的机械强度。
电化学法可以通过控制电解液中的化学反应,在电极上制备石墨烯。
在电化学法中,通常使用氧化石墨(GO)作为起始材料。
首先,将GO溶解在适当的溶剂中,形成GO溶液。
然后,在两个电极上施加电压,通过阳极氧化和阴极还原的反应,将GO 还原为石墨烯。
一般来说,阳极一般由金属材料制成,例如铂或不锈钢,而阴极可以是碳材料或金属材料。
电化学法合成石墨烯的主要优势是制备过程简单,可控性强,可以在大面积、连续生产石墨烯。
此外,电化学法合成的石墨烯在电子器件等领域具有广泛应用前景,因为它具有较高的电导率和良好的透明性。
然而,电化学法合成的石墨烯也存在一些缺点,例如合成过程中需要控制电流密度、温度和时间等参数,以确保石墨烯的质量和一致性。
此外,电化学法合成的石墨烯可能存在多层薄片或缺陷,因此后续的处理和处理步骤可能需要进一步提高石墨烯的质量。
总的来说,电化学法是一种重要的石墨烯合成方法,具有许多优点和应用前景。
随着研究和技术的不断发展,电化学法合成石墨烯的效率和质量将会得到进一步提高。
除了上述电化学还原法,电化学剥离法也是一种常用的电化学合成石墨烯的方法。
电化学剥离法主要通过在石墨电极上施加电压,在电极表面生长出石墨烯,并通过剥离的方式将石墨烯从电极上分离。
具体步骤如下:首先,在石墨电极表面形成一层氧化物保护层,例如氧化铜(Cu2O)或氧化锌(ZnO);然后,在保护层上施加电压,使含有碳原子的分子在保护层上形成石墨烯;最后,通过适当的方法(例如化学剥离或机械剥离)将石墨烯剥离出来。
与电化学还原法不同,电化学剥离法可以在常温下进行,并且对材料的选择更加灵活。
此外,电化学剥离法制备的石墨烯通常具有较高的质量和单层厚度,适用于许多应用领域,例如电子器件、传感器和储能材料等。
值得注意的是,电化学法合成的石墨烯通常还需要进一步进行后续处理,以去除可能存在的副产物、杂质和多层薄片。
【精品文章】几种石墨烯复合材料制备方法及催化应用介绍

几种石墨烯复合材料制备方法及催化应用介绍
石墨烯具有独特的热、电和光学性能,并以高的比表面积性能,使其非常适于用作复合材料的理想载体。
目前,石墨烯基复合材料广泛应用于传感器、新能源、光催化、电容器、生物材料等领域,特别是在在光催化和电催化领域,具有广阔应用前景。
下面小编介绍石墨烯复合材料在催化领域应用。
一、石墨烯/TiO2复合材料
1、石墨烯/TiO2复合材料光催化性能
石墨烯作为TiO2光催化材料的载体,不仅可以提高催化材料的比表面积和吸附性能,还能够抑制TiO2内部光生载流子的复合,降低了电子-空穴对的重组率,从而促进TiO2的光催化性能,提高其利用效率,因此制备TiO2/石墨烯复合材料可以进一步提高材料的光催化活性。
石墨烯/TiO2复合材料光催化机理示意图
2、石墨烯/TiO2复合材料制备方法
目前,石墨烯/TiO2复合材料的制备方法主要有溶胶-凝胶法和水热法等。
两种方法对于石墨烯的前体准备都是通过Hummers法得到氧化石墨烯,然后通过还原手段一步法得到还原氧化石墨烯/TiO2复合材料。
左图:石墨烯结构示意图;右图:氧化石墨烯结构示意图
(1)溶胶-凝胶法
溶胶-凝胶法通常是将钛的前体与氧化石墨烯溶液混合并搅拌均匀,氧化石墨烯通过氢键作用力与钛的前体结合并发生缩合、聚合反应最终形成具有Ti-O-Ti三维网络结构的凝胶,然后经过干燥、焙烧、研磨得到石墨烯。
催化剂在石墨烯合成中的应用

催化剂在石墨烯合成中的应用石墨烯,一种由碳原子构成的单层二维晶体,在其发现之后便引起了科学界的高度关注。
它拥有极高的机械强度、热导率和电导率,具有广泛的应用前景,如电子器件、传感器、能量存储等。
然而,石墨烯的制备一直是挑战性的科学问题之一。
在这个过程中,催化剂的作用不可忽视,为石墨烯的制备提供了重要的辅助和帮助。
1. 石墨烯的制备石墨烯可以通过多种方法制备,其中化学气相沉积法(CVD)是最常用的方法之一。
