管致中《信号与线性系统》(第5版)(章节题库 连续时间系统的频域分析)

合集下载

管致中《信号与线性系统》(第5版)(章节题库 连续信号的正交分解)

管致中《信号与线性系统》(第5版)(章节题库 连续信号的正交分解)

F(
j)
e2
2e2 2 j

2.频谱函数 F(jω)=g4(ω)cosπω 的傅里叶逆变换 f(t)等于______。
【答案】
f
(t)
1
[Sa2(t
)
Sa2(t
)]
【解析】因为
F(
j)
g4 () cos
1 2
g4 ()(e j
e j
)
,而
F
1[ g 4
()]
2
Sa(2t)
,根据傅里叶变换的时移特性,可得
x(t t0 ) X (w)e jwt0 ,可得 e j4w (t 4) , e j4w (t 4) ,再分别乘
以系数即得 f(t)=
。重点在于傅里叶变换的性质。
1 / 117
圣才电子书

十万种考研考证电子书、题库视频学习平 台
3.信号
的傅里叶变换为( )。
), 2
A2
E
A
2E

已知
,根据卷积定理
F2(
)
F1(
)gF1(
)
E 2
Sa2( 4
)
二、填空题
8 / 117
圣才电子书

1.信号
十万种考研考证电子书、题库视频学习平 台
的傅里叶变换 F(jω)等于______。
【答案】
【解析】
f
(t)
e2 (t)
2e2e2t (t) ,根据傅里叶变换,可得
10.图 3-2(a)所示信号 f(t)的傅里叶变换 3-2(b)所示信号 y(t)的傅里叶变换 Y(jω)为( )。
为已知,则图
5 / 117

管致中《信号与线性系统》(第5版)(课后习题 连续时间系统的复频域分析)

管致中《信号与线性系统》(第5版)(课后习题 连续时间系统的复频域分析)
圣才电子书
十万种考研考证电子书、题库视频学习平


第 5 章 连续时间系统的复频域分析
5.1 标出下列信号对应于 s 平面中的复频率。
(1) e2t ;(2) te-t ;(3)cos2t;(4) e-t sin(-5t)
答:(1) e2t (t)
s
1
2
,所以
s1=2
收敛域:
5.4 用部分分式展开法求下列函数的拉普拉斯反变换。
3 / 43
圣才电子书

答:(1)部分分式展开
十万种考研考证电子书、题库视频学习平 台
拉氏逆变换,有
(2)部分分式展开
拉氏逆变换,有
(3)部分分式展开
取拉氏逆变换,有
(4)部分分式展开
取拉氏逆变换,有
(5)部分分式展开
15 / 43
圣才电子书

十万种考研考证电子书、题库视频学习平 台
所以
(3)因为 令 T=1,则 所以
(1)n (t nT )
(1)设 而
,则
由时间平移特性,可得
图 5-1
(2)
(3)因为 由时间平移特性,可得
(4)设
,因
由复频域微分特性,有
再由时间平移特性,可得
9 / 43
圣才电子书

十万种考研考证电子书、题库视频学习平 台
5.9 用拉普拉斯变换的性质求图 5-2 各波形函数的拉普拉斯变换。
答:(a)由图 5-2(a)可知
图 5-2
而 由拉式变换的时间平移与线性特性,可得
(b)由图 5-2(b)可知
而 所以
(c)由图 5-2(c)可知
10 / 43
圣才电子书

《信号与线性系统》 东南大学 管致中 夏恭恪 孟桥著 高等教育出版社第五章-2

《信号与线性系统》 东南大学 管致中 夏恭恪 孟桥著 高等教育出版社第五章-2

ω0 = F (s) 2 2 s + ω0 2ω0 s dF ( s ) = 2 tSinω0tε (t ) = tf (t ) ↔ − 2 ( s + ω0 ) 2 ds
f1 (t ) = Sinω0tε (t ) ↔
ω0 2 = F1 ( s ) 2 s + ω0
dF1 ( s ) 2ω s = 2 0 2 2 tSinω0tε (t ) = tf1 (t ) ↔ − ds ( s + ω0 ) 再延时 (t − τ ) Sinω0 (t − τ )ε (t − τ ) = (t − τ ) f1 (t − τ ) ↔ F ( s) =
f1 (t ) ↔ F1 (s), f 2 (t) ↔ F2 (s)

