混凝土基本概念 专业英语

合集下载

混凝土和易性名词解释

混凝土和易性名词解释

混凝土和易性名词解释混凝土(Concrete)是一种由水泥、砂、石料和水按一定比例配制而成的人工石材。

混凝土在建筑、水利、交通、市政等领域得到广泛应用,是最重要的建筑材料之一。

以下是混凝土及与其相关的易性名词的解释。

1. 强度(Strength):混凝土的抗压强度是评估其质量和耐久性的重要指标之一。

强度越高,混凝土的负荷承载能力越强。

2. 塑性(Plasticity):混凝土在未硬化之前具有一定的塑性,可以通过可塑性、可流动性的状态塑造成各种形状。

3. 流动性(Workability):混凝土的流动性是指混凝土在施工过程中易于流动和填充各种细小空隙的性质。

良好的流动性有利于提高混凝土的紧密性和强度。

4. 凝结(Setting):混凝土在水泥与水发生反应形成水化产物的过程。

凝结过程可分为凝结初期、凝结中期和凝结后期。

5. 初凝时间(Initial setting time):混凝土开始凝结的时间。

初凝时间长短直接关系到施工的进展。

6. 终凝时间(Final setting time):混凝土完全凝结的时间。

终凝时间长短与混凝土的硬化过程和强度发展有关。

7. 塌落度(Slump):塌落度用来评估混凝土的流动性,是指在试验条件下混凝土塔型坍塌的高度。

塌落度的大小直接影响着施工的操作性和混凝土的质量。

8. 胶体颗粒(Colloidal particles):混凝土中的胶体颗粒是指颗粒大小在1nm至1μm的微细固体颗粒。

胶体颗粒对混凝土的流动性和强度发展有重要影响。

9. 质量控制(Quality control):混凝土生产过程中的质量控制是通过控制原材料的配比、质量和施工工艺的要求,以确保混凝土的性能达到设计要求。

10. 龄期(Age):指混凝土的硬化时间,随着时间的推移,混凝土会逐渐增强。

混凝土是一种广泛应用于建筑、桥梁、水利、公路等工程领域的材料,了解混凝土的基本概念和易性名词对于设计、施工和维护工作具有重要意义。

混凝土的英文单词

混凝土的英文单词

混凝土的英文单词
Concrete作为名词,是混凝土,所以也就有了使物体成型的意思
词义可以解读为:混凝土制的;确实的;具体的,可以搭配使用
concreteplan/evidence/proposals/proof 来表示具体的计划;确凿的证据;具体的建议;确实的证明。

例句:
1、It's not set in concrete and I am in the process of building the project plan for this so that we can look at all concerns, challenges and logistical nightmares!
它还没有确定下来,我正在为此制定项目计划,这样我们就可以看到所有的问题、挑战和后勤噩梦!
2、The statue rests on a bed of concrete.
这座雕像立在混凝土的基座上。

3、The road was paved with concrete.
路面由混凝土铺成。

4、It is easier to think in concrete terms rather than in the abstract.
结合具体的事物来思考要比抽象思考容易些。

其他可作为混泥土英文使用的替代词:
但在由于水泥通常用来制作混凝土(concrete),于是在生活中人们往往很容易将其与concrete 相混淆,比如水泥地(a cement floor)实际上是用混凝土铺设的地面,而并非单纯是用水泥铺设的。