该方法采用金属基底催化剂,如铜、镍等,作为反应介质和石墨烯生长的基础,将碳源气体(一般是甲烷、乙烯等)导入反应体系中,利用高温(800-1000 ℃)和低压(1-10 Torr)条件下促进碳源气体的热解和沉积,最终形成单层或多层的石墨烯膜。
2. 催化剂在石墨烯制备中的作用金属基底催化剂在石墨烯制备过程中发挥着至关重要的作用。
它们不仅提供了石墨烯的生长基底,还可以降低制备温度、提高石墨烯的生长速率和质量。
此外,催化剂还可以对碳源气体进行催化分解、加速石墨烯的生长,同时还可以调节石墨烯的形态和晶格结构。
3. 催化剂的选择和改性在石墨烯的制备过程中,金属基底催化剂的选择对石墨烯的质量和生长速率有着重要的影响。
一般而言,镍和铜是比较常用的催化剂,但不同的催化剂对应不同的制备条件和石墨烯品质。
比如,镍催化剂可以在低于800℃的温度下制备单层石墨烯,而在高温条件下则可能出现多层、HOPG等结构,而铜则相反。
另外,人们也研究和改进了一些新型的催化剂,如芳香族化合物、有机物质等,在提高石墨烯质量、降低生产成本等方面开展了新的尝试。
4. 催化剂削蚀对石墨烯制备的影响在石墨烯的制备过程中,催化剂削蚀是一个难以避免的现象,它会产生不利的影响。
催化剂削蚀可能导致石墨烯聚集、杂质含量增加、结构失稳等问题,从而影响石墨烯的质量和性能。
为了减少催化剂削蚀的影响,人们在催化剂表面进行了改性和修饰,如添加微量元素、修饰表面化学性质等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯的合成与应用贾雨龙 1345761115 材料成型及控制工程摘要:论述了石墨烯非凡的物理及电学性质,包括电子输运-零质量的狄拉克-费米子行为,量子霍耳效应,最小量子电导率,量子干涉效应的强烈抑制等;石墨烯的机械和化学制备方法和石墨烯在纳电子器件方面、计算机芯片取代硅、制造最快的碳晶体管、减少噪声方面和潜在的储氢材料领域等方面的应用。
关键词:石墨烯;量子霍耳效应;量子电导率Synthesis and applications of grapheneJia yun-long Jiangsu University of Science and TechnologyAbstract:This paper summarized the extraordinarily physical and electrical properties of graphene,including electron transport-Massless Dirac Fermion behavior,Anomalous quantum Hall effect(chiral,RT),Minimum quantum conductivity,Suppression of quantum interference effect,and etc.The mechanical and chemical synthesis methods for graphene and the applications of graphene in nanoelectronic devices,computers chip replace of silicon,manufacturing the fastest transistor,reducing yawp and potential hydrogen storage,etc were also introduced.Key words:Graphene;anomalous quantum Hall effect;Minimum conductivity引言石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种炭质新材料[1],这种石墨晶体薄膜的厚度只有仅有0.0035nm,仅为头发的20万分之一,是构建其他维数炭质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性及电学性。