1 f1(t) f2 (t) ↔ [F1(s) ∗ F2 (s)] 2πj
(十三) 初值定理 十三)
存在, 设 f (t )及 f ′(t ) 存在,并有 F ( s ) f (0 + ) = lim f (t ) = lim sF ( s) 则 s →∞ t →0 应用条件: 必须为真分式, 应用条件:F(s)必须为真分式, 必须为真分式 若不是真分式,则必须将F(s)化为一个整式和一个真分 若不是真分式,则必须将 化为一个整式和一个真分 之和, 式F0(s)之和,此时 之和
1 s2 L{[tε (t )]e −αt } = F ( s + α ) = (s f (t ) = tε (t ) ↔ F (s ) =
1 (s + α )2
例5
e −αt [ Sin ω 0 tε (t )]
L{[ Sinω0tε (t )]e
−αt
ω0 f (t ) = Sinω0tε (t ) ↔ F ( s) = 2 2 s + ω0

管致中《信号与线性系统》(第5版)(章节题库 绪 论)

管致中《信号与线性系统》(第5版)(章节题库 绪 论)
和系统 s2: 互为可逆系统。( ) 【答案】错误。 【解析】积分系统和微分系统相差一个常数,不能互为可逆系统。
2 / 23
圣才电子书

三、分析计算题
十万种考研考证电子书、题库视频学习平 台
1.已知两信号分别为 f1(t)=2cos(πt)+4sin(3t),f2(t)
2.系统 y(t)=2(t+1)x(t)+cos(t+1)是_____。(说明因果/非因果性、时 变/非时变性、线性/非线性)。
【答案】因果、时变、非线性。 【解析】y(t)=2(t+1)x(t)+cos(t+1),输出仅与现在的输入有关,系统是 因果的;响应随激励加入的时间不同而发生变换,系统是时变的;不满足齐次性和叠加性, 系统是非线性的。
图 1-4 答:(1)移位:f(-2t+1)= f[-2(t-1/2)],f(-2t+1)波形向左平移 1/2 可得 f(-2t); (2)扩展:将 f(-2t)做尺度变换,横坐标放大 2 倍,求得 f(-t); (3)反转:将 f(-t)反转,求得 f(t)波形,如图 1-5 所示。
4 / 23
圣才电子书
圣才电子书

十万种考研考证电子书、题库视频学习平 台
图 1-2 答:翻转:先将 f(t)的图形翻转,成为 f(-t); 移位:再将图形向右平移 2,成为 f(-t+2);
扩展:然后波形扩展为原来的 3 倍,成为
,如图 1-3 所示。
图 1-3 4.已知 f(-2t+1)波形如图 1-4 所示,试画出 f(t)的波形。
圣才电子书

十万种考研考证电子书、题库视频学习平 台
第 1 章 绪 论
一、填空题 1.系统的输入为 x(r),输出为 y(r)=tx(t),判断系统是否是线性的( )。 【答案】线性的