久而久之,cement 也就多出来一个义项,指“干燥后硬化的水泥”,或者直接等同于concrete ,用来代指“混凝土”。

建筑施工名词中英文对照

建筑施工名词中英文对照

建筑施工名词中英文对照建筑施工是一个复杂而细致的过程,其中涉及大量的专业名词。

对于从事建筑施工行业的人士来说,掌握这些名词的中英文对照是非常重要的。

本文将介绍一些常用的建筑施工名词的中英对照,帮助读者更好地理解和运用这些术语。

1. Foundation - 基础基础是建筑物最底部的结构,通常是混凝土的平面,用来支撑整个建筑物的重量。

2. Reinforced concrete - 钢筋混凝土钢筋混凝土是一种由混凝土和钢筋组成的材料,具有高强度和耐久性,广泛应用于建筑施工中。

3. Masonry - 砌体结构砌体结构是一种由砖块或石块按照一定的方式砌筑而成的结构,常用于建筑物的墙体和隔墙。

4. Column - 柱子柱子是一种纵向的结构元素,通常用于支撑建筑物的荷载,并传递到基础。

5. Beam - 梁梁是一种横向的结构元素,通常用于支撑楼板和屋顶,并将荷载传递到柱子上。

6. Slab - 板板是建筑物的水平支撑结构,通常用于构成楼板、屋顶和平台等。

7. Wall - 墙体墙体是建筑物的竖向结构,通常用于分隔空间并承受水平荷载。

8. Roof - 屋顶屋顶是建筑物的最顶部覆盖结构,用于保护建筑物免受自然环境的影响。

9. Foundation pit - 基坑基坑是在施工过程中挖掘的一个具有一定深度和形状的空间,用于建筑物的基础施工。

10. Excavation - 开挖开挖是指移除地表土壤或岩石以形成基坑或其它结构的过程。

11. Pile - 桩基桩基是在土壤或岩石中打入的长桩,用于增加地基的稳定性和承载能力。

12. Formwork - 模板模板是一种用于在混凝土浇筑过程中支撑和成型的结构,通常由木材或金属构造而成。

13. Rebar - 钢筋钢筋是一种用于增加混凝土结构强度的金属材料,通常以长条形式使用。

14. Concrete mixer - 混凝土搅拌机混凝土搅拌机是一种用于将水泥、沙子、石子和水混合制成混凝土的设备。

混凝土词源

混凝土词源

混凝土词源词源解析:混凝土(concrete)1.单词的来历“concrete”这个词是土生土长的英语词汇哦。

它就像一个本土生长的踏实劳动者,一步一步发展至今。

它源于拉丁语“concretus”,意思是“生长在一起”,这个词带着一种融合、凝聚的原始概念来到了英语的世界里。

2.拆解单词“concrete”可以拆分为“con - ”和“crete”。

“con - ”这个前缀有“共同、一起”的意思,就像是小伙伴们手拉手。

而“crete”呢,它和“create”(创造)有点关联,有一种生成、制造的感觉。

合起来就像是许多东西共同创造、融合在一起,就像混凝土是由多种材料混合而成的一样,仿佛是一场神奇的材料聚会。

3.单词的演变史在历史的长河中,“concrete”从最初表示“生长在一起”这种比较抽象的概念,逐渐演变成专门指代一种建筑材料。

它从一种比较宽泛的凝聚、融合的概念,慢慢聚焦到由水泥、沙石等混合而成的坚硬物质。

就像是一个有很多技能的人,最后选择了建筑行业作为自己的专长,经过长时间的沉淀,成了如今建筑工程中不可或缺的重要角色。

4.有趣的背后故事据说在古代,人们就开始尝试将不同的材料混合起来以达到坚固的效果,虽然那时候还没有现代意义上的混凝土。

后来当混凝土被正式发明出来,它迅速改变了建筑的格局。

有个小趣闻是,罗马人建造的万神殿就使用了类似混凝土的材料,那时候的混凝土就像一个隐藏在建筑里的神秘力量,默默地支撑着伟大的建筑,而当时的人们可能还没意识到这个东西在未来会变得如此普及。

5.今天我们怎么用它在现代英语中,“concrete”主要就是指混凝土这种建筑材料啦。

比如我们会说“a concrete building”(一座混凝土建筑)或者“concrete pavement”(混凝土路面)。

和最初表示生长在一起的意义相比,确实是发生了很大的变化,现在它就是建筑界的“硬汉”,哪里需要坚固的支撑,哪里就有它的身影,就像我们生活中的默默守护者一样。

混凝土(concrete)

混凝土(concrete)