完美的石墨烯是二维的,只包括六角元胞;如果有五角元胞和七角元胞存在,会构成石墨烯的缺陷;少量的五角元胞存在会使石墨烯翘曲入形状;12 个五角元胞会形成富勒烯(fullerene)石墨烯的理论研究已有60多年的历史,被广泛用来描述不同结构炭质材料的性能。
20世纪80年代,科学家们开始认识到石墨烯可以作为(2+1)维量子电动力学的理想理论模型。
但一直以来人们普遍认为这种严格的二维晶体结构由于热力学不稳定性而难以独立稳定的存在。
然而真正能够独立存在的二维石墨烯晶体在2004年由英国曼彻斯特大学的Novoselov等[2]利用胶带剥离高定向石墨的方法获得,并发现石墨烯载流子的相对论粒子特性[3,4],从而引发石墨烯研究热。
石墨烯在过去的短短3年内已经充分展现出在理论研究和实际应用方面的无穷魅力,迅速成为材料科学和凝聚态物理领域最为活跃的研究前沿[5]。
研究发现,再不需要任何传统化学稳定剂的情况下,石墨烯可以在水中稳定地分解分层,有望应用于可减少静电现象的涂层的研制。
1石墨烯的性质1.1电子运输-零质量的狄拉克-费米行为(Massless Dirac Fermion behavior)石墨烯是零带隙半导体,独特的载流子特性是其备受关注的原因之一。
在凝聚态物理领域,材料的电学性能常用薛定谔方程描述,而石墨烯的电子与蜂窝状晶体周期势的相互作用产生了一种准粒子,A.Qaiumzadeh[6]根据GW近似值计算了石墨烯在无序状态下在兰道费米子液体内的准粒子特性,即零质量的狄拉克-费米子(massless Dirac Fermions),具有类似于光子的特性,在低能区域适合于采用含有有效光速的(2+1)维狄拉克方程来精确表述。
因此,石墨烯的出现为相对论量子力学现象的研究提供了一种重要的手段。
1.2量子霍尔效应[7] (Anomalous Hall effect(chiral,RT),最小量子导电率[8] (Mimimum conductivity)量子干涉效应的强烈抑制(Suression of quantum interference effect)3年来在石墨烯的电学性能研究中发现了多种新奇的物理现象,包括两种新型的量子霍耳效应(整数量子霍尔效应和分数量子霍尔效应),零载流子浓度极限下的最小量子电导率,量子干涉效应的强烈抑制及石墨烯p-n结界面的电流汇聚特性等[1],Graphene表现出异常的整数量子霍尔行为,其霍尔电导为量子电导的奇数倍,且可以在室温下观测到。
这个行为已被科学家解释为“电子在graphene里遵守相对论量子力学,没有静质量(massless electron)。
2007年,先后3文章声称在graphene的p-n或p-n-p结中观察到了分数量子霍尔行为。
物理理论家已经解释了这一现象。
最近,Novoselov等[9]观察到石墨烯具有室温量子霍耳效应,将原来的温度范围扩大了10 倍,进一步证实了石墨烯独特的载流子特性和优异的电学性质。
1.3最硬的材料哥伦比亚大学的物理学家James Home[10]对石墨烯的机械特性进行了全面的研究。
实验将一些10~20μm的石墨烯微粒放在了一个表面被钻有直径1~1.5μm的小孔的晶体薄板上,之后,用金刚石制成的探针对这些放置在小孔上的石墨烯施加压力,结果表明:在石墨烯样品微粒开始碎裂前,它们每100nm距离上可承受的最大压力居然达到了大约2.9μN。
据科学家们测算,这一结果相当于要施加55N的压力才能使1m长的石墨烯断裂。
如果物理学家们能制取出厚度相当于普通食品塑料包装袋的(厚度约100nm)石墨烯,那么需要施加约2×104的压力才能将其扯断。
换句话说,如果用石墨烯制成包装袋,它将能承受大约2000kg重力。
2 石墨烯的合成鉴于石墨烯极好的结晶性及电学和非凡的电子学、热力学和力学性能,国际上已有越来越多的学者参与到石墨烯的合成与性能的研究,目前石墨烯的合成方法主要有两种:机械方法和化学方法。
机械方法包括微机械分离法、取向附生法———晶膜生长和加热SiC的方法;化学方法是化学分散法。
2.1微机分离法(micromechanical cleavage)最普通的是微机械分离法,直接将石墨烯薄片从较大的晶体上剪裁下来。