《信号与线性系统》(管致中)ch5-3

《信号与线性系统》(管致中)ch5-3

四、拉普拉斯反变换由,常为s 的有理函数)()(t f s F 求)(s F 一般形式:1110111)(a s a s a s b s b s b s b s F n n n m m m m ++++++++=---- (为实数,m 、n 为整数)k k b a 、如nm ≥)()()()(s D s N s R s F +=R(s)的拉氏变换为冲激函数及其各阶导数——理想情况一般情况下:nm <求拉氏反变换有三种方法:查表、部分分式展开法和围线积分法(留数法)(一)部分分式展开法1110111)()()(a s a s a s b s b s b s b s D s N s F n n nm m mm ++++++++=---- =()n m <要点:将分解,逐个求反变换,再叠加)(s F 基本形式:0,1≥↔-t e s s ts kk 1.的根无重根[的极点为单阶] 0)(=s D )(s F )1()())(()()()()(21 n s s s s s s s N s D s N s F ---==极零点)(s F 极点:使=∞的s 根值,)(s F 如为的极点),,1(n k s k =)(s F 零点:使的s 根值,0)(=s F 如,)()()()(1m k z s z s z s s N ---= 为的零点),,1(m k z k =)(s F )2()(2211 nn k k s s k s s k s s k s s k s F -++-++-+-=ts n t s k t s t s n k ek e k e k e k t f +++++= 2121)(求系数的两种方法k k [方法一] (2)式两边乘以():k s s -nnk k k k k s s k s s k s s k s s s s k s s s F s s --++++--+--=-)()()()()(2211 令ks s =则ks s k k s F s s k =-=)]()[([方法二]用微分求])()()([lim s D s N s s k k s s k k -=→(形式)0)()]()[(lim s D ds ds N s s ds dk s s k -=→——罗彼塔法则k s s s D s N ='=])()([())()()(])()[(s N s N s s s N s s k k +'-='-例1 求的反变换)2)(1(4)(+++=s s s s s F )(t f [为真分式,极点为实数])(s F 解:21)(321++++=s k s k s k s F 1)求:k s 2,1,0321-=-==s s s 2)求:k k 【方法一】,2])2)(1(4[01=+++==s s s s k ,3])2(4[12-=++=-=s s s s k 1])1(4[32=++=-=s s s s k 【方法二】用微分求,23)2)(1()(23s s s s s s s D ++=+=+263)(2++='s s s D 2634)()(2+++='s s s s D s N ,2]2634[021=+++==s s s s k ,3]2634[122-=+++=-=s s s s k 1]2634[223=+++=-=s s s s k3)求:)(t f 21132)(++++=s s s s F -)()32()(2t eet f ttε--+-=例2)2)(1(795)(23+++++=s s s s s s F [为假分式,极点为实数] )(s F 解:)2)(1(32)(+++++=s s s s s F )(21s F s ++=令求的反变换:)(1s F 2112)2)(1(3)(1+-+++++=s s s s s s F =)()2()(21t ee tf tt ε---=求的反变换:)(s F )()2()(2)()()(2)()(21t e e t t t f t t t f t t εδδδδ---++'=++'=例3 求的反变换52)(2++=s s s s F [为真分式,极点为共轭复数] )(s F 解:【方法一】2211)(ss k s s k s F -+-=2令21j s --=*=s2)求:k k 1)]()[(11s s s F s s k =-=)2(41j +=2)]()[(22s s s F s s k =-=)2(41j -=*=1k 3)求:)(t f t s t s e k e k t f 2121)(+=tj t j e j ej )21()21()2(41)2(41--+--++=)](2)[(212222t j t j tj t j t e e j e e e ----++=)222(21t Sin t Cos e t -=-,2212t Sin e t Cos e t t---=0≥t ),,,()(2121k k s s f t f =tj tj ejc c ejc c t f )(21)(21)()()(βαβα-+-++=)(221t Sin c t Cos c e tββα-=)(,,,21t f c c 求→βα【方法二】为二次多项式)(s D 52)(2++=s s s D 4)1(2++=s ])[(22βα+-=s 4)1()(2++=s s s F ]2)1(2[212)1(12222++-+++=s s s tCos e s s t022)(ωωααα↔+--t Sin e s t02020)(ωωαωα↔+-1--t t2.当=0有重根的情况[有多重极点])(s D )(s F 设=0共有n 个根,其中一个根s 1为p 重根,其余为单根(异根))(s D 即)())(()()(211n p p ps s s s s s s s s D ----=++ )1(][])()()([)()()(11111211211)1(111 n n p p p p p p s s k s s k s s k s s k s s k s s k s D s N s F -++-+-+-++-+-==++--令异根项][11nn p p s s k s s k -++-++ )()(00s D s N =其系数的求法如上所述重根项的求取111,,k k p (1)求:p k 1)2()()(])()()([)(00111211211)1(111 s D s N s s k s s k s s k s s k s F p p p p+-+-++-+-=--式(2)乘以,ps s )(1-)()()()()()()()(00111111221)1(1111s D s N s s k s s k s s k s s k s F s s pp p p p p-+-+-++-+=---- 再令s s =p(2)求(系数)11)1(1,k k p -引入)()()(11s F s s s F p-=)(4)()()()()()(100111121)2(11)1(11 p p p p p s s s D s N s s k s s k s s k k -+-++-+-+=---将式(4)对s 取导一次:)(5])()()([)()1()(2)(10021111)2(1)1(11 pp p p s s s D s N ds d s s k p s s k k ds s dF -+--++-+=---1])([1)1(1s s p dss dF k =-=将式(5)对s 取导一次,再令得1s s =1])([21212)2(1s s p dss F d k =-=一般情况:1,,1,,])([)!(1111 -=-==--p p k dss F d k p k s s kp kp k 总结:)()(])()()([)(001111)1(12112111s D s N s s k s s k s s k s s k s F pp p p +-+-++-+-=-- ∑-+++++=n t s t s p p ts t s t s q ek e t k e t k te k e k t f 112131111)(例求的反变换22)5)(3(52)(++++=s s s s s F 解:0)5)(3()(2=++=s s s D ⎩⎨⎧-=-=523121s s 重根个单根)1()5(53)(222211 +++++=s k s k s k s F 1)求系数22211,,k k k 单根项2)]()3[(31=+=-=s s F s k 重根项5221)]()5([-=+=s s F s dsd k 52]}352[{-=+++=s s s s ds d 1-=求式代入的另法:把)1(,22121k k k 5)5(1032)(212+++-+=s k s s s F 551032535)0(2122k F +-=⨯=121-=k 2) 求:)(t f )()102()(553t teeet f tttε-----=10)]()5[(5222-=+=-=s s F s k(二)围线积分法(留数法)拉氏反变换:⎰∞+∞-=j j stdse s F j tf σσπ)(21)(留数定理:∑⎰==ni icstsds e s F j 1Re )(21π上式左边的积分是在s 平面内沿一不通过被积函数极点的封闭曲线C 进行的,右边则是在此围线C 中被积函数各极点上留数之和。