混凝土(concrete)混凝土(concrete)是由水泥、砂、骨料和水按照一定比例混合而成的人工建造材料。

作为最常见的建造材料之一,混凝土具有强度高、耐久性好、阻燃、隔热等特点。

本文将详细介绍混凝土的制作、性能及应用。

一、混凝土的制作1. 原材料准备- 水泥:根据混凝土的工程要求和性能需求选择合适的水泥品种。

- 砂:用于配制砂浆,常用的砂类有河沙、山砂等。

- 骨料:主要包括粗骨料和细骨料,常用的有碎石、砂石等。

- 水:选择清洁无杂质、符合规定要求的水。

2. 配制混凝土- 配置配合比:根据工程要求和混凝土性能需求确定合理的配合比。

- 搅拌混合:将水泥、砂、骨料和水按一定比例放入混凝土搅拌车或者混凝土搅拌站进行搅拌。

- 灌注浇筑:将搅拌好的混凝土倒入模具或者建造结构中进行浇注。

二、混凝土的性能1. 强度性能- 抗压强度:混凝土在受压作用下的反抗能力。

- 抗拉强度:混凝土在拉伸作用下的反抗能力。

- 抗折强度:混凝土在弯曲作用下的反抗能力。

2. 耐久性能- 抗渗透性:混凝土反抗液体、气体通过的能力。

- 抗冻融性:混凝土在冻融循环中的反抗能力。

- 抗硫酸盐侵蚀性:混凝土反抗硫酸盐侵蚀的能力。

3. 施工性能- 流动性:混凝土的可流动性和可塑性。

- 凝结时间:混凝土从浇筑到达给定的强度所需的时间。

- 收缩性:混凝土在硬化过程中发生的体积变化。

三、混凝土的应用1. 建造领域- 房屋建造:混凝土用于楼板、墙体、地基等建造构件。

- 桥梁建造:混凝土用于桥墩、桥台、桥面等建造构件。

- 隧道工程:混凝土用于隧道壁、顶板等建造构件。

2. 基础设施建设- 高速公路:混凝土用于路面、路基等建造构件。

- 水利工程:混凝土用于水坝、水渠、水塔等建造构件。

- 输电工程:混凝土用于电缆沟、电缆槽等建造构件。

3. 工业领域- 工业厂房:混凝土用于厂房地板、墙体等建造构件。

- 储存设备:混凝土用于仓库、库房等建造构件。

- 加工设备:混凝土用于机械基础、设备基座等建造构件。

混凝土的基础知识

混凝土的基础知识

混凝土的基本知识中文名称:混凝土英文名称:concrete 定义1:由胶凝材料(如水泥)、水和骨料等按适当比例配制,经混合搅拌,硬化成型的一种人工石材。

应用学科:电力(一级学科);水工建筑(二级学科)定义2:由胶凝材料将骨料胶结成整体的工程复合材料的统称。

应用学科:水利科技(一级学科);工程力学、工程结构、建筑材料(二级学科);建筑材料(水利)(三级学科)混凝土,简称为“砼(tóng)”:是指由胶凝材料将集料胶结成整体的工程复合材料的统称。