,Novoselov[11]等用这种方法制备出了单层石墨烯,并验证了其独立存在。
即用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。
但此法是利用摩擦石墨表面获得的薄片来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供应用的石墨薄片样本。
2.2取向附生法—晶膜生长(epitaxial growth)取向附生法则是利用生长基质的原子结构“种”出石墨烯,但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响碳层的特性。
Peter W.Sutter[12]等使用的基质是稀有金属钌,首先让碳原子在1150℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,镜片形状的单层的碳原子“孤岛”布满了整个基质表面,最终它们可长成完整的一层石墨烯。
第一层覆盖80%后,第二层开始生长。
底层的石墨烯会与钌产生强烈的交互作用,而第二层后就几乎与钌完全分离,只剩下弱电耦合,得到的单层石墨烯薄片表现令人满意。
2.3加热SiC的方法Claire Berger等利用此种方法制备出单层[13]和多层[14]石墨烯薄片并研究了其性能,该方法是在单晶6H-SiC的Si-terminated(00001)面上通过热解脱除Si来制取石墨烯。
将表面经过氧化或H2蚀刻后的样品在高真空下通过电子轰击加热到1000℃以除掉表面的氧化物(多次去除氧化物以改善表面质量),用俄歇电子能谱确定氧化物被完全去除后,升温至1250~1450℃恒温1~20min,形成石墨烯薄片,其厚度由加热温度决定。
2.4化学分散法[15]化学分散法是将氧化石墨与水以1mg/ml的比例混合,用超声波振荡至溶液清晰无颗粒状物质,加入适量肼在100℃回流24h,产生黑色颗粒状沉淀,过滤、烘干即得石墨烯。
Sasha Stankovich[16]等利用化学分散法制得厚度为1nm左右的石墨烯。
3石墨烯的应用前景3.1石墨烯在奶纳子器件方面的应用2005年,Geim研究组[3]与Kim研究组[4]发现,室温下石墨烯具有10倍于商用硅片的高载流子迁移率,并且受温度和掺杂效应的影响很小,表现出室温亚微米尺度的弹道传输特性,这是石墨烯作为纳电子器件最突出的优势,使电子工程领域极具吸引力的室温弹道场效应管成为可能。
较大的费米速度和低接触电阻则有助于进一步减小器件开关时间,超高频率的操作响应特性是石墨烯基电子器件的另一显著优势。
此外,与目前电子器件中使用的硅及金属材料不同,石墨烯减小到纳米尺度甚至单个苯环同样保持很好的稳定性和电学性能,使探索单电子器件成为可能。
3.2未来的计算机芯片材料:石墨烯取代硅马里兰大学物理学家的研究显示,未来的计算机芯片材料可能是石墨烯而不是硅。
电子在石墨烯中的传导速度比硅快100倍,这将为高速计算机芯片和生化传感器带来诸多进步。
他们的论文发表在《自然纳米技术》杂志上[17]。
马里兰大学纳米技术和先进材料中心的物理学教授领导的研究小组称,他们首次测量了石墨烯中电子传导的热振动效应,发现的结果显示石墨烯中电子传导的热振动效应非常细微。
在任何材料中,温度和能量会引起电子的振动。
电子穿过材料时,它们会试探振动的电子,诱发了电子的反作用力。
这种电子的反作用力是材料的固有属性,不能被消除,除非冷却到绝对零度,热振动效应对传导性有重要的影响。
3.3高电子迁移率可用于制造最快的碳晶体管马里兰大学的研究人员称,碳晶体管会成为最快的晶体管,可以超越包括锑化铟在内的所有芯片材料。
在College Park分校的这个研究团队[18]最近对单层石墨烯作了表征,该材料由单原子层的纯碳片层构成。
他们发现,与大部分半导体材料不同,石墨烯的相不随温度而改变。
通常来说,电子的速度是与温度成比例变化的(由于低温下晶格振动,也称为声子,对电子的散射更少,因此温度越低电子流动越好)。