信号与线性系统(管致中)

信号与线性系统(管致中)

1 p 1 p
1 d t p x(t )d x(t ) p dt
?
t dx(t ) 1 p x(t ) x() dt p
1 p =1 p
dx (t ) dy (t ) dt dt
当且仅当x() 0时等号成立
x(t ) y (t ) C
注:初始条件
rzs (0 ) 0, rzs ' (0 ) 0
零输入响应和零状态响应
r (t )(全响应) rzi (t )(零输入响应 rzs (t(零状态响应) ) )
2. 用叠加积分的方法求解零状态响应:原理——系统的叠加性
若f1 (t ) r1 (t ),f 2 (t ) r2 (t )
转移算子:
N ( p) r (t ) e (t ) D( p)
N ( p) H ( p) D( p)
转移算子描述了响应函数和激励函数在时域中的关系
2-2 系统方程的算子表示法
二、算子多项式的运算法则 1、代数运算:
( p a)( p b) p 2 (a b) p ab
B0不可解
i f (t ) (B0 t )e2t
i(t ) in (t ) i f (t ) (C1 B0 )e2t C2e3t tet
其中待定常数C1+B0,C2由初始条件确定:
i(0) C1 B0 C2 1 1, C1 B0 2, C2 1
(杜阿美积分,卷积积分)
零输入响应 自然响应
零状态响应 受迫响应
对于一个稳定的系统而言,系统的零输入响应必然是
自然响应的一部分
零状态响应中又可以分为自然响应和受迫响应两部分。 零输入响应和零状态响应中的自然响应部分和起来构 成总的自然响应,零状态响应中有外加激励源作用产生的 响应是受迫响应

《信号与线性系统》 东南大学 管致中 夏恭恪 孟桥著 高等教育出版社第五章-5



y”
y’

y (t)