通常讲的混凝土一词是指用水泥作胶凝材料,砂、石作集料;与水(加或不加外加剂和掺合料)按一定比例配合,经搅拌、成型、养护而得的水泥混凝土,也称普通混凝土。

混凝土是当代最主要的土木工程材料之一。

它是由胶凝材料,颗粒状集料(也称为骨料),水,以及必要时加入的外加剂和掺合料按一定比例配制,经均匀搅拌,密实成型,养护施工中的混凝土硬化而成的一种人工石材。

混凝土具有原料丰富,价格低廉,生产工艺简单的特点,因而使其用量越来越大。

同时混凝土还具有抗压强度高,耐久性好,强度等级范围宽等特点。

这些特点使其使用范围十分广泛,不仅在各种土木工程中使用,就是造船业,机械工业,海洋的开发,地热工程等,混凝土也是重要的材料。

历史1900年,万国博览会上展示了钢筋混凝土在很多方面的使用,在建材领域引起了一场革命。

法国工程师艾纳比克1867年在巴黎博览会上看到莫尼尔用铁丝网和混凝土制作的花盆、浴盆、和水箱后,受到启发,于是设法把这种材料应用于房屋建筑上。

1879年,他开始制造钢筋混凝土楼板,以后发展为整套建筑使用由钢筋箍和纵向杆加固的混凝土结构梁。

仅几年后,他在巴黎建造公寓大楼时采用了经过改善迄今仍普遍使用的钢筋混凝土主柱、横梁和楼板。

1884年德国建筑公司购买了莫尼尔的专利,进行了第一批钢筋混凝土的科学实验,研究了钢筋混凝土的强度、耐火能力。

钢筋与混凝土的粘结力。

1887年德国工程师科伦首先发表了钢筋混凝土的计算方法;英国人威尔森申请了钢筋混凝土板专利;美国人海厄特对混凝土横梁进行了实验。

混凝土基本原理词汇

混凝土基本原理词汇

------1-------Concrete structure 混凝土结构Reinforced Concrete structure 钢筋混凝土结构Plain Concrete structure 素混凝土结构Prestressed Concrete structure 预应力混凝土结构Fibre reinforced Concrete structure 纤维增强混凝土结构Rebar (reinforcement) 钢筋Compressive strength 抗压强度Tensile strength 抗拉强度Section 截面Crack 裂缝Stress 应力Strain 应变Beam 梁Bond 粘结Coefficient 系数Rust 生锈Brittle 脆性Ductility 延性Moldability 可焊接性Cast 浇注Strength-cost ratio 强价比Fire-resistance 抗火Wood structure 木结构Masonry structure 砌体结构Steel structure 刚结构Monolithic 整体性Self-weight 自重Span 跨度Light-weight 轻质的High-strength 高强的High-performance concrete 高性能混凝土Prefabrication 预制Plastic 塑性的Load-carrying capacity 承载能力Elastic 弹性的Multiaxial 多轴的scale effect 尺寸效应size effect尺寸效应bond 粘结slip 滑移deformation 变形code 规范adherence 粘结bond 粘结friction 摩擦shrinkage 收缩harden 硬化grip 握裹effect 效应expansion 膨胀water-cement ratio 水灰比matching 匹配impact/collision 冲击static 静力的dynamic 动力的linear 线性的nonlinear 非线性的dissipation 耗散isolation 孤立active control 主动控制torsional 扭的local damage 局部损坏collapse 失效,倒塌road curb walls 道路护栏bridge piers 桥墩dike 岸堤vibration 振动steel-encased concrete structure 钢骨混凝土结构concrete-infilled steel tube structures 钢管混凝土结构steel-concrete composite structuresflow property 流动性permeability 渗透性spray 喷射shear strength 抗剪强度rupture strength 抗弯强度fatigue 疲劳matrix 基体aseismic 抗震的frame 框架hydraulic 水力的synthetic fiber 人造纤维toughness 韧性alkaline 碱性的carbon fiber 碳纤维strengthening 加固member 构件solid web 实腹式open web 空腹式buckle 屈曲-------- 2---------Mechanical 力学的Physical 物理的Hardened cement 水泥石Cement mortar 水泥砂浆Coarse aggregates 粗骨料Base phase 基相Dispersed phase 分散相Dissociative water 游离水Capillary 毛细管Gel 凝胶Skeleton 骨架Unhydrated 未水化的Plastic rheological bodies 塑性流变体Cavity 洞、孔隙Microcrack 微裂缝Microstructure 微观结构Mesostructure 亚微观结构Macrostructure 宏观结构Uniaxial 单轴的Specimen 试件Reliability 可靠性size effect 尺寸效应The conversion coefficient 转换系数Prism棱柱Regression 回归分析Lateral 侧向的Additional eccentricity 附加偏心距Cylinder 圆柱体Instability 失稳Mechanism 机制Quasi-elastic 准弹性Stress concentration 应力集中Non-recoverable 不可恢复的Curve 曲线Critical stress临界应力Coalesce 结合Parallel 平行的Dilation 膨胀Disintegration 瓦解Splitting test 劈裂试验Local bearing strength 局部承载强度Triaxial 三向轴的Empirical 经验的Monotonic 单调的Inflection point 反弯点Convergence point 收敛点Elastic strain 弹性应变Plastic strain 塑性应变Viscous 粘性的The proportional limit 比例极限Helical stirrups 螺旋箍筋Square stirrups 方形箍筋Longitudinal rebars 纵向钢筋Pitch 螺旋的间距螺旋线上两个相应的点之间的距离Gauge length (仪器的)测量长度Slope 斜率Modulus 模数,模量Shear modulus 剪切模量, 剪切弹性模数[系数] Moduli 模数,模量(复数)Tangential modulus 切线模量Secant modulus/deformation modulus 割线模量After-effect 后效Instantaneous strain 瞬时应变Residual strain 残余应变Creep 徐变Long-term loading 长期作用V olume-surface ratio 体表比Yield point 屈服点Flexible reinforcement 柔性钢筋Stiff reinforcement 刚性钢筋Steel shape 型钢Smooth bar,plain bar 光面钢筋Helical ribs 螺旋肋Herringbone ribs 人字肋Crescent ribs 月牙肋Weldability可焊性Hot-rolled bars 热轧钢筋Tendon预应力筋Steel strand钢绞线Yield plateau 屈服平台Indices 指标(index的复数)Elongation ratio 伸长比Fracture 破裂,断裂Cold working 冷加工Cold drawing 冷拉Cold pulling 冷拔Extrusion 挤压Elasto-plastic 弹塑性Bauschinger effect 包兴格效应Spatial loading 空间荷载Additional slanted bar 附加斜筋Stirrups 箍筋Erection bar 架立钢筋Main bar 主筋Bent-up bar 弯起钢筋Hook 弯钩In-situ 现场Anchorage 锚固Ultimate limit state 极限状态Serviceability limit state 使用性能极限状态Action 作用Effect 效应Direct action 直接作用Load effect 荷载效应Permanent load 恒载Variable load 可变荷载Accidental load 偶然荷载Function 函数Reliability 可靠性probability概率Possibility 可能性The design reference period 设计基准期Variable 变量Normal distribution 正态分布Mean value平均值Standard deviation标准偏差Partial safety factor 分项系数Optimization 优化Index 指数--------3-------Truss 桁架Frame 框架Upper chord 上弦杆Failure load 破坏荷载Superposition 叠加Constitutive relation 本构关系Qualitative 定性的Quantitative 定量的Confinement 约束Web member 腹杆Bottom chord,lower chord 下弦杆Vertical 垂直的Linear 线性的Ultimate tensile strain 极限拉应变Geometric 几何的Non-uniformity 不均匀性Tension-load-carrying-capacity受拉承载力Normal section 正截面Perpendicular 垂直的Redistribution 重分布Nonlinearity 非线性Stiffness 刚度Secant stiffness 割线刚度Tension-stiffening effect 拉伸刚化效应Compatibility 兼容性transformed section 换算截面reinforcement ratio 配筋率Ultimate load 极限荷载Short column 短柱Lateral deflection 侧向挠度Additional moment 附加弯矩Long column 长柱Subdividing 再分,细分Deduction 推论Peak strain of concrete 混凝土应变峰值Peak stress 应力峰值Static problems 静力问题Dynamic problems 动力问题Definition 定义Creep coefficient 徐变系数Instantaneous 瞬时的Figure 图形Unloading 卸载Reloading 重加载Creep strain 徐变应变Long-term loading 长期荷载Eccentricity 偏心Second-order effect 二阶效应Slenderness ratio 长细比Stability coefficient 稳定系数Welded circular stirrups 焊接环箍筋Symmetric polygon section 正多边形截面Cover concrete 保护层混凝土Spalling 剥落Passive constraint 被动约束Optimum 最佳的-------------------------moment of inertia惯性矩diagonal compression failure斜压破坏diagonal tension failure斜拉破坏shear compression failure剪压破坏internal force内力crack裂缝ultimate strain极限应变plastic塑性的rebar钢筋yield屈服moment弯矩stiffness刚度plane section assumption平截面假定under-reinforced beam适筋梁over-reinforced beam超筋梁eccentric偏心的section截面stirrups箍筋curvature曲率design设计analysis分析shear剪切,剪力flexure弯曲bending弯曲principal stress主应力anchorage锚固diagonal crack斜裂缝equilibrium平衡compatibility协调mechanism机理aggregate interlock骨料咬合dowel action销栓作用web reinforcement腹筋arch action拱作用truss桁架cantilever悬臂梁torsion扭转specimen试件torque扭矩elasticity弹性,弹性力学slope斜率section modulus截面模量box section箱形截面shear flow剪力流punching冲切local局部的punching shear冲剪,冲切column柱foundation基础slab板variable变量bent-up bar弯起筋bond粘结hook弯钩deformed bar变形钢筋splice搭接simply supported beam简支梁detailing构造support支座joint节点prestress预应力pre-tension先张post-tension后张camber反拱jack千斤顶tendon预应力筋construction施工duct孔道jacking张拉abutment支墩grout灌浆prestress loss预应力损失unbonded无粘结的steel wire钢丝steel strand钢绞线temper回火quench淬火heat treated热处理的relaxation松驰corrugated tube波纹管anchorage锚具control stress控制应力serviceability使用性能deflection挠度。