-a n-1
-a1 -a0
4
第五章 连续时间系统的复频域分析
4.系统方程含有x的导数
以二阶为例:y a1 y a0 y b1x b0 x (x的阶数低于y的阶数——实际系统) 引入辅助变量 q(t) , 使 q a1q a0q x 将上式代入原方程,有
y a1y a0 y b1q a1q a0q b0q a1q a0q y a1y a0 y b1q b0q a1b1q b0q a0b1q b0q
积分器 x(t)
y(t)
零态:
t
y(t) 0 x( )d
非零态:
t
y(t) 0
x( )d y(0)
y(0)
X (s)
a
Y(s)
Y (s) aX (s)
X (s)
1
Y (s)
s
Y(s) 1 X (s)
s
Y (s) 1 X (s) y(0)
s
s
y(0)
s
x(t)
y(t)
X (s)
1
s
Y (s)
2
第五章 连续时间系统的复频域分析
(二)微分方程式的模拟
1.一阶 :y a0 y x
y
a0 y
x
LT
sY (s)
X (s) a0Y(s)
x
y
y
X (s)
sY (s) 1
Y (s)
s
a0
a0
时域框图
s域框图
2.二阶:y a1 y a0 y x y a1y a0 y x
积分器个数=阶数
积分器
系统的模拟图由三种基本运算器组合起来: 标量乘法器

《信号与线性系统》 东南大学 管致中 夏恭恪 孟桥著 高等教育出版社第五章-4


12
第五章 连续时间系统的复频域分析
从信号分解的角度看拉普拉斯变换 (三)通过H(s)求响应 ——从信号分解的角度看拉普拉斯变换 通过 ( 求响应 1. 零状态响应 rzs (t) FT ----- 分解为正弦分量; 分解为正弦分量; 步骤: (1)求激励 e (t) 的象函数 E (s) = ℒ {e (t)}。 ) 。 (2)找出在 s 域中联系零状态响应 与输入激励的运算形式的 ) 系统函数 H(s)。 。 Rzs(s) 零状态响应的拉氏变换 H(s) 的定义为 H(s) = = E(s) 输入的拉氏变换 (3)求零状态响应 rzs (t) 的象函数 R(s) = E(s)H(s)。 ) 。 (4)求 rzs (t) = ℒ -1{R(s)}= ℒ -1{E(s)H(s)} )
di(t ) − - uc(0) 又 ℒ L = LsI ( s) − LiL (0 ) dt

R
是电感中的初始电流。 式中 i L(0-) 是电感中的初始电流。

u
t − ∞
1 i (τ ) d τ = C


0
− ∞
i (τ ) d τ +
c

(0 s
t 0 −
s s 3s uc1 (s) − × uc1 (s) = 0.2 2 10 s + 1 15

u c1 ( t ) = (0.4 + 0.6e
)ε ( t )
u(t) = e
1 − t 6
ε( t )
u c 2 ( t ) = u c1 ( t ) − u ( t ) = (0.4 − 0.4e
u c1 (0 + ) = 1v,不等于 讨论: 讨论:

(NEW)管致中《信号与线性系统》(第5版)笔记和课后习题(含考研真题)详解


4.能量信号与功率信号 信号的能量,功率公式为:
如果信号总能量为非零的有限值,则称其为能量信号;如果信号平 均功率为非零的有限值,则称其为功率信号(power signal)。
二、信号的简单处理
1.信号的相加与相乘 两个信号的相加(乘)即为两个信号的时间函数相加(乘),反映 在波形上则是将相同时刻对应的函数值相加(乘)。图1-1所示就是两 个信号相加的一个例子。
形状不变的同时,沿时间轴右移 的距离;如 为负值则向左移动。图
1-2为信号延时的示例。
图1-2
3.信号的尺度变换与反褶
信号 经尺度变换后的信号可以表示为 显然在 为某值 时的值 ,在
,其中 为一常数。
的波形中将出现在 = / 的位置。因此,如 为正数,当 >1 时,信号波形被压缩(scale—down);而 <1时,信号波形被展宽 (scale up)。如 =-1,则 的波形为 ,波形对称于纵坐标轴的 反褶(reflection)。


系统若具有上式表示的性质则为非时变系统,不具有上述性质则为 时变系统。
3.连续时间系统与离散时间系统
连续时间系统(continuous-time system)和离散时间系统(discretetime system)是根据它们所传输和处理的信号的性质而定的。前者传输 和处理连续信号,它的激励和响应在连续时间的一切值上都有确定的意 义;与后者有关的激励和响应信号则是不连续的离散序列。
(4)错误。例如

(门函数)却是能量信号。
均为功率信号,但两者之和
(5)错误。例如
与 均为功率信号,但两者之积
(门函数)却是能量信号。
(6)错误。例如 为功率信号, 为能量信号,但两者之积 却不是能量信号。

信号与线性系统第五版第五章


1 2
s
1
j0
s
1
j0
s
s2 02

2、尺度变换性:
1 a
F
(
j
a
)
若f(t) F(s),则 当a>0 时
f(at)
1 a
F(s) a
3、时移性:
若f(t)U(t) F(s),则
f(t t0 )U(t t0 ) F(s)est0
f
(at
b)U
(at
b)
1
F
s
e
b a
s
a a
例2: f (t) etU (t 2)
第五章 连续信号与系统复频域分析
5.1 引言:
傅立叶变换的局限性:
1) 工程中一些信号不满足绝对可积条件[如U(t)];
2) 有些信号不存在傅立叶变换如 e t ( 0)
3) 求反变换时,求 (-∞,∞)上的广义积分,很困难; 4) 只能求零状态响应,不能求零输入响应
为了克服傅立叶变换的局限性,我们采用 拉普拉斯变换。
[e2t
(t)],
求f1(t)和f2(t)的单边拉氏变换。
f2
(t)
d dt
e2t
(t)],
解 (1) 求f1(t)的单边拉氏变换。由于
f1(t)
d dt
[e2t (t)]
(t)
2e2t (t)
故根据线性得
F1(s)
L[
f1(t)]
1
s
2
2
s
s
2
若应用时域微分性质求解,则有
F1(s)
sL[e2t (t)] e2t (t)
N (s) D(s)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)。(填“因果”或“非因果”)
【答案】时变、因果
【解析】根据时不变的定义,当输入为 x(t-t0)时,输出也应该为 y(t-t0)=
(
t
t0
5
) cos(
x(
t
1
பைடு நூலகம்t0
)
)
但当输入
x(t-t0)时实际的输出为 (
t
5
) cos(
x(
t
1
t0
)
)

与要求的输出不相等,所以系统是时变的,因果性的定义是指系统在 t0 时刻的响应只与
【解析】无失真传输的定义:无失真是指响应信号与激励信号相比,只是大小与出现
的时间不同,而无波形上的变化。
3.若某系统对激励 e(t)=E1sin(ω1t)+E2sin(2ω1t)的响应为 r(t)
=KE1sin(ω1t-φ1)+KE2sin(2ω1t-2φ1),响应信号是否发生了失真?(
)(失真
或不失真)
A.W B.2W C.ω0
1 / 97
圣才电子书

D.ω0-W
十万种考研考证电子书、题库视频学习平 台
【答案】B
【解析】f(t)乘上 cos(ωt0+θ)实际上就是对信号进行调制,将原信号的频谱搬
移到- 0 和 0 的位置,由于 ω0>>W,所以频谱无重叠,则频谱宽度为原来的 2 倍
答:因为
Sa
0t
0
G20
,所以
故 故得
4.图 4-3(a)所示系统,已知输入信号 f(t)的 F(jω)=G4(ω),子系统函数 。求系统的零状态响应 y(t)。
图 4-3 答:F(jω)的图形如图 4-3(b)所示。
故 Y1(jω)的图形如图 4-3(c)所示。
6 / 97
圣才电子书

得单位阶跃响应
s(t)=e-tu(t)*u(t)-e-1e-(t-1)u(t-1)*u(t)=(1-e-t)u(t)
-e-1[1-e-(t-1)]u(t-1)
3.已知系统的频率响应为
5 / 97
圣才电子书