土木工程专业外语混凝土含翻译

土木工程专业外语混凝土含翻译

4 Where fresh concrete is placed on hardened concrete, a good bond must be developed.5 The temperature of fresh concrete must be controlled from the time of mixing through final placement, and protected after placement.。

to avoid segregation.Selection of the most appropriate technique for economy depends on jobsite conditions, especially project size, equipment, and the contractor’s experience.In building construction,power-operated buggies; drop bottom buckets with a inclined chutes; flexible and rigid pipe by pumping;which either dry materials and water are sprayed separately or mixed concrete is shot against the forms; and for underwater placing, tremie chutes (closed flexible tubes).side-dump cars on narrow-gageFor pavement, concrete may be placed by bucket from the swinging boom of a paving mixer, directly by dump truck or mixer truck, or7 Even within the specified limits on slump and water-cementitious materials ratio, excess water must be avoided.In this context, excess water is presented for the conditions of placing if evidence of water rise (vertical segregation) or water flow (horizontal segregation) occurs.Excess water also tends to aggravate surface defects by increasedleakage through form openings. The result may be honeycomb, variations in color, or soft spots at the surface.8 In vertical formwork, water rise causes weak planes between each layer deposited. In addition to the deleterious structural effect, such planes, when hardened, contain voids which water may pass through.9 In horizontal elements, such as floor slabs, excess water rises and strength, low high and generallypoor quality.10 The purpose of consolidation is to eliminate voids of air and to ensure intimate complete contact of the concrete with the surfaces of the forms and the reinforcement.Intense vibration, however, may also reduce the volume of desirable entrained air; but this reduction can be compensated by adjustment of the mix proportions11 Powered internal vibrators are usually used to achieve consolidation. For thin slabs, however, high-quality, low-slump concrete can be effectively consolidated, without excess water, by mechanical surface vibrators.For precast elements in rigid external vibration is highly effective. External vibration is also effective with in-place forms, but should not be used unless the formwork is for theimpact of the vibrator.12 Except in certain paving operations, vibration of the reinforcement should be it is effective, thevertical rebars passing into partly set concrete below may be harmful.Note, however, that re-vibration of concrete before the final set, under controlled conditions, can improve concrete strength markedly and reduce surface voids.This technique is too difficult to control for general use on field-cast vertical elements, but it is very effective in finishing slabs with powered vibrating equipment.13 The interior of columns is usually congested; it contains a large volume of reinforcing steel compared with the volume of concrete, and has a large height compared with its cross-sectional dimensions.Therefore, though columns should be continuously cast, the concrete should be placed in 2-to 4-ft-deep increments and consolidated with internal vibrators. These should be lifted after each increment has been vibrated.If delay occurs in concrete supply before a beenWhen the remainder of the column isportion slightly.14 In all columns and reinforced narrow walls, concrete placing should begin with 2 to 4 inches of grout. Otherwise, loose stone will collect at the bottom, resulting in the formation of honeycomb. This grout should be proportioned for about the same slump as the concrete or slightly more, but at the same or lower water-cementitious material ratio.the same proportions of butWhen concrete is placed for walls,the only practicable means to avoid segregation is to place no more than a 24-in layer in one pass. Each layer should be vibrated separately and kept nearly level.15 For walls deeper than 4 ft, concrete should be placed through vertical. The concrete should not fall free more than 4 ft or segregation will occur, with the coarse aggregate ricocheting off thelayers after the initial layer should be penetrated by.can be beneficial (re-vibration), but control under variable jobsite conditions is too uncertain for recommendation of this practice for general use.16 The results of poor placement in walls are frequently observed:slope layer lines; honeycombs, leaking, if water is present; and, if cores are taken at successive heights, up to a 50% reduction in strength from bottom to top. Some precautions necessary to avoid these ill effects are:17 Do not move concrete laterally with vibrators18 For deep, long walls, reduce the slump for upper layers 2 to 3 in below the slump for the starting layer.19 On any placing of layers, vibrate the concrete20 Concrete should be inspected for the owner before, during, and after casting. Before concrete is placed, the formwork must be free of ice and debris and properly coated with bond-breaker oil.The rebars must be in place, properly supported to bear any traffic they will receive during concrete placing.inserts, and other items to be embedded must be inConstruction personnel should be available, usually carpenters, bar placers and other trades, if piping or electrical conduit is to be embedded, to act as form watchers and to reset any rebars, conduit, or piping displaced.21 As concrete is cast, the slump of the concrete must be observed and regulated within prescribed limits, or the specified strengths based on the expected slump may be reduced.An inspector of placing who is also responsible for sampling and making cylinders, should test slump, temperatures, and unit weights, during concreting and should control any field adjustmentThe inspector should also that handling, placing, and finishing procedures that agreed on in advance are properly followed, to avoid segregated concrete.should ensure that any construction joints made necessary by stoppage of concrete supply, rain, or other delays are properly located and made in accordancewith procedures specified or approved by the engineer.22 Inspection is complete only when concrete is cast, finished, protected for curing, and attains full strength.1混凝土适当放置的原则是:2在混合器和放置点之间的所有操作(包括最终固结和精整)期间必须避免分离。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


In such members , bending is usually present in addition to axial compression and the longitudinal steel reinforcement at each face of the member may act either in tension or compression . transverse ties are used to maintain the longitudinal steel in position during casting of the concrete and later to prevent its outward buckling when it is subjected to compressive stress. Again , the reinforcing steel for the column may be preassembled into a cage .

Cracking in concrete may be caused not omperature gradients and differential or restrained shrinkage .Secondary reinforcement is therefore provided to control such cracking ,which may be unsightly and even dangerous .
2013-4-21
4
The primary purpose of the steel reinforcement is to carry internal tensile forces.Reinforcement is therefore placed in beams near the tensile face,i.e,near the lower face in the in span regions of positive moment and near the upper face in regions near intemal supports,where negative moments act. This is illustrated in Fig.10.1,In reinforced concrete design,it is important to provide reinforcement in all regions of potential cracking.

2013-4-21
5
Thus a rectangular arrangement of vertical and horizontal steel bars is introduced into regions of a beam where inclined cracks can form as a result of combined shearing action and bending moment.The longitudinal steel,or main reinforcement,and the transverse bars,called stirrups,may be preassembled into a reinforcing cage for ease of construction.
Basic Concepts of Reinforced Concrete
2013-4-21
1

Although concrete is used very extensively in the construction of buildings ,bridges and many other engineering structures ,its mechanical properties are far from ideal .For example ,it is not a particularly strong material .The compressive strength of structural grade concrete ranges typically from 20 to 40 MPa ,or about 3000 to 6000 lb/in2 .This is somewhat lower than the compressive strength range of most timbers used in structural work .

Although steel reinforcement is used primarily to carry the internal tensile forces produced by external loading , it also has other uses . steel is much stronger than concrete in compression ,and it is sometimes used to boost to the resistance of zones of compression , when the overall dimensions of the member are restricted . longitudinal steel is placed in all compression members.
2013-4-21
2
The tensile strength of concrete is extremely low ,about one-tenth of its compressive strength ,and this precludes the use of plain concrete for most structural members . The elastic modulus for concrete subjected to compressive stress of short duration is reasonably high ,in the range of 20,000 to 30,000 MPa (about one-tenth , of the elastic modulus of steel); however ,concrete undergoes large additional long-term deformation due to creep and shrinkage ,so that the effective stiffness is much lower-perhaps a third to a quarter of the instantaneous stiffness .
2013-4-21
3

The widespread use of concrete in engineering construction stems from its cheapness compared with other structural materials currently available .Its lack of tensile strength is overcome by including reinforcement ,usually in the form of steel bars, to produce a composite material known as reinforced concrete .Although the steel reinforcement does not prevent the cracks from widening ,and it provides need is usually quite small ,relative to the volume of concrete ,so that the total cost of reinforced concrete construction remains commercially very competitive .

In a floor slab , bars are usually laid in the two main span direction at right angles , to resist the tensile force produced by the bending actions in each direction. For ease of construction , welded mesh is frequently used as slab reinforcement .
相关文档
最新文档