十万种考研考证电子书、题库视频学习平 台
系统的激励
。求系统的响应 y(t)。
1
(w 1)]
1 j
1 j
j
e
j
6
[
(
w
1)
(w
1)
]
e
j
6
[
(
w
1)
(
w
1)
]
2
2
稳态响应为 1 si n(t)+3-00 1 cos(t 300 ) 2 sin(t 150 )
2
2
2
5.某连续时间系统的输入输出关系为
,该系统是时变
的还是时不变的?(
)(填“时变”或“时不变”);是因果系统还是非因果系统?(
3
2
所以
Y (w) (w) [ (w 2) (w 2)]
由傅里叶反变换得 Y(t)=1+2cos(2t),-∞<t<∞
2.稳定的连续时间 LTI 系统的频率响应为 H(w)= 应 s(t)。
,试求其单位阶跃响
答:单位阶跃响应 s(t)=h(t)*u(t),
系统频率响应的傅里叶变换 H(w) h( t ) etu( t ) e e 1 ( t1)u( t 1) ,
答:不失真
【解析】
r(t)
KE1
sin[1t
-
1 ]
KE2
sin[21t
-
21 ]
KE1
sin[(1 t
-
1 1
)] (Kt E- 2
sin)[21
1 ] , 1
基波和二次谐波具有相同的延时时间,且 1 =常数,故不失真。 w1
3 / 97
圣才电子书

4.若系统函数 ( )。
十万种考研考证电子书、题库视频学习平

,则系统对信号 e(t)=sin(t+30o)的稳态响应是
【答案】 【解析】对信号 e(t)=sin(t+30o)求傅里叶变换
jw
sin(t+30o) j e 6 [ (w 1) (w 1)] ,
H(jw)E(jw)
jw
j e 6 [
1
(w 1)
圣才电子书
十万种考研考证电子书、题库视频学习平


第 4 章 连续时间系统的频域分析
一、选择题 1.图 4-1 所示系统由两个 LTI 子系统组成,已知子系统 H1 和 H2 的群时延分别为 τ1 和 τ2,则整个系统的群时延 τ 为( )。
图 4-1 A.τ1+τ2 B.τ1-τ2 C.τ1·τ2 D.max(τ1,τ2) 【答案】A
t=t0 和 t<t0 时刻的输入有关,否则是非因果。由该系统的输入输出关系看出输出仅与当
前时刻的输入有关,该系统是因果的。
4 / 97
圣才电子书

十万种考研考证电子书、题库视频学习平 台
三、分析计算题
1.已知一连续时间系统的单位冲激响应 h(t)= Sa(3t),输入信号为 f(t)
十万种考研考证电子书、题库视频学习平 台
=3+6cos(2t)+3cos(4t),-∞<t<∞时,求该系统的稳态响应。
答:该系统的稳态响应 y(t) f (t) h(t)
根据时域卷积定理,Y (w) F (w)H (w)
已知
H (w) 1 [u(w 3) u(w 3)], F (w) 3 (w) 3[ (w 2) (w 2)] 3 [ (w 4) (w 4)]
二、填空题 1.图 4-2 所示各系统的频域系统函数 H(jω)分别为______。
图 4-2
df
答:①图(a)由傅里叶变换的微分性质
t
jF ,有
dt

②图(b)
由傅里叶变换的积分性质
t f d
1 j
F
,有

③图(c)由傅里叶变换的时延性质 f t t0 F e jt0 ,有
2 / 97
圣才电子书

十万种考研考证电子书、题库视频学习平 台
故 ④图(d)

2.若连续线性时不变系统的输入信号为 f(t),响应为 y(t),则系统无畸变传输的
系统传输函数必须满足:H(jω)=(
),系统无畸变传输的时域表示式为 y(t)
=( )。
答:
(K 和 t0 为常数);y(t)=kf(t-t0)(k 和 t0 为常数)
【解析】群时延的的定义为 d(w) ,由于 H1 和 H2 都为 LTI 系统,且级联, w
该系统的群时延从时域上就可以得到 r(t)=e(t)*h1(t)*h2(t)=e(t-1 ) *h2(t)=e(t-1 - 2 ),整个系统的群时延为1 + 2
2.若信号 f(t)的频带宽度为 W,则 f(t)cos(ωt0+θ)(ω0>>W)的频带宽度 为:( )
相关文档
最新